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Abstract

The goal of zero-shot learning (ZSL) is to train a model to
classify samples of classes that were not seen during train-
ing. To address this challenging task, most ZSL methods re-
late unseen test classes to seen(training) classes via a pre-
defined set of attributes that can describe all classes in the
same semantic space, so the knowledge learned on the train-
ing classes can be adapted to unseen classes. In this paper, we
aim to optimize the attribute space for ZSL by training a prop-
agation mechanism to refine the semantic attributes of each
class based on its neighbors and related classes on a graph of
classes. We show that the propagated attributes can produce
classifiers for zero-shot classes with significantly improved
performance in different ZSL settings. The graph of classes
is usually free or very cheap to acquire such as WordNet or
ImageNet classes. When the graph is not provided, given pre-
defined semantic embeddings of the classes, we can learn a
mechanism to generate the graph in an end-to-end manner
along with the propagation mechanism. However, this graph-
aided technique has not been well-explored in the literature.
In this paper, we introduce the “attribute propagation net-
work (APNet)”, which is composed of 1) a graph propaga-
tion model generating attribute vector for each class and 2)
a parameterized nearest neighbor (NN) classifier categoriz-
ing an image to the class with the nearest attribute vector to
the image’s embedding. For better generalization over unseen
classes, different from previous methods, we adopt a meta-
learning strategy to train the propagation mechanism and the
similarity metric for the NN classifier on multiple sub-graphs,
each associated with a classification task over a subset of
training classes. In experiments with two zero-shot learning
settings and five benchmark datasets, APNet achieves either
compelling performance or new state-of-the-art results.

1 Introduction

Imagination, the ability of synthesizing novel objects and
reasoning new patterns from existing ones, plays an impor-
tant role in human’s exploration and learning within the un-
known world when supervised information is insufficient.
Given a list of attributes describing different classes, humans
can accurately classify an image, even if they have never
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Figure 1: A simple scenario for zero-shot learning. It is easy
for humans to transform the attribute information into men-
tal pictures and choose the correct image. Can machines
achieve this same level of intelligence?

seen samples from that class before. For example, as shown
in Figure 1, it is not difficult for someone to match each im-
age with a given set of attributes. However, underneath this
seemingly simple task, we are imagining—imagining how
colors, shapes, and concepts in images relate to words de-
scribing them, e.g., the class names. This raises the question:
Can machines also “imagine”? Can a machine be trained to
match text-based attribute representations to visual feature
representations?

Zero-shot learning (ZSL) is a challenging task aiming to
learn a model classifying images of any unseen classes given
only the semantic attributes of the classes. It can test ex-
actly the capability of generalizing knowledge learned on
training classes to unseen classes, by establishing a sce-
nario and asking a model to “imagine” the visual features
of unseen classes (Lampert, Nickisch, and Harmeling 2014)
based on their semantic attributes. Generalized zero-shot
learning (GZSL) assumes a more practical scenario. It is
still based solely on semantic attributes of test classes with
zero training sample, but the test set is composed of data
from both seen and unseen classes, and the predictions are
not restricted to the scope of unseen classes. The new chal-
lenge comes from the imbalance between seen and unseen
classes and the possibility that the model mistakenly cate-
gorizes unseen class images as seen classes or vice versa. It
requires the model to be easily adapted to unseen classes and
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Figure 2: Visualization of the refined attribute vector per
class produced by APNet by using t-SNE (Maaten and Hin-
ton 2008) and the graph of classes generated based on given
semantic embedding per class. The red nodes and blue nodes
are the propagated attribute vectors for training classes and
test classes, respectively. In the scatter plot, the attribute vec-
tors of strongly-related classes are close to each other and
these classes are connected by edges on the generated cate-
gory graph (better viewed in color).

meanwhile keeping its performance on seen/trained classes
from degrading, while the potential problems could be: 1)
the output prediction biases towards the seen/training class;
and 2) the adapted model suffers from catastrophic forget-
ting of training classes.

The traditional supervised learning cannot work for ZSL
due to the lack of training samples for unseen classes. How-
ever, even in such an extreme case, it is possible to derive
visual patterns for images of unseen classes by exploring
the relationship between unseen classes and seen classes, if
given their semantic embeddings in the same attribute space,
because an unseen class might share attributes with many
seen classes. Hence, learning a classifier of unseen classes
can be reduced to learning a transformation between the at-
tribute space and the visual-feature space (Frome et al. 2013;
Xie et al. 2019) and a simple distance-based classifier can
be generated for unseen classes in the attribute space. The
method of learning a semantic-image transformation has
been the most popular approaches for zero-shot learning dur-
ing the past several years, and both linear (Frome et al. 2013)
and nonlinear (Socher et al. 2013; Xian et al. 2016) transfor-
mations have been studied.

In previous works, the attribute space is usually hand-
crafted by human experts or pre-trained such as word em-
beddings of class names, and is independent to the zero-
shot learning model. It is the only bridge relating unseen
classes and the visual patterns learned for seen classes, so
the quality and robustness of ZSL heavily rely on the at-
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tribute space. In addition, a pre-defined attribute space can-
not fully capture the relationship between different classes
which are most important to ZSL. In this paper, we optimize
the attribute spaces and vectors by training an attribute prop-
agation mechanism across a graph of classes together with
the zero-shot classifier model in an end-to-end manner. Con-
sequently, we can refine the attribute vectors of classes to be
more informative in ZSL tasks by fully exploring the inter-
class relations, which has not been rarely studied in previous
works. The above strategy needs a graph of classes in ad-
vance. Fortunately, hierarchical structures and graph of cat-
egories are usually free or cheap to acquire in a variety of
scenarios, e.g., the species in biology taxonomy, diseases in
diagnostic and public heath systems, and merchandise on an
e-commerce website.

In this paper, we aim to optimize the attribute space in
the context of ZSL and leverage the inter-class relations to
generate more powerful attribute vector per class. We pro-
pose “attribute propagation network (APNet)” as a neural
nets model propagating the attributes of every class on the
category graph to its neighbors in order to generate attribute
vectors, followed by a nearest neighbor classifier with learn-
able similarity metric to produce prediction of an image
based on its nearest neighbor among all classes’ attribute
vectors in the learnable attribute space. The propagation up-
dates attribute vector per class by a weighted sum of the at-
tribute vectors of its neighboring classes on the graph. When
the category graph is unavailable or inaccessible, we fur-
ther reuse the attention module in propagation to generate
a graph of classes given some pre-defined semantic embed-
dings of the classes. It computes similarity between classes
in the semantic space and applies thresholding to the simi-
larity values in order to determine whether adding an edge
between two classes on the graph. All the above components
can be trained together in an end-to-end manner on training
classes and their samples. For better generalization on un-
seen classes and computational efficiency, we adopt a meta-
learning strategy to train APNet on multiple randomly sam-
pled subgraphs, each defining a classification task over the
classes covered by the subgraph.

In experiments on five broadly-used benchmark datasets
for ZSL, APNet achieves new state-of-the-art results in the
practical generalized zero-shot learning setting and matches
the current state-of-the-art results in the zero-shot learning
setting. We further provide an ablation study of several pos-
sible variants of APNet, which show the effectiveness of
our propagation mechanism and the improvements caused
by the meta-learning training strategy.

2 Related Work

Zero-shot learning (ZSL) (Larochelle, Erhan, and Bengio
2008; Lampert, Nickisch, and Harmeling 2014; Xian et
al. 2019) is an open problem that has been studied for a
long time. Traditional methods learn a transformation be-
tween the semantic attribute space and visual-feature space
(e.g., a hidden space of deep neural nets). In these works,
given a learned similarity metric, ZSL is cast into a re-
trieval task, where the label is determined by retrieving
the associated attributes from a set of candidate vectors
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Figure 3: The pipeline of attribute propagation. 1. Initialize the nodes features: the attribute vectors of different classes are
represented by different-colored dots. Each attribute vector is associated with some images from the corresponding class. The
features of nodes on the propagation graph are initialized by transforming the attributes using the expert modules from (Zhang
and Shi 2019). 2. Determine the graph edges: Two nodes on the propagation graph are connected by an edge if the simi-
larity between their feature vectors exceeds a pre-determined threshold. 3. Propagation on the graph: The node features are
propagated by an attention mechanism. 4. Zero-shot prediction: After propagation, a similarity metric is learned between the
propagated context-aware/structure-aware attributes representations and a query image feature representation. The class with
the largest similarity between the attribute vector after propagation and the query image’s embedding in the attribute space are

regarded as the predicted class.

based on the learned transformation (Frome et al. 2013;
Akata et al. 2015a; 2015b; Romera-Paredes and Torr 2015;
Kodirov, Xiang, and Gong 2017; Xian et al. 2016; Socher
et al. 2013). An implicit relationship between seen and un-
seen classes is that the properties of the unseen classes can
be regarded as a mixture of properties of the seen classes.
For example, a mixture of the semantic features of the seen
classes (Norouzi et al. 2013) or a mixture of the weights of
some phantom classes trained on the seen classes (Chang-
pinyo et al. 2016).

More recently, researchers start to integrate knowledge
graph with zero-shot recognition (Wang, Ye, and Gupta
2018; Kampffmeyer et al. 2019). They use graph convolu-
tional network (GCN) which relies on a given knowledge
graph to provide adjacency matrix and edges. In contrast,
we use a modified graph attention network (GAN) (Shen et
al. 2018; 2019), which is capable to learn both the similar-
ity metric and edges by itself even without any pre-defined
graph or metric. Thereby, the propagation scheme learned
in APNet is more powerful in modeling intra-task relation-
ships and can be applied to more practical scenarios. For
this reason, they cannot be applied to most ZSL benchmark
datasets, which do not provide graphs. Their output of GCN
is a fully connected layer per class, as a single-class classi-
fier, that aims to approximate the corresponding part of the
last layer of a pre-trained CNN, while our output of APNet
is a prototype per class, from which we build a KNN clas-
sifier for each task. Hence, they need the CNN to be able to
predict all the possible classes for all few-shot tasks. In con-
trast, we do not require any ground truth for the per-class
classifier/prototype, so any pre-trained CNN can be used to
provide features for APNet.

Our idea of attribute propagation is inspired by belief
propagation, message passing and label propagation. It is
also related to Graph Neural Networks (GNN) (Henaff,
Bruna, and LeCun 2015; Wu et al. 2019), where convo-
lution and attention are iteratively applied over a graph to
construct node embeddings. In contrast to our work, their
task is defined on graph-structured data, i.e., node classi-
fication (Hamilton, Ying, and Leskovec 2017), graph em-
bedding (Pan et al. 2018), and graph generation (Dai et
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al. 2018). We only use the relationships between the cate-
gories/classes and build a computational graph that passes
messages along the graph hierarchy. Our training strategy is
inspired from the meta-learning training strategy proposed
in (Santoro et al. 2016), which have been broadly used
in the meta-learning and few-shot learning literature (Finn,
Abbeel, and Levine 2017; Snell, Swersky, and Zemel 2017,
Dong and Yang 2019), especially graph meta-learning (Liu
et al. 2019a; 2019b). However, this paper addresses zero-
shot learning problem by training a novel model, i.e., AP-
Net.

3 Problem Formulation

Zero-shot learning aims to learn a model that is generaliz-
able to new classes or tasks whose semantic attributes are
given but no training data is provided. For example, the
model is expected to be applied to a classification task over
some seen and unseen classes, The semantic attributes could
have the form of an attribute vector, such as the main color
of the class, or a word embedding of the class names.

Formally, we assume that a training set X'*" and a test
set X't are sampled from a data space X. Each training
data * € X' is annotated with a label y € %", The
model is tested over X'*¢, which are not only from the seen
classes V*¢°" but also the unseen classes Y“"%¢¢" The chal-
lenge is that the seen and unseen classes have no overlaps:
yseen n punseen — () Hence, the semantic attributes S for
each class is made available during both training and testing
to act as a bridge between training classes and test classes.
Specifically, every class y € Y#"™ U Y“"9¢¢™ is associated
with a semantic embedding vector s, € S.

A direct mapping F' : X — ) from data to label is diffi-
cult to learn with zero-shot learning because the training and
testing data are non-i.i.d. An alternative is to learn a mapping
from data to the semantic attributes, i.e., ' : X — S.In
APNet, we learn a parameterized KNN classifier: the model
learns a metric to measure the similarity between class-
level semantic attributes and image representations. Here,
the semantic attribute vector is a descriptor to the class la-
bel. Moreover, the higher the similarity, the higher the prob-



ability that the image belongs to the corresponding class.
The hierarchical relationships between classes are incorpo-
rated into the semantic representations through an attribute
propagation mechanism that traverses a graph. In the follow-
ing sections, we will discuss how to build the propagation
graph, how to propagate along it, and how to make predic-
tions based on the propagated attribute representations.

4 Attribute Propagation Network

We propose the attribute propagation network (APNet) for
zero-shot learning. APNet propagates attribute representa-
tions of each class between each other based on a semantic
distance or class hierarchy, shared by both the seen classes
and unseen classes, so that the propagated attribute represen-
tations can leverage the latent relationships between classes
and generate context-aware/hierarchy-aware attribute repre-
sentations. We learn a parametric KNN classifier since KNN
classifier has better generality when the data is limited. The
prediction in KNN depends on a learned similarity metric
used to measure the discrepancy between the query image
and the propagated semantic representation for each candi-
date class. The learned similarity is easier to generalize to
the unseen classes based on the graph structure-encoded at-
tribute representations. However, challenges still remain. In
the rest of this section, we illustrate solutions to four of these
challenges. 1. How to choose the nodes for the propagation
graph? 2. How to represent the node features in the propa-
gation graph? 3. How to find the edges in the propagation
graph? 4. What is the best propagation mechanism?

4.1 Choosing the Graph Nodes

We assume propagation is built on a graph G = (), &),
where each node y € ) denotes a class, and each edge (or
arc) (y,z) € & connects two classes y and z and serves as
a propagation pathway. Previous works built their propaga-
tion graph from a predefined class hierarchy (Wang, Ye, and
Gupta 2018; Kampffmeyer et al. 2019), e.g., the WordNet
class hierarchy for ImageNet (Deng et al. 2009). In their ap-
proaches, each directed edge (or arc) y — z € £ connects a
parent class y € ) to one of its child classes z € ) on the
graph G. However, this kind of graph construction has some
limitations: 1) It needs extra hierarchