The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Uncorrected Least-Squares Temporal Difference with Lambda-Return

Takayuki Osogami
IBM Research - Tokyo
osogami@jp.ibm.com

Abstract

Temporal difference, TD()\), learning is a foundation of re-
inforcement learning and also of interest in its own right
for the tasks of prediction. Recently, true online TD(A) has
been shown to closely approximate the “forward view” at
every step, while conventional TD(A) does this only at the
end of an episode. We re-examine least-squares temporal
difference, LSTD(\), which has been derived from conven-
tional TD(A). We design Uncorrected LSTD(\) in such a way
that, when A = 1, Uncorrected LSTD(1) is equivalent to
the least-squares method for the linear regression of Monte
Carlo (MC) return at every step, while conventional LSTD(1)
has this equivalence only at the end of an episode, since the
MC return is corrected to be unbiased. We prove that Uncor-
rected LSTD(\) can have smaller variance than conventional
LSTD(\), and this allows Uncorrected LSTD(\) to some-
times outperform conventional LSTD(\) in practice. When
A = 0, however, Uncorrected LSTD(0) is not equivalent to
LSTD. We thus also propose Mixed LSTD(A), which matches
conventional LSTD(A) at A = 0 and Uncorrected LSTD()\)
at A = 1. In numerical experiments, we study how the three
LSTD(\)s behave under limited training data.

1 Introduction

A fundamental problem in reinforcement learning is in
learning the value function, which maps a state to the ex-
pected cumulative reward (expected return) that can be ob-
tained from that state with a policy under consideration (Sut-
ton and Barto 2018). Effectiveness of reinforcement learning
algorithms relies on the quality of the estimated value func-
tion. Learning the value function is also of interest in its own
right for the purpose of prediction. As such, there has been
a significant amount of work on learning the value function,
where the existing methods may be classified in two ways.
The first classification is with respect to Monte Carlo
(MC) or Temporal Difference (TD). An MC method esti-
mates the value function directly on the basis of sampled
sequences of immediate rewards (i.e., MC returns). On the
other hand, a TD method utilizes the relation that the return
from a state is equal to the immediate reward from that state
plus the return from the next state. There is also a family of

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

5323

methods, which is known as TD()), that mix MC and TD.
Here,)\ is a parameter between 0 and 1, where TD(0) re-
duces to TD, and TD(1) reduces to MC. A study shows that
TD(1) tends to suffer from the high variance of MC returns,
while TD(0) tends to suffer from the bias in the estimator of
return; the optimal choice is often 0 < A < 1 (Sutton 1988).

The second classification is with respect to how the value
function is updated. Two popular approaches are stochas-
tic approximation and least-squares methods. In both ap-
proaches, the value function can be updated every time a
new sample of data is obtained. With stochastic approxi-
mation, the value function is updated by the amount that
is controlled by a step size (learning rate). On the other
hand, a least-squares method recursively computes a ma-
trix and a vector, which are used to compute the weights
of the value function in a way that mean squared error is
minimized. In the literature, a TD()\) method with stochas-
tic approximation is simply referred to as TD(\) (Sutton
1988), and a least-squares TD(\) method is referred to as
LSTD(\) (Boyan 2002). LSTD()) is sometimes called re-
cursive LSTD()) to emphasize the recursive procedure, but
we simply call LSTD(\) in this paper.

Stochastic approximation has the advantage of small
computational complexity per step (specifically, linear in
the number of weights, while least-squares methods have
quadratic complexity). On the other hand, least-squares
methods tend to be sample efficient (Boyan 2002; Bradtke
and Barto 1996; Xu, He, and Hu 2002), because they fully
utilize available data (sufficient information is kept in the
recursively computed matrix and vector)!. Also, the perfor-
mance of TD()) is sensitive to the step size and the initial
weights, while LSTD(\) does not suffer from this sensitivity.
In general, LSTD(\) approximates the value function with a
linear function, which we also assume throughout the paper.

Recently, van Seijen and Sutton; van Seijen et al. (2014;
2016) have proposed true online TD(\) and showed that it
has sound theoretical basis and empirically performs better
than conventional TD(\). This motivates us to re-examine
conventional LSTD(\) by Boyan (2002), which has been de-
rived from conventional TD(\) and shown to converge to the

!The inefficiency of stochastic approximation may be alleviated
by the use of replay memory (Lin 1993)

weights which conventional TD(\) converges to.

We derive Uncorrected LSTD()) in such a way that, when
A = 1, Uncorrected LSTD(1) is equivalent to “the Least-
Squares method for the linear regression of Monte Carlo
return” (LSMC) at every step. This differs from Boyan’s
LSTD(1), which corrects the MC return by “bootstrap” to
make the resulting estimator unbiased. We prove that Un-
corrected LSTD()\), while it is only asymptotically unbi-
ased, can have smaller variance than Boyan’s. Our numerical
experiments suggest that Uncorrected LSTD(\) can indeed
outperform Boyan’s for some cases.

Uncorrected LSTD(\) is derived from linear regression
via the method of instrumental variables, similar to LSTD
by Bradtke and Barto (1996). To shed light on the difference
between Uncorrected and Boyan’s LSTD()), we re-derive
Boyan’s LSTD(\) from modified linear regression via in-
strumental variables. Our main contribution is in our anal-
ysis that illuminates how the variants of LSTD()\) can be
derived from the variants of linear regression as well as how
Uncorrected LSTD(\) can have small variance.

In the analysis, we also show that, when A = 0, Boyan’s
LSTD(0) is equivalent to LSTD (Bradtke and Barto 1996),
while Uncorrected LSTD(0) is not. This motivates us to pro-
pose Mixed LSTD(\), which mixes the two LSTD(\)s in a
way that it matches LSTD at A = 0 and LSMC at A = 1.
We prove that all of the three LSTD(\)s converge to the
same solution as the amount of training data tends to in-
finity, but they behave differently with limited training data.
Our numerical experiments suggest that Boyan’s LSTD(\)
is relatively more sensitive to the particular values of its hy-
perparameters than the other two LSTD(\)s, and one may
find well performing LSTD()) for a given domain from the
family of Mixed LSTD(A). Our secondary contribution thus
includes Mixed LSTD(\) and the empirical characterization
of the three LSTD(\)s under limited training data.

1.1 Related work

In the prior work on TD(A) and LSTD()), it is standard
to correct the MC return by bootstrap, because the correc-
tion reduces the bias, as has been discussed in Peng and
Williams (1996) and Watkins (1989) (Chapter 7). The side
effect of the correction on the variance has not been a major
focus of the prior work, and uncorrected MC return has not
been used to derive existing LSTD(\)s. In the following, we
discuss the work related to LSTD(\).

LSTD()) has been extended or modified in several ways.
These include incremental truncated LSTD (Gehring, Pan,
and White 2016), iLSTD(\) (Geramifard et al. 2007), for-
getful LSTD(\) (Vanseijen and Sutton 2015), generalized
LSTD()) (Ueno et al. 2011), and off-policy LSTD(\) (Mah-
mood, van Hasselt, and Sutton 2014). However, all follow
Boyan’s LSTD(), and one may consider the corresponding
extensions or modifications to our LSTD(\)s. LSTD()) is
also studied by Xu, He, and Hu (2002), but their LSTD(\)
updates the weights in an essentially equivalent manner to
Boyan’s with a different computational procedure.

LSTD(\) can be extended to deal with action-value func-
tions, and the resulting method is referred to as LSTD-
Q(A). LSTD-Q(N\) can be used for policy evaluation in

5324

reinforcement learning, which has been studied as least-
squares policy iteration, LSPI(\) (Lagoudakis and Parr
2003; Szepesvari 2010). Our LSTD(\)s can also be ex-
tended to LSTD-Q(\) and LSPI(\).

Least-squares policy evaluation (A\-LSPE) (Nedi¢ and
Bertsekas 2003) is conceptually related to LSTD(\). How-
ever, unlike LSTD(A), A\-LSPE first finds a least-squares so-
lution of a subproblem and updates weights by the amount
specified by a step size, similar to TD(X).

2 Settings

The purpose of LSTD()) is to learn the value function V'(+)
for a Markov reward process, which is specified with a tuple
(S,P, R,), where S is the set of states, P is a transition
probability matrix, R is a reward function, and -y is a dis-
count factor with 0 < v < 1. For s,s" € S, P, o denotes
the probability that the next state is s’ when the current state
is s, and R(s) denotes the expected reward obtained at s.
Throughout, we assume S to be a finite set.

The value function maps a state s € S to the expected
cumulative reward to be obtained from s:

V(s)= > 7" > (P R(s),
m=0

s’eS

where P™ is the m-step transition probability matrix. Thus,
(P™), ¢ is the probability that the state after m transitions
is ' give that the current state is s. The reward after m steps
is discounted by .

A fundamental property of the value function is given by
the Bellman equation, which here we represent in an ex-
tended form and refer to it as an n-step Bellman equation:

)

n—1
V(S) = Z ’Ym Z (Pm)s,s’ R(S/) +7n Z (Pn)s,s’ V(Sl)

m=0 s'eS s’eS
(2)

for n > 1. The case with n = 1 reduces to the standard
Bellman equation. On the right-hand side of (2), the first
term represents the expected cumulative reward for the next
n steps, and the second term represents the expected cumu-
lative reward afterwards.

LSTD(\) learns V (-) from training data, which we as-
sume to be a series of states and rewards, {(s¢, 7+41) }+- By
convention, 7,4, denotes the reward obtained upon transi-
tioning from s;. More specifically, LSTD()\) seeks to learn
a linear function, Vg(¢p(s)) = ' ¢é(s), that best approxi-
mates V' (s), where ¢(s) is the feature vector of s, and 6 is
the vector of weights (coefficients) of the linear function. A
Markov reward process may be considered as a Markov de-
cision process with a fixed policy. LSTD(\) can thus be used
for policy evaluation in the framework of policy iteration.

3 LSTD())

LSTD()) can be derived in a way that that the n-step Bell-
man equations (2) are approximately satisfied with Vj(-)
for a range of n. Depending on how the n-step Bell-
man equations are weighted, we arrive at variations of

(a) Boyan’s LSTD()\)

(b) Uncorrected LSTD()\)

(c) Mixed LSTD())

A7l 1L b+ o0;

Zo — @y zZ_1 + 0;20 < @g;
fort=0,1,...do fort=0,1,...do
5<—¢t"Y¢t+1§ 0 <2y — Y Zi—1;

Al (A4z07) Y
b+ b+ Tt4+1 Z¢;

Ziy <)\")/Zt + ¢t+1;
0=A"1b;

end end

Afleél;beﬂ;

A (A+do))
b+ b +7"H_1 Zyi)

Ziy1 <)\’}/Zt + ¢t+1;
6=A"1b;

Al éI; b« 0;

z_1 < 0;29 < Py;
fort=0,1,...do

6 Nz —v2zi1);

A e (A+d9)) Y

0 (L=N)(; — ’Y¢t+1);
Al (A+z,0) Y
b(—b+Tt+1 Zyi,

Ziyq] <)\’}/Zt + ¢t+1;
6=A"1b;

end

Algorithm 1: LSTD()\) algorithms, where the step of the form A~% < (A + uv")~! first computes (A + uv')~! from

A~ by the use of the Sherman-Morrison lemma and then replaces the old A~! with (A + uv")~L.

LSTD()). Although our derivation is rather involved, Un-
corrected LSTD(\), which we propose in this paper, consists
of simple calculations and can be directly compared against
Boyan’s. So, we start by discussing Uncorrected LSTD(\)
shown in Algorithm 1(b) with comparison to Boyan’s (Al-
gorithm 1(a)). Algorithm 1(c) mixes the two LSTD(\)s and
will be discussed in Section 3.5.

At each time step ¢, both of the two LSTD(\)s update
the weights, 8, to the solution of a system of linear equa-
tions, # = A~ b, where A~! and b are recursively com-
puted. Note that (A +uv ")~! can be computed from A ~*
via the Sherman-Morrison lemma (rank-one update). The
two LSTD(\)s differ only by two lines. While Uncorrected
LSTD()) updates A by (z; — yz;_1) ¢, , Boyan’s updates
Abyz (¢, —vd, 1), where ¢, = ¢(s¢), and z, is called
an eligibility trace. Both of the two LSTD(\)s run in O(k?)
time and space, where k is the dimension of ¢,.

Here, o > 0 is set sufficiently large to ensure that A ~!
exists and can be updated in a numerically stable manner.
Alternatively, one may also update A, while A~! does not
exists, and compute A~! from A when it becomes invert-
ible. Once A~ is obtained, A~! can be updated as in Al-
gorithm 1. These are standard techniques in recursive least-
squares methods.

In the rest of this section, we derive the three LSTD(\)s
in Algorithm 1 and discuss where the difference stems from.
The performance of these LSTD(\)s will be evaluated em-
pirically in Section 4.

3.1 Deriving Uncorrected LSTD()\)

First, we derive Uncorrected LSTD()\) by following the ap-
proach taken in Bradtke and Barto (1996), who have derived
LSTD. Throughout, we assume 0 < \ < 1.

At (time) step 7', one can consider n-step Bellman equa-
tions for the state s; visited at each step ¢ < 7T'. We take the
weighted sum of those n-step Bellman equations. Specifi-
cally, for 1 < n < T — t, the n-step Bellman equation
(Eq. (2)) is weighted by (1 — \) A"~1. We also add the MC
return (Eq. (1)) with weight A7 ¢!, The resulting weighted
sum of the 7" — ¢ equations is given by

5325

1

+ANTTITE ST IO P, s R(s).

m=T—t seES
3)

Because our regressor Vp(-) is linear, one may find its
weights, 0, via linear regression, if P is known:

T—t—1
{¢t — (=N Y A (P, B(s)
m=1 seS
T—t—1 r-1
— Z (Ay)™ 7“t+1+m} ; 4)
m=0 t=0

where we use {X; + y;};_, to denote the linear regression
where input variables are x; and the corresponding target
variable is y; fort = 0,...,T — 1. The target variable in (4)
involves the reward, ;41 ,,, observed at time ¢+ 1-+m. The
reward after step 1" (i.e., r, for t > T') has not been observed
at step 7" and is not included in (4). The target variable thus
has the observation noise of

T—t—1

Z (A" (Z(Pm)st,sR(s) - Tt+1+m>

m=0 seS

+)T N IO NPT, (R(s), (5)

m=T—t seS

which we will revisit when we discuss convergence of Un-
corrected LSTD(\).

Because P is unknown, the input variables for the linear
regression (4) cannot be directly observed. Instead, one can
observe a sample path, {(s;,7:11)}/—". Then one may use

¢, — (1 =Ny AL ¢, ., as input variables,
which however involve the observation noise of

T—t—1

(1= > (Z(P"vst,m(s)—cﬁwm)-
m=1

seS
(6)

With this observation noise in input variables, the stan-
dard least-squares solution would be biased, which how-
ever can be corrected with the method of instrumental vari-
ables (Young 2011). Following Bradtke and Barto (1996),
we use ¢, as instrumental variables. Then the least-squares
solution of the regression (4) is given by the solution of
+AY¢ 0 = Lbr, where

T—t—1 T
AP = Zcﬁt <¢>t Ny Y ™ 1¢t+m>
m=1
(7
T-1 T—t—1
br = Z(]ﬁt Z " T pm. 3

m=0

We compute AY"° and by recursively, as follows:

Theorem 1. We can compute (7)-(8) recursively as follows:
A%icl = A%nc + (ZT — 'YZT—I) ¢; and bT+1 = bT +
zr vy for T > 0, starting from AJ* = O and by = 0,
where the eligibility trace zp = Z;‘F:O()\ It ¢, can be
computed recursively as zp = Ay zr_1 + ¢ for T > 0.

Proof. The theorem can be proved in a straightforward man-
ner from the definition of the eligibility trace. We provide
a complete proof in the supplementary material (Osogami
2019). O

One may also recursively compute (AY2¢)~! via the
Sherman-Morrison lemma, and this gives Algorithm 1(b).

Now, consider the special cases of Uncorrected LSTD(\).
When A = 1, at each step T, Uncorrected LSTD(1) is
equivalent to LSMC, which finds the least-squares solu-
tion of the linear regression of Monte Carlo return up to 7'

(e, {p,— 31" o Ly m YEGh. Specifically, when
A = 1, we have that AY"¢ and by reduce to

- T—t—1

Agnc Z P, ¢t and by = Z P, Z YT 1
©))

When A = 1, input variables have no observation noise,

and the instrumental variables, ¢,, are equivalent to the in-
put variables. Thus, Uncorrected LSTD(1) recursively finds
standard least-squares solutions.

When A = 0, Uncorrected LSTD(0) is slightly different
from LSTD (Bradtke and Barto 1996), which recursively

computes the solution of ZALSTP § = LbLSTD where
ALSTD Z @, (P, — ¢t+1)T and bLSTD Z by Ty

(10)

5326

When \ = 0, we have by = bESTP but AYne differs from
A%STD by A%nc — A%STD =v¢r_, (;5;, which, however,
becomes negligible (7| AP — AFSTP| — 0) as T — oc.

3.2 Convergence of Uncorrected LSTD()\)

Bradtke and Barto (1996) have shown that the weights given
by LSTD converge to the true values. For the convergence,
the key property that need to be verified is that instrumen-
tal variables are uncorrelated with observation noise in input
variables and in target variables. Although we use the same
instrumental variables as Bradtke and Barto (1996), our ob-
servation noise is different from theirs.

First, consider the observation noise in input variables (in-
put noise). Ignoring a constant factor in (6), our input noise

has the form ¢ = S0 ~5"H(A~)™1(,,, where ¢, is the
input noise at step ¢ + m. It has been shown in Bradtke and
Barto (1996) that (p is uncorrelated with ¢,. By analogous
reasons (more specifically, by considering an m-step transi-
tion as a single-step transition, P <— P™), for each m > 0,
Cm 1s uncorrelated with ¢,. Therefore, ¢, is uncorrelated
with our input noise.

It can be seen in (5) that our observation noise in target
variables has the form ZT S Y + n—t, Where
Nm 18 the observation noise of the reward at stept + 1 +m
for 0 < m < T —t, and ny_; is the remaining observa-
tion noise. It has been shown in Bradtke and Barto (1996)
that 779 is uncorrelated with ¢,. By analogous reasons, 7,,, is
uncorrelated with ¢, foreach 0 < m < T —t.

On the other hand, n7_; can be correlated with ¢,. How-
ever, unlike 7,,, for m < T — ¢, ny_, is deterministic given
s5¢2. Thus, if we consider a hypothetical situation where 17_;
is observed and included in the target variable, ¢, is uncor-
related with the observation noise in target variables.

The following lemma suggests that Uncorrected LSTD(\)
gives the weights that are equivalent to those found in this
hypothetical situation:

Lemma 1. Let @1 be the solution of %A%I’CO = %bT and
07 the solution of AV = 1b%, where AT and by
are given by (7)-(8), and

= 3o

+)\T—t—l

T—t—1

Z A ’V)mil ¢’t+m

m=1
Z ,ym-l-l—(T—t) Z(Pm)st’s R(S)))
=T—t seS

(11

If %A%“C converges to an invertible matrix as T — oo, then
|07 — 0% — 0as T — occ.

m

Proof. Here, we only provide a proof sketch, but a complete
proof can be found in the supplementary material (Osogami
2019).

*Both of 17—+ and ¢; depend on s;, so they are random and
correlated before time ¢. After ¢, the randomness associated with
s¢ is resolved, and the value of nr—; is determined (has no ran-
domness), because s; was the only randomness in 7 —¢.

By the continuity of matrix inverse, we can show

TILH(;O(QT - 67)
— (tim LA B li l(b b%) (12)
o T1—I>noo T T T1—I>noo T T L

It thus suffices to show +|b% — by| — 0 as T — co. Now,
because the state space S is finite, there exists ¢ < oo such
that R(s) < cand |¢(s)| < c elementwise for any s € S.
Then we can show the following elementwise inequality:

v 11-(y"
1—yT 1-Xvy '’

1
7/br —br| < c? (13)

which tends to 0 as T" — co.]

Note that b} involves 17—, that is observed in the hypo-
thetical situation. We discuss the invertibility of 7 AY"¢ in
the following.

The following theorem specifies what weights Uncor-
rected LSTD(\) converges to as T" — oc.

Theorem 2. Let O be the weights given by Uncorrected
LSTD(\) at step T'. Suppose that the Markov chain of state
transition is ergodic®. Let 7 be the vector of steady state
probability at each s € S. Let r be the vector of expected
immediate reward from each s € S. Let ® be the ma-
trix whose rows are ¢(s) for s € S. Then, as T — oo,
0, converges to the solution of A @ = b almost surely,
where A = ® ' Diag(w) (I — yP) (I — Ay P)~' & and
b = ® 'Diag(w) (I — Ay P) ' r. Here, Diag(w) is the di-
agonal matrix whose diagonal elements are . We assume
0<A<land0 <~y <1

Proof. Here, we only provide a proof sketch, but a complete
proof can be found in the supplementary material (Osogami
2019).

At each step 7', Uncorrected LSTD(\) gives the weight
vector 7 that is the solution of £ AY" @ = Lby. There-
fore, it suffices to show %Agnc — A and %bT — b as
T — 0. We can prove these almost sure convergence by
relating the time average to the ensemble average (almost
surely) via the pointwise ergodic theorem, where the key
assumption that we exploit is the ergodicity of the Markov
chain of state transition. O

In the theorem, (I — v P) and (I — A~ P) have full rank,
because P is a stochastic matrix*. Also, 7 > 0 elementwise
by ergodicity. Hence, A is invertible, as long as the feature
vectors are chosen in a way that & " ® has full rank.

3.3 Where does Boyan’s LSTD()\) come from?

We have formally derived Uncorrected LSTD(\) via instru-
mental variables. Then Uncorrected LSTD()) is shown to
reduce to LSMC at A = 1 and is asymptotically equivalent
to LSTD at A = 0. We have also established asymptotic

3aperiodic and irreducible, as we assume a finite state space
“In Sutton, Mahmood, and White (2016), analogous matrices
are shown to be positive definite.

5327

convergence analogous to what has been shown for LSTD
(Bradtke and Barto 1996). These results suggest that Uncor-
rected LSTD(\) is a natural extension of LSTD.

However, Boyan’s LSTD()) is also a natural extension
of LSTD. In this section, we derive Boyan’s LSTD(\) via
the method of instrumental variables, which is quite differ-
ent from Boyan’s derivation from TD(\) (Boyan 2002). Our
analysis will illuminate how the two LSTD())s differ and
shed new lights on LSTD(M)s.

Now, at (time) step 7', we take the weighted sum of the
n-step Bellman equations with 1 < n < T — ¢ for the state
s visited at step t < 7. Here, n-step Bellman equation is
weighted by (1—A\)A" "L for1l <n < T —tandby \T—~1
for n = T — t. The resulting weighted sum is given by

T—t—1
Vi(st) = AN™ D (P™)s,.s R(s)
m=0 seS
T—t—1
F =Ny D> A (P, V(s)
m=1 seES
Hy (AT (PT,, V(s). (14)
seS

Recall that, when we have derived Uncorrected LSTD(\),
we have added the MC return (Eq. (1)) with weight AT —¢~1,
instead of the (T'—t)-step Bellman equation, which is added
in (14) with weight \T~*~1. This difference is reflected in
the last term of (14).

From (14), we arrive at the linear regression {x;

T-1
Yt}i—o » where

T—t—1
xe =y —(L=N)7 Y ()™ Y (P™)s,66(s)
m=1 seS
— NN (P, s(s) (15)
sES
T—t—1
ve= Y, (AN ririime (16)
m=0

Via the instrumental variables ¢,, the least-squares solu-
tion of this linear regression is given by the solution of

%A:,Bf’y 0= %bT, where b is given by (8), and

Boy T—-1
ATV =3¢,

t=0

.
—y Ayt ¢T> .

The following lemma implies that the solution of
%A:,Bf)y 6 = %bT is what is given by Boyan’s LSTD())
atstep 1"

T—t—1

(Q—"t —(1=A)y Z (A ’Y)m_l Dtim

m=1

a7

Lemma 2. Let z. be as defined in Theorem 1. Then we can
. B T-1
write A7™ =37~ 2k (¢, — 'Y¢k+1)T'

Proof. The lemma can be proved in a way similar to Theo-
rem 1. See a full proof in the supplementary material (Os-
ogami 2019). O

The expression of A>% in Lemma 2 is equivalent to

Equation (2) in Boyan (2002). One can also show that A?oy
and its inverse can be computed recursively (Boyan 2002;
Xu, He, and Hu 2002), and this leads to Algorithm 1(a).

It is straightforward to verify that Uncorrected LSTD()\)
becomes asymptotically equivalent to Boyan’s LSTD(\) as
T — oo. Specifically, the theorem analogous to Theorem 2
holds for Boyan’s LSTD(\).

We now study special cases. Because zr = ¢ when A =
0, Boyan’s LSTD(0) is equivalent to LSTD, as discussed in
Boyan (2002). When X = 1, we have from (17) that A?Oy =
S by (@, — AT by, which is different from AP in
(9) unless ¢ = 0. Hence, at each step 7, Boyan’s LSTD(1)
is different from LSMC. In Boyan (2002), Boyan’s LSTD(1)
has been shown to be equivalent to LSMC at the end of an
episode, and this is indeed the case, because one should set
¢ = 0 if the episode ends at 7'.

3.4 Bias-variance tradeoff

In this section, we discuss the quality of the estimators
given by Uncorrected and Boyan’s LSTD()). Specifically,
we show that, in a special case, the estimator given by Un-
corrected LSTD()) is biased but has smaller variance than
that given by Boyan’s LSTD()), which is unbiased.

Proposition 1. Consider a stateless Markov reward process,
where i.i.d. reward with a finite second moment is obtained
at each step. Let ;i and o respectively denote the mean and

variance of the reward. Let 0¥ and Hgoy, respectively, be
the estimator of the discounted cumulative reward given by

Uncorrected and Boyan’s LSTD(\) at step T. Then 9§°y is
unbiased at each T, while 0¥"° has the following bias:

oo
1—x

On the other hand, we have

v 1
o elr)

()

Proof. The proposition can be proved by careful analysis of
the estimators for this special case (see the supplementary
material (Osogami 2019)).

E[07"] -

Var[02*]
Var[0r<]

2y
1-mT

=14

(19)

Although (19) hides details in o (£), it actually holds that

Var[03] > Var[07®] for any T, as is evident in the proof
of the proposition.

Proposition 1 clearly shows the bias-variance tradeoff,
although it is for a special case with strong assumptions.
We may expect that Uncorrected LSTD(\) can outperform
Boyan’s for some cases, even though Uncorrected LSTD(\)
generally incurs larger bias than Boyan’s. If Uncorrected
LSTD(\) performs better than Boyan’s, it is perhaps due
to the low variance of Uncorrected LSTD(\). We hypothe-
size that analogous bias-variance tradeoff holds in more gen-
eral settings, and it is an interesting future work to provide a
proof for the general case.

5328

3.5 Mixing Uncorrected and Boyan’s LSTD()\)

The bias-variance tradeoff discussed in Section 3.4 moti-
vates us to mix Uncorrected and Boyan’s LSTD(\)s to strike
a good tradeoff. To this end, we propose Mixed LSTD(\),
which finds the solution of - AY* @ = Lby in a recursive

manner, where AY™ = X\ AYP 4 (1-)) A2 foreach T 1t
is straightforward to verify that this leads to Algorithm 1(c).

Note that we use A\ to mix Uncorrected and Boyan’s
LSTD(M\)s without introducing an additional hyperpa-
rameter. In this way, Mixed LSTD(0) becomes equiva-
lent to Boyan’s LSTD(0), which is equivalent to LSTD.
Also, Mixed LSTD(1) becomes equivalent to Uncorrected
LSTD(1), which is equivalent to LSMC. Thus, Mixed
LSTD()) nicely interpolates LSTD and LSMC.

All of the three LSTD(\)s in Algorithm 1 run in time
quadratic in the dimension of ¢,. However, Mixed LSTD())
is slower than the others by a constant factor (at most two),
because it applies the rank-one update twice.

4 Numerical experiments

Boyan’s LSTD(A), Uncorrected LSTD(A), and Mixed
LSTD()\) become equivalent as the number of time steps
T tends to infinity, but the three LSTD(\)s behave differ-
ently for small 7. The relative performance of the LSTD(\)s
depends on the domains, and we cannot definitively con-
clude one LSTD(\) is better than the others. In this sec-
tion, we evaluate and compare the performance of the three
LSTD(A)s on randomly constructed Markov reward pro-
cesses (MRPs), which have been designed in van Seijen et
al. (2016) to study the relative performance of various TD(\)
methods during the initial periods of learning.

To generate the random MRPs, we use the code published
online® by van Seijen et al. (2016). One may thus refer to
van Seijen et al. (2016) for the exact settings of the exper-
iments. Here, we briefly summarize the experimental set-
tings. Each random MRP is represented as a tuple (k, b, o),
where k is the number of states, b is the branching factor of
the transition from each state, and o is the standard deviation
of reward. Three types of MRPs are considered. The small
MRPis (10, 3,0.1), large is (100, 10, 0.1), and deterministic
is (100, 3, 0). For each MRP, three representations (features)
of states are studied: tabular, binary, and non-binary. With
tabular, each state is uniquely represented with a standard
basis vector of k£ dimensions. With binary, each state is first
represented by a unique integer from 1 to k, which is then
encoded into a binary representation of length [log, (k+1)].
With non-binary, each state is randomly mapped to a five
dimensional vector according to the standard normal distri-
bution. The performance is evaluated with the mean squared
error (MSE) during the first 100 steps for small and the first
1,000 steps for large and deterministic. More precisely, the
MSE is the error in the estimated weight, normalized by the
MSE when the weights are zero. Throughout, the discount
factor is v = 0.99.

Figure 1 shows the MSE for each LSTD(\) on each MRP
with each value of)\ and regularization coefficient (« in Al-

Shttps://github.com/armahmood/totd-rndmdp-experiments

12 - 12
| g
104+~ /< A I — 10 —— LO{
N e
0.8 0.8 0.8
. &% I]
Mixed LSTD()) =06 =06 =06
04] — A=00 04] — A=00 [———— S 1)
— A=10 — A=10 — A=10
037 3T i 3 037 PRl T 3 02 3T 1 bL s
Regularization coefficient Regularization coefficient Regularization coefficient
12 12 12
— A=00
10 ;i//———— L0 = 10
o8l 0.8 0.8 Z
Uncorrected LSTDQY) - = Too) ”’“J
0.4 0.4] — A=00 [———— S 11
— A=10 — A=10
02 PR 3T o8 0.3%% PR T o7 o8 0.2 57T T Bl s
Regularization coefficient Regularization coefficient Regularization coefficient
12 ‘ 12 1 -
V/ J\ \\ —— A=00 LAY /v\\é Jy\
1.0 \// \\ — 1.0 — A=10 1.0
SN
0.8 0.8 0.8 /
w w w
a a 3
> 0 =0 =00
Boyan’s LSTD()\) 0 :
041 — A=00 0.4 04f — A=00
— A-10 — A-10
035 3 i 3 > 09T 3 i " > 05T 3 i 3 2
Regularization coefficient Regularization coefficient Regularization coefficient
(a) small MRP (b) large MRP (c) deterministic MRP

Figure 1: Mean squared error (MSE) of Uncorrected, Mixed, and Boyan’s LSTD(\) on the three MRPs with non-binary features
as a function of the value of regularization coefficient. Each curve shows the MSE (over 50 runs) with a particular value of A for
0 < X < 1. The legend only shows the color with A € {0, 1}, but the intermediate values of A follow the color map of rainbow.

gorithm 1). Due to space limitations, we show only the re-
sults with non-binary features in Figure 1, but our discus-
sion and conclusion will also consider other results shown
in the supplementary material (Osogami 2019) (Figures 3-
5). Also, Figure 1 does not show error bars, which are
shown with Figure 2 in the supplementary material (Os-
ogami 2019). Following van Seijen et al. (2016), A is varied
in {i/100 | « = 0,10,...,90,91,...,100}. We vary « in
{20 |i=-8,-7,...,8}.

Overall, we find that the performance of Boyan’s
LSTD(\) is relatively sensitive to the particular values of
A and «. While Boyan’s LSTD()\) can perform the best
with appropriate choice of A and «, it can perform quite
poorly with other choices. On the other hand, Uncorrected
LSTD(\) performs more stably across the range of A and «,
although it may not necessarily perform the best even with
the optimal choice of A and « (see the top panel of Fig-
ure 3(a) in the supplementary material (Osogami 2019)). In
fact, for all MRPs in Figure 1, Boyan’s LSTD()\) with the
optimal choice of A and « slightly (up to 2 %) outperforms
Uncorrected and LSTD(\) with its optimal choices of A\ and
«. Then Mixed LSTD()) interpolates Boyan’s and Uncor-
rected LSTD(\). See the supplementary material (Osogami
2019) for computational environment and the running time
with our experiments as well as our implementation of the
three LSTD(M)s.

A conclusion from our experiments is that the three
LSTD(M\)s perform differently with limited training data

5329

(small T), while in theory they converge to the same weights
as T — oo. Small T is relevant for example in reinforce-
ment learning, where policies are iteratively updated, and
the training data with the latest policy is often limited. The
relative performance of the three LSTD(\)s depends on the
characteristics of the MRPs, but our experiments suggest
that Uncorrected and Mixed LSTD(\) certainly have advan-
tages over Boyan’s for some MRPs. Mixed LSTD()\) nicely
interpolates Boyan’s and Uncorrected LSTD()), striking a
good balance between bias and variance.

5 Conclusion

We have derived Uncorrected LSTD(\) in a way that it
matches “the Least-Squares method for the linear regression
of Monte Carlo return” at A = 1. We have shown that Uncor-
rected LSTD(\) can have smaller variance than conventional
Boyan’s LSTD()), and this allows Uncorrected LSTD(\)
to outperform Boyan’s for some cases, even though Uncor-
rected LSTD()) is generally biased, while Boyan’s is proved
to be unbiased. To strike a good tradeoff of bias and vari-
ance, we have also proposed Mixed LSTD(\). The three
LSTD(M)s are shown to converge to the common weights
as the number of time steps tends to infinity.

Our numerical experiments confirm that the three
LSTD()\)s indeed behave differently with small 7. In partic-
ular, Boyan’s LSTD(\) tends to perform the best with its op-
timal choice of hyperparameters but is relatively more sen-

sitive to the particular values of hyperparameters than the
other LSTD()\)s. One may find a well performing LSTD(\)
for a given domain from the family of Mixed LSTD(\).

Future work includes an application of Mixed or Un-
corrected LSTD()) to reinforcement learning, where policy
evaluation and policy improvement are iterated. Although
any LSTD()\) may be used for policy evaluation, one would
prefer the one that can evaluate any policy quickly (with
small amount of training data). Our results suggest that our
LSTD(M)s are relatively insensitive to the particular values
of hyperparameters even when the amount of training data is
limited, which suggests that our LSTD(\)s, with fixed val-
ues of hyperparameters, can quickly and reliably evaluate a
wide range of policies.

Acknowledgments

We thank an anonymous reviewer of NeurIPS 2019 for ex-
ceptionally detailed and constructive comments on a previ-
ous version of this paper.

References

Boyan, J. 2002. Technical update: Least-squares temporal
difference learning. Machine Learning 49(2-3):233-246.

Bradtke, S. J., and Barto, A. G. 1996. Linear least-
squares algorithms for temporal difference learning. Ma-
chine Learning 22(1-3):33-57.

Gehring, C.; Pan, Y.; and White, M. 2016. Incremental
truncated LSTD. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence, 1505-1511.

Geramifard, A.; Bowling, M.; Zinkevich, M.; and Sutton,
R. S. 2007. iLSTD: Eligibility traces and convergence anal-
ysis. In Scholkopf, B.; Platt, J. C.; and Hoffman, T., eds., Ad-
vances in Neural Information Processing Systems 19. MIT
Press. 441-448.

Lagoudakis, M. G., and Parr, R. 2003. Least-squares policy
iteration. Journal of Machine Learning Research 4:1107—
1149.

Lin, L.-J. 1993. Reinforcement Learning for Robots Using
Neural Networks. Ph.D. Dissertation.

Mahmood, A. R.; van Hasselt, H. P.; and Sutton, R. S. 2014.
Weighted importance sampling for off-policy learning with
linear function approximation. In Ghahramani, Z.; Welling,
M.; Cortes, C.; Lawrence, N. D.; and Weinberger, K. Q.,
eds., Advances in Neural Information Processing Systems
27. Curran Associates, Inc. 3014-3022.

Nedi¢, A., and Bertsekas, D. P. 2003. Least squares pol-
icy evaluation algorithms with linear function approxima-
tion. Discrete Event Dynamic Systems 13(1-2):79-110.
Osogami, T. 2019. Supplementary material for uncorrected
least-squares temporal difference with lambda-return. CoRR
abs/1911.06057.

Peng, J., and Williams, R. J. 1996. Incremental multi-step
Q-learning. Machine Learning 22(1-3):283-290.

Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. Cambridge, MA: MIT Press, second
edition.

5330

Sutton, R. S.; Mahmood, A. R.; and White, M. 2016. An
emphatic approach to the problem of off-policy temporal-
difference learning. Journal of Machine Learning Research
17(73):1-29.

Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine Learning 3(1):9—44.

Szepesvari, C. 2010. Algorithms for Reinforcement Learn-
ing. Morgan & Claypool.
Ueno, T.; Maeda, S.; Kawanabe, M.; and Ishii, S. 2011.

Generalized TD learning. Journal of Machine Learning Re-
search 12:1977-2020.

van Seijen, H., and Sutton, R. S. 2014. True online TD(\).
In Proceedings of the 31th International Conference on Ma-
chine learning (ICML), 692-700.

van Seijen, H.; Mahmood, A. R.; Pilarski, P. M.; Machado,
M. C.; and Sutton, R. S. 2016. True online temporal-
difference learning. Journal of Machine Learning Research
17(145):1-40.

Vanseijen, H., and Sutton, R. S. 2015. A deeper look at plan-

ning as learning from replay. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, 2314-2322.

Watkins, C. J. C. H. 1989. Learning from Delayed Rewards.
Ph.D. Dissertation, King’s College, UK.

Xu, X.; He, H.; and Hu, D. 2002. Efficient reinforcement
learning using recursive least-squares methods. Journal of
Artificial Intelligence Research 16:259-292.

Young, P. C. 2011. Recursive Estimation and Time-series
Analysis: An Introduction for the Student and Practitioner.
Springer-Verlag, second edition.

