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Abstract

We address a practical problem ubiquitous in modern market-
ing campaigns, in which a central agent tries to learn a policy
for allocating strategic financial incentives to customers and
observes only bandit feedback. In contrast to traditional pol-
icy optimization frameworks, we take into account the addi-
tional reward structure and budget constraints common in this
setting, and develop a new two-step method for solving this
constrained counterfactual policy optimization problem. Our
method first casts the reward estimation problem as a domain
adaptation problem with supplementary structure, and then
subsequently uses the estimators for optimizing the policy
with constraints. We also establish theoretical error bounds
for our estimation procedure and we empirically show that
the approach leads to significant improvement on both syn-
thetic and real datasets.

1 Introduction

Batch Learning from Bandit Feedback (BLFB) (Swami-
nathan and Joachims 2015a; 2015b) is a form of counter-
factual inference given only observational data (Pearl 2009).
The problem arises in many real-world decision-making sce-
narios, including personalized medicine, where one is inter-
ested in estimating which treatment would have led to the
optimal outcome for a particular patient (Xu, Xu, and Saria
2016), or online marketing, which might focus for example
on placing ads to maximize the click-through-rate (Strehl et
al. 2010).

In this paper, we focus on a novel flavor of BLFB, which
we refer to as cost-effective incentive allocation. In this
problem formulation we allocate economic incentives (e.g.,
online coupons) to customers and observe a response (e.g.,
whether the coupon is used or not). Each action is mapped to
a cost and we further assume that the response is monoton-
ically increasing with respect to the action’s cost. Such an
assumption is natural in many of the problems domains that
motivate us, including drug-response estimation and online
marketing, and it has the virtuous side effect of improving
generalization to test data and making the model more in-
terpretable. We also incorporate budget constraints related
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to the global cost of the marketing campaign or treatment
regime. This framework can be readily applied to the prob-
lem of allocating monetary values of coupons in a marketing
campaign under fixed budget constraints from the manage-
ment.

Existing work in counterfactual inference using ban-
dit feedback (Joachims, Swaminathan, and de Rijke 2018;
Shalit, Johansson, and Sontag 2017) does not make use
of the supplementary structure for the rewards and is lim-
ited in practice when the cardinality of the action space
is large (Lefortier et al. 2016). We therefore developed a
novel algorithm which incorporates such structure. The al-
gorithm, which we refer to as Constrained Counterfactual
Policy Optimization via Structured Incentive Response Esti-
mation (CCPOvSIRE), has two components. First, we build
on recent advances in representation learning for counter-
factual inference (Johansson, Shalit, and Sontag 2016) and
extend this framework to estimate the incentive response
for multiple treatments while taking into account the reward
structure (SIRE). Second, we rely on the estimates to opti-
mize the coupon assignment policy under budget constraints
(CCPO).

The remainder of the paper is organized as follows. First,
we review existing approaches related to the problem of
cost-effective incentive allocation and provide a brief back-
ground on BFLB. Then, we present our novel setting and
the corresponding assumptions. In particular, we introduce
structure on the action space, cost functions and budget con-
straints. Furthermore, we derive theoretical upper bounds
on the reward estimates and present CCPOvSIRE as a nat-
ural approach to optimizing this bound. Finally, we eval-
uate our approach on fully-simulated data, and introduce
a novel benchmarking approach based on nested classifi-
cation which we apply to semi-simulated data from Ima-
geNet (Deng et al. 2009). In both cases, we show that our
method compares favorably to approaches based on Ban-
ditNet (Joachims, Swaminathan, and de Rijke 2018), CFR-
Net (Shalit, Johansson, and Sontag 2017), BART (Hill 2011)
and GANITE (Yoon, Jordon, and van der Schaar 2018).
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2 Related Work

Constrained Policy Optimization Safety constraints in
reinforcement learning (RL) are usually expressed via the
level sets of a cost function. The main challenge of safe
RL is that the cost of a certain policy must be evaluated
with a off-policy strategy, which is a hard problem (Jiang
and Li 2016). Recent work focuses on developing a local
policy search algorithm with guarantees of respecting cost
constraints (Achiam et al. 2017). This approach is based
on a trust-region method (Schulman et al. 2015), which al-
lows it to circumvent the off-policy evaluation step. Our
setting is more akin to that of contextual multi-armed ban-
dits, since customers are modeled as independent replicates
from a unique distribution. In this scenario, checking for
the satisfaction of the cost constraints is straightforward,
which makes the original problem substantially easier. Most
research contributions on policy optimization with budget
constraints focus on the online learning setting (Ding et al.
2013) and are therefore not directly applicable to BLFB.

Counterfactual Risk Minimization (CRM) The problem
of BLBF consists of maximizing the expected reward using
importance sampling (IS), as follows:

Ex∼P(x)Ey∼ρ(y∣x) [δ(x, y)π(y ∣ x)
ρ(y ∣ x) ] , (1)

where δ is the reward function, π a parameterized policy
and ρ the logging policy. Notably, the action probabilities
ρ(y ∣ x) need to be either logged or estimated. In the specific
case where the logging policy is unknown and learned from
the data, error bounds have been derived (Strehl et al. 2010).
The variance of the naive IS estimator can be reduced using
a doubly robust estimator (Dudik, Langford, and Li 2011).
The CRM principle (Swaminathan and Joachims 2015a) is
based on empirical Bernstein concentration bounds (Mau-
rer and Pontil 2009) of finite-sample estimates for Eq. (1).
BanditNet (Joachims, Swaminathan, and de Rijke 2018)
is a deep learning methods based on equivariant estima-
tion (Swaminathan and Joachims 2015b) and stochastic op-
timization. An advantage of this framework is that its math-
ematical assumptions are weak, while a disadvantage is that
it is not clear how to make use of structured rewards.

Estimation of Individualized Treatment Effect (ITE)
The ITE (Alaa and van der Schaar 2018) is defined as the
difference in expectation between two treatments

E[r ∣ x, y = 1] −E[r ∣ x, y = 0], (2)

where x is a point in customer feature space and r is a ran-
dom variable corresponding to the reward. The difficulty of
estimating the ITE arises primarily from the fact that his-
torical data do not always fall into the ideal setting of a
randomized control trial. That inevitably induces an esti-
mation bias due to the discrepancy between the distribu-
tions P(x ∣ y = 0) and P(x ∣ y = 1). BART (Hill 2011)
is an estimation procedure based on Bayesian nonparamet-
ric methods. CFRNet (Shalit, Johansson, and Sontag 2017)

and BNN (Johansson, Shalit, and Sontag 2016) both cast the
counterfactual question into a domain adaptation problem
that can be solved via representation learning. Essentially,
they propose to find an intermediate feature space Z which
embeds the customers and trades off the treatment discrep-
ancy for the reward predictability. GANITE (Yoon, Jordon,
and van der Schaar 2018) proposes to learn the counterfac-
tual rewards using generative adversarial networks and ex-
tends this framework to the multiple treatment case via a
mean-square error loss. Notably, this line of work does not
require knowing the logging policy beforehand. Remark-
ably, out of all these contributions, only one focuses on the
setting of structured rewards and only in the case of binary
outcomes (Kallus 2019).

3 Background: Batch Learning from Bandit

Feedback

For concreteness, we focus on the example of a marketing
campaign. Let X be an abstract space and P(x) a proba-
bility distribution on X . We consider a central agent and let(x1, . . . , xn) ∈ Xn denote a set of customers. We assume
that each customer is an independently drawn sample fromP(x). Let Y be the set of financial incentives which can
be provided by the central agent and let SY be the space
of probability distributions over Y . The central agent de-
ploys a marketing campaign which we model as a policy
π ∶ X → SY . For simplicity, we also denote the probability
of an action y under a policy π for a customer x using con-
ditional distributions π(y ∣ x). In response, customers can
either choose to purchase the product from the central agent
or from another unobserved party. Given a context x and an
action y, we observe a stochastic reward r ∼ p(r ∣ x, y). In
practice, the reward can be defined as any available proxy of
the central agent’s profit (e.g., whether the coupon was used
or not). Given this setup, the central agent seeks an optimal
policy:

π∗ ∈ argmax
π∈Π

Ex∼P(x)Ey∼π(y∣x)E[r ∣ x, y]. (3)

This problem, referred to as BLBF, has connections to
causal and particularly counterfactual inference. As de-
scribed in Swaminathan and Joachims (2015a), the data are
incomplete in the sense that we do not observe what would
have been the reward if another action was taken. Further-
more, we cannot play the policy π in real time; we instead
only observe data sampled from a logging policy ρ(y ∣ x).
Therefore, the collected data are also biased since actions
taken by the logging policy ρ are over-represented.

4 Cost-Effective Incentive Allocation

The BLBF setting might not be suitable when actions can be
mapped to monetary values, as we illustrate in the following
example.
Example 1. Monetary marketing campaign. Let y denote
the discount rate and x denote a customer’s profile. Let r be
the customer’s response (e.g., how much he or she bought).
Since the customer will be more susceptible to use the dis-
count as its monetary value increases, we assume that for
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each value of x, r ∣ x, y is almost surely increasing in y.
Then, the trivial policy which always selects the most expen-
sive action is a solution to problem (3).

This simple example motivates the main set of hypothesis
we now formally introduce in order to better pose our prob-
lem. Notably, our added assumptions further relate actions
to the reward distribution.
Assumption 1. Structured action space and rewards. Let us
note the conditional reward E[r ∣ x, y] as f(x, y). We as-
sume there exists a total ordering ≺Y over the space Y . The
reward distribution is compatible with the total ordering ≺Y
in the sense that

∀(x, y, y′) ∈ X × Y2, y ≺Y y′ ⇒ f(x, y) ≤ f(x, y′). (4)

Assumption 2. Budget constraints. There exists a cost func-
tion c ∶ Y → R

+ monotone on Y with respect to the total
ordering ≺Y . Let m be a maximal average budget per cus-
tomer. We define the set of feasible policies Π as

Π = {π ∶ X → SY ∣ Ex∼P(x)Ey∼π(y∣x)[c(y)] ≤m}. (5)

In this manuscript, we will assume that the ordering as
well as the cost function are known. We subsequently tailor
the BLFB problem to the constrained case as follows:

max
π∈Π

Ex∼P(x)Ey∼π(y∣x)f(x, y), (6)

which we refer to as Counterfactual Constrained Policy Op-
timization (CCPO). Additionally, we refer to the problem
of estimating the response function f as Incentive Response
Estimation (IRE); this is a natural extension of the ITE
problem in the scenario of multiple treatments as discussed
in Yoon, Jordon, and van der Schaar (2018). We now claim
that IRE is a statistically harder problem than CCPO in the
following sense:
Proposition 1. Let us assume that the incentive response
function f is identified. Then solving Eq. (6) for any budget
m reduces to a binary search over a unique Lagrange mul-
tiplier for the cost constraint. In particular, each step of the
search has a complexity that is linear in the sample size.

Proof. See Appendix A1.

This negative results implies that, in general, plugging in
the output of an estimation (IRE) algorithm for policy opti-
mization (CCPO) might be suboptimal compared to directly
learning a policy (the aim of CRM-based methods). How-
ever, Assumption 1 may substantially reduce the complex-
ity of the estimation problem provided the inference proce-
dure benefits from such structure (referred to as SIRE). As
a consequence, we propose an approach that we refer to as
“CCPOvSIRE.” We expect that such a structured counter-
factual inference algorithm will outperform both ITE and
CRM-based methods. This should especially be true in the
regime of medium to large action spaces, where CRM-based
methods struggle in practice (Lefortier et al. 2016). Such
tradeoffs between complexity and structure are common in

1Please visit https://arxiv.org/abs/1902.02495 for supplemen-
tary information

machine learning (cf. discriminative versus generative ap-
proaches to supervised learning problems (Ng and Jordan
2002) and model-free versus model-based approaches to
RL (Pong et al. 2018)).

5 Constrained Counterfactual Policy

Optimization via Structured Incentive

Response Estimation
We adopt the following classical assumptions from coun-
terfactual inference (Rubin 2005) which are sufficient to
ensure that the causal effect is identifiable from historical
data (Shalit, Johansson, and Sontag 2017). Such assump-
tions explicitly imply that all the factors determining which
actions were taken are observed. Notably, these must come
from domain-specific knowledge and cannot be inferred
from data.
Assumption 3. Overlap. There exists a scalar ε > 0 such
that ∀(x, y) ∈ X × Y , ρ(y ∣ x) > ε.
Assumption 4. No unmeasured confounding. Let rY =(ry)y∈Y denote the vector of possible outcomes in the Rubin-
Neyman potential outcomes framework (Rubin 2005). We
assume that the vector rY is independent of the action y
given x.

We now turn to the problem of estimating the function
f from historical data, using domain adaptation learning
bounds. To this end, we first write the estimation problem
with a general population loss. Let L ∶ R2 → R+ be a loss
function and let D a probability distribution on the productX × Y (which we refer to as a domain). As in Shalit, Jo-
hansson, and Sontag (2017), we introduce an abstract feature
space Z and an invertible mapping Λ such that z = Λ(x).
For technical developments, we need to assume that
Assumption 5. Λ ∶ X → Z is a twice-differentiable one-to-
one mapping.

This allows us to identify each domain D with a corre-
sponding domain on Z×Y . Let (ĝψ)ψ∈Ψ be a parameterized
family of real-valued functions defined on Z ×Y . We define
the domain-dependent population risk εD (ĝψ) as

εD (ĝψ) = E(x,y)∼D [L (ĝψ(Λ(x), y), f(x, y))] . (7)

In the historical data, individual data points (x, y) are sam-
pled from the so-called source domain DS = P(x)ρ(y ∣ x).
However, in order to perform off-policy evaluation of a
given policy π, we would ideally need data from P(x)π(y ∣
x). The discrepancy between the two distributions will cause
a strong bias in off-policy evaluation which can be quanti-
fied via learning bounds from domain adaptation (Blitzer et
al. 2007). In particular, we wish to bound how much an es-
timate of f based on data from the source domain DS can
generalize to an abstract target domain DT (yet to be de-
fined).
Proposition 2. Let ψ ∈ Ψ, and DS ,DT be two domains.
Let H be a function class. Let IPMH (DS ,DT ) denote the
integral probability metric (IPM) between distributions DS
and DT with function classH

IPMH (DS ,DT ) = sup
h∈H
∣EDS

h(x, y) −EDT
h(x, y)∣ , (8)
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In the case thatH is the set of test functions
H = {(x, y) ↦ L (ĝψ(Λ(x), y), f(x, y)) ∣ ψ ∈ Ψ} ,

then, it is possible to bound the population risk on the target
domain by

εDT
(ĝψ) ≤ εDS

(ĝψ) + IPMH (DS ,DT ) . (9)
Proof. See Theorem 1 of Blitzer et al. (2007).

This result explicitly bounds the population risk on the
target domain based on the risk on the source domain and the
additional complexity term (IPM). We now explain how to
compute both terms in Eq. (9) and detail how we can make
use of the structure from both theoretical and implementa-
tion perspectives.

Source domain risk minimization

From the algorithmic perspective, we can directly make use
of the historical data to approximate the population risk
on the source domain. In order to further benefit from the
known structure about the reward function, we need to re-
strain the search space for gψ to functions that are increas-
ing in y for each fixed transformed feature z. This problem
has been studied in neural network architecture engineer-
ing (MIN-MAX networks) (Daniels and Velikova 2010),
and extensions are available to of architectures such as
DLNs (You et al. 2017) or ICNNs (Amos, Xu, and Kolter
2017) could also be useful for other types of shape con-
straints (e.g., convexity). In our implementation, we rely on
enforcing positivity on the weights of the last hidden layer
as for the MIN-MAX networks.

From an approximation theory standpoint, Eq. (9) only
refers to the population risk. However, benefits from
the structure are expected in finite sample prediction er-
ror (Wainwright 2019), which can be linked back to popu-
lation risk using uniform law arguments. Because analyzing
prediction errors with neural networks may be a hard prob-
lem, we rely on well-studied nonparametric least-square es-
timators. However, while most research focuses on extend-
ing unidimensional results to multivariate function classes
with the same assumptions (i.e., convexity in Guntuboyina
and Sen (2013), monotonicity of functions in Gao and Well-
ner (2007) and matrices in Chatterjee, Guntuboyina, and Sen
(2018)), asymmetry in the regularity assumptions between
the different dimensions of a function class (such as partial
monotony) has not received as much attention. We therefore
derive such learning bounds in Appendix B. In particular,
we exhibit a better rate with respect to the sample size for
a multivariate Sobolev space (continuous action space), un-
der smoother assumptions. In the case of discrete actionsY = {1, . . . ,K}, we use empirical processes theory to im-
prove the dependence with respect to K. Namely, we inves-
tigate the case of functions with null variation, for which we
present the result here.
Proposition 3. Let F denotes all functions defined on[0,1] × {1, . . . ,K} and taking values in [0,1]. Let us con-
sider the following function classes

Fc = {f ∈ F ∣ ∃a ∈ [0,1]K ∶ ∀y ∶ f(., y) = ay}
Fm = {f ∈ Fc ∣ ∀x ∈ [0,1], f(x, .) increasing}

Let f∗ in Fm be the incentive response, let n ∈ N, σ > 0 and
let us assume the noise model

∀(i, j) ∈ {1, . . . , n} × {1, . . . ,K}, rij = f∗(i/n, j) + σwij ,
with wij ∼ Normal(0,1). Then with high probability, the
least squares estimate f̂m over Fm satisfies the bound

∥f̂m − f∗∥2n ≤ σ
2 logK

nK
,

where ∥.∥n denotes the empirical norm. Conversely, it is
known that the least squares estimate f̂c over Fc satisfies
with high probability the bound

∥f̂c − f∗∥2n ≤ σ
2

n
.

Proof. See Appendix B.

Since our observation model here assume we observe for
each n the outcome of all the actions, we artificially inflated
n = n′K. Intuitively, by treating this bound as a function of
n′, we recover forFc the expected parametric rate with a lin-
ear dependency in K. Such a rate is known to be minimax
optimal (meaning the upper bound is indeed tight). There-
fore, we proved that adding the structure on the rewards im-
proves the dependency from K to logK, which is signifi-
cant. Quantifying the benefit of structured rewards for more
complex function classes is left as an open problem.

IPM estimation via kernel measures of dependency

Thanks to the added structure, let us notice that the function
class over which the supremum is taken inside the IPM of
Eq. (9) may be substantially smaller (i.e., restricted to par-
tially monotonic functions). This implies that weaker regu-
larization or weaker kernels may provide satisfactory results
in practice. Such a result is also suggested by Theorem 1 of
Alaa and van der Schaar (2018). However, more systematic
quantification of such an improvement is still an open prob-
lem.

That said, Eq. (9) assumes that we have at our disposal
a target domain DT from which the estimated incentive re-
sponse ĝψ would generalize to all policies for offline eval-
uation. We now explain how to design such a domain in
the case of multiple actions. In the work of Shalit, Jo-
hansson, and Sontag (2017), the domain that is central to
the problem of binary treatment estimation is the mixtureDT = P(z)P(y), where P(y) = ∫x ρ(y ∣ x)dP(x) is
the marginal frequency of actions under the logging pol-
icy ρ. Let us note that in this target domain, the treatment
assignment y is randomized. We now show that choosing
the same target domain in the setting of multiple treat-
ments allows efficient estimation of the IPM. Indeed, the
general problem of computing IPMs is known to be NP-
hard. For binary treatments, CFRNet (Shalit, Johansson, and
Sontag 2017) estimated this IPM via maximum mean dis-
crepancy (MMD) (Gretton et al. 2012). For multiple treat-
ments, recent work (Atan, Zame, and Van Der Schaar 2018)
focused on the H-divergence (Ganin et al. 2016). In this
work, we propose instead a different nonparametric measure
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of independence—the Hilbert-Schmidt Independence Crite-
rion (HSIC) (Gretton et al. 2005; 2008)—which also yields
an efficient estimation procedure for the IPM.

Proposition 4. Let us assume that Z and Y are separable
metric spaces. Let k ∶ Z × Z → R (resp. l ∶ Y × Y → R) be
a continuous, bounded, positive semi-definite kernel. Let K
(resp. L) be the corresponding reproducing kernel Hilbert
space (RKHS). Let us assume that the function space H is
included in a ball of radius κ of the tensor space K ⊗ L.
Then, one can further bound the IPM in Eq. (9) as follows:

IPMH (DS ,DT ) ≤ κHSIC (P(z)ρ(y ∣ Λ−1(z))) . (10)

Proof. See Section 2.3 of Smola et al. (2007), Definition 2
from Gretton et al. (2012) and Definition 11 from Sejdinovic
et al. (2013).

Intuitively, the HSIC is a norm of the covariance opera-
tor for the joint historical data distribution (x, z) and mea-
sures the dependence between the observed action y under
the logging policy and z. Remarkably, the HSIC reduces
to the MMD for a binary set of actions (Proposition 2 of
Lopez et al. (2018)) and our theory extends Shalit, Johans-
son, and Sontag (2017) for multiple as well as continuous ac-
tions sets Y . We provide more context about the derivation
of the HSIC and its theoretical properties in Appendix C.
Crucially, the HSIC can be directly estimated via samples
from (x, z) (Gretton et al. 2008) as

ˆHSICn = 1

n2

n∑
i,j

k(zi, zj)l(xi, xj)
+ 1

n4

n∑
i,j,k,l

k(zi, zj)l(xk, xl)
− 2

n3

n∑
i,j,k

k(zi, zj)l(xi, xk),
(11)

where n is the number of samples. Such an estimator can be
computed in O(n2) operations.

Implementation

By putting together Eq. (9) and Eq. (10), we optimize a gen-
eralization bound for estimating the incentive function f . In
our implementation, Λ and gψ are parameterized by neural
networks and we minimize the following loss function dur-
ing the SIRE step

L(ψ,Λ) = 1

n

n∑
i=1

L (gψ(Λ(xi), yi), ri)
+ κHSIC ((Λ(xi), yi)) .

(12)

Notably, in order to use stochastic optimization, the HSIC
is computed on minibatches of datapoints. We use a lin-
ear kernel for all experiments. An important detail is that
in practice, the parameter κ is unknown. We used a cross-
validation procedure to select κ in our implementation. Al-
though cross-validation is expected to be biased in this set-
ting, our results suggest a reasonable performance in prac-
tice. Then, we use the estimates to solve the CCPO problem.

According to Proposition 1, this can be solved easily via a
search procedure on the Lagrange multipliers. Also, in the
case of discrete values for the cost function, the problem can
be solved in timeO(nM) via dynamic programming where
M is the total budget.

6 Experiments
In our experiments, we consider only the case of a discrete
action space. We compare our method CCPOvSIRE to a
simple modification of BanditNet (Joachims, Swaminathan,
and de Rijke 2018) which handles constrained policy op-
timization (further details in Appendix D). We also com-
pare to GANITE (Yoon, Jordon, and van der Schaar 2018)
and to ITE procedures such as BART (Hill 2011) and CFR-
Net (Shalit, Johansson, and Sontag 2017). Binary treatment
estimation procedures were adapted for multiple treatments
following (Yoon, Jordon, and van der Schaar 2018). All es-
timation procedures were employed for CCPO via Proposi-
tion 1. As an ablation study, we also compare to two mod-
ified algorithms: CCPOvIRE, which is a variant of our al-
gorithm which does not exploit the reward structure and a
variant with κ = 0 (no HSIC). To establish statistical signif-
icance, we run each experiment 100 times and report con-
fidence intervals. For our methods, GANITE and CFRNet,
we performed a grid search over the hyperparameters as in-
dicated in Appendix E. As a further sensitivity analysis re-
garding the choice of the parameter κ, we report the results
of our algorithm for a large range of values for all experi-
ments in Appendix F. We ran our experiments on a machine
with a Intel Xeon E5-2697 CPU and a NVIDIA GeForce
GTX TITAN X GPU.

Fully-simulated data

Since it is difficult to obtain a realistic dataset meeting all
our assumptions and containing full information, for bench-
marking purposes we first construct a synthetic dataset of
the form (x, y, r), with five discrete actions and monotonic
rewards (further details in Appendix G). We also derive a
dataset with binary actions for ITE benchmarking.

To train CCPOvSIRE, we used stochastic gradient de-
scent as a first-order stochastic optimizer with a learning rate
of 0.01 and a three-layer neural network with 512 neurons
for each hidden layer. First, we report results on the task of
estimating the reward function (IRE). For the binary treat-
ment dataset, we report the Precision in Estimation of Het-
erogeneous Effect (PEHE) (Johansson, Shalit, and Sontag
2016). For the multiple treatments experiments, we report
the Roots of Mean Squared Error (RMSE) (Yoon, Jordon,
and van der Schaar 2018). We then apply all the algorithms
to policy optimization for a fixed budget and report the ex-
pected reward. In particular, we used the dynamic program-
ming algorithm to solve for the optimal action.

Experimental results on the synthetic dataset for a binary
treatment and for multiple treatments, as well as the results
for policy optimization with a fixed budget, are shown in Ta-
ble 1. In the binary treatments experiments results, we show
that our estimation procedure (IRE) yields the best PEHE.
Notably, we observe an improvement over the no-HSIC ver-
sion, which shows that our HSIC regularization improves the
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Fully-simulated data (mean ± std)
Binary Action Multiple Actions

PEHE RMSE Reward (m = 3)

CCPOvSIRE NA 0.0970 ± 0.0038 0.6082 ± 0.0013

CCPOvSIRE† NA 0.1115 ± 0.0135 0.6069 ± 0.0020
CCPOvIRE 0.0385 ± 0.0011 0.1059 ± 0.0165 0.6074 ± 0.0011
CCPOvIRE† 0.0404 ± 0.0011 0.1238 ± 0.0132 0.6061 ± 0.0009
GANITE 0.1077 ± 0.0086 0.2263 ± 0.0394 0.5964 ± 0.0054
BART 0.0674 ± 0.0026 0.2057 ± 0.0027 0.6002 ± 0.0001
CFRNet 0.0447 ± 0.0004 0.1069 ± 0.0060 0.5958 ± 0.0010
BanditNet NA NA 0.5899 ± 0.0076

Table 1: Performance with simulated datasets. †: baselines with no HSIC (κ = 0). Bold indicates the method with the best
performance for each dataset.

(a) (c)

Figure 1: Benchmarking on the ImageNet dataset. Solid
lines refer to mean, shadowed areas correspond to one stan-
dard deviation. (a) Estimation error with respect to κ. (b)
Policy optimization performance under a budget constraint
of 2 with respect to κ.

estimation of the reward. In the case of the multiple treat-
ments experiments, we see that CCPOvIRE performs simi-
larly than CFRNet, while CCPOvSIRE improves over all the
baselines for reward estimation as well as policy optimiza-
tion. In particular, we outperform BanditNet by a significant
margin on this dataset.

Simulating Structured Bandit Feedback from
Nested Classification

Although algorithms for BLFB can be evaluated by simulat-
ing bandit feedback in a supervised learning setting (Agar-
wal et al. 2014), this approach is not compatible with our
structured feedback setting. We therefore propose a novel
approach to evaluate cost-effective incentive allocation algo-
rithms. In particular, we use a model of nested classification
with bandit-type feedback which brings ordered actions and
structured feedback. While the vanilla setting relies on dis-
joint labels and therefore lacks an ordering between the ac-
tions, we simulate nested labels (Yi)i∈I , which are therefore
monotonic with respect to the set inclusion. We construct a
concrete example from the ImageNet dataset (Deng et al.
2009), by randomly selecting images with labels “Animal,”
“Plant,” and “Natural object” and focusing on the nested la-
bels “Animal” ⊃ “Arthropod” ⊃ “Invertebrate” ⊃ “Insect”.
Let us now derive a compatible reward function. In this par-
ticular example of nested classification, say we observe a

dataset (xi, y∗i ) ∼ P where xi is a pixel value and y∗i ∈ [K]
is the perfect descriptor for this image among the K la-
bels. Supervised learning aims at finding a labeling func-
tion ΨSL ∶ X → [K] that maximizes E(x,y∗)∼P[1ΨSL(x)=y∗].
Here, we are interested in a different setting where labels are
nested and partial reward should be given when the labels
is correct but not optimal, which corresponds to the reward
E(x,y∗)∼P[1Ψ(x)≥y∗] (after appropriately permuting the la-
bels). Without any additional constraints, the trivial labeling
function that returns “Animal” yields maximal reward (as in
Example 1). By adding a cost function c and budget con-
straint m, the learner will have to guess what is the optimal
decision to take (i.e., with an optimal ratio of reward ver-
sus cost). Overall, the incentive allocation problem can be
written as

max
Ψ

E(x,y∗)∼P[1Ψ(x)≥y∗]
such that E(x,y∗)∼Pc (Ψ(x)) ≤m. (13)

A logging policy, with the exact same form as in the fully-
simulated experiment, is used to assign one of these four la-
bels for each image. The reward function is 1 if the label is
correct, or 0 otherwise. The corresponding costs for select-
ing these labels are {3,2,1,0}. The dataset has 4608 sam-
ples in total, randomly split into training, validation and test-
ing with ratio 0.6: 0.2: 0.2. The ratio of the positive and neg-
ative samples is equal to 1:10. Images are uniformly prepro-
cessed, cropped to the same size and embedded into R

2048

with a pre-trained convolutional neural network (VGG-16).
All results are obtained using the same parameters except
the number of neurons for the hidden layers that is doubled.
In particular, we searched for the optimal Lagrange multi-
plier in the space {1,2, ...,10} and returned the largest re-
ward policy within budget constraint.

We report estimation errors as well as expected rewards
for two different budgets in Table 2. As we already noticed
in the simulations, the bias-correction step via HSIC signif-
icantly contributes to improving both the estimation and the
policy optimization. Also, we note that after adopting the
structured response assumption, both results are improved,
which shows the benefit of exploiting the structure. We re-
port results for different values κ for treatment estimation
and policy optimization with m = 2 in Figure 1.
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ImageNet semi-simulations (mean ± std)
RMSE Reward (m = 1) Reward (m = 2)

CCPOvSIRE 0.2408 ± 0.0183 0.0934 ± 0.0225 0.1408 ± 0.0154

CCPOvSIRE† 0.2740 ± 0.0255 0.0718 ± 0.0063 0.1186 ± 0.0198
CCPOvIRE 0.2712 ± 0.0341 0.0839 ± 0.0137 0.1304 ± 0.0112
CCPOvIRE† 0.2943 ± 0.0345 0.0674 ± 0.0112 0.1157 ± 0.0127
GANITE 0.3449 ± 0.0236 0.0679 ± 0.0217 0.0968 ± 0.0367
BART 0.2867 ± 0.0302 0.0492 ± 0.0217 0.0927 ± 0.0362
CFRNet 0.2480 ± 0.0168 0.0861 ± 0.0220 0.1335 ± 0.0197
BanditNet NA 0.0654 ± 0.0265 0.0997 ± 0.0367

Table 2: Performance with the ImageNet dataset. †: baselines with no HSIC (κ = 0). Bold indicates the method with the best
performance for each dataset.

We notice that the range of parameters for which
CCPOvSIRE improves over ablation studies is large. Fur-
thermore, it is comforting that the same κ leads to the small-
est estimation error as well as the best performance for pol-
icy optimization. Overall, the approach that does not ex-
ploit the reward structure (CCPOvIRE) performs similarly
to CFRNet and BanditNet for policy optimization. However,
CCPOvSIRE, which exploits the structure, outperforms all
methods. Finally, it is interesting that the margin between
the expected rewards changes for different values of budget.
This may be attributable to discrepancies in hardness of de-
tecting the different labels in images, which effectively mod-
ulates the difficulty of the incentive allocation depending on
the budget.

7 Discussion
We have presented a novel framework for counterfactual in-
ference based on BLBF scenario but with additional struc-
ture on the reward distribution as well as the action space.
For this problem setting we have proposed CCPOvSIRE, a
novel algorithm based on domain adaptation which effec-
tively trades off prediction power for the rewards against es-
timation bias. We obtained theoretical bounds which explic-
itly capture this tradeoff and we presented empirical eval-
uations that show that our algorithm outperforms state-of-
the-art methods based on ITE and CRM approaches. Since
the provided plugin approach is not unbiased, further work
introducing doubly-robust estimators (Dudik, Langford, and
Li 2011) should lead to better performance.

Our framework involves the use of a nonparametric mea-
sure of dependence to debias the estimation of the reward
function. Penalizing the HSIC as we do for each mini-batch
implies that no information is aggregated during training
about the embedding z and how it might be biased with re-
spect to the logging policy. On the one hand, this is posi-
tive since we do not have to estimate more parameters, es-
pecially if the joint estimation would require solving a mini-
max problem as in (Yoon, Jordon, and van der Schaar 2018;
Atan, Zame, and Van Der Schaar 2018). On the other hand,
that approach could be harmful if the HSIC could not be es-
timated with only a mini-batch. Our experiments show this
does not happen in a reasonable set of configurations. Trad-
ing a minimax problem for an estimation problem does not
come for free. First, there are some computational consider-

ations. The HSIC is computed in quadratic time but linear-
time estimators of dependence (Jitkrittum, Szabó, and Gret-
ton 2017) or random-feature approximations (Pérez-Suay
and Camps-Valls 2018) should be used for non-standard
batch sizes.

Following up on our work, a natural question is how to
properly choose the optimal κ, the regularization strength
for the HSIC. In this manuscript, such a parameter is chosen
with cross-validation via splitting the datasets. However, in
a more industrial setting, it is reasonable to expect the cen-
tral agent to have tried several logging policies which once
aggregated into a mixture of deterministic policies enjoy ef-
fective exploration properties (e.g., in Strehl et al. (2010)).
Future work therefore includes the development of a Coun-
terfactual Cross-Validation, which would exploit these mul-
tiple policies and prevent propensity overfitting compared to
vanilla cross-validation.

Another scenario in which our framework could be ap-
plied is the case of continuous treatments. That applica-
tion would be natural in the setting of financial incentive
allocation and has already been of interest in recent re-
search (Kallus and Zhou 2018). The HSIC would still be an
adequate tool for quantifying the selection bias since kernels
are flexible tools for continuous measurements.
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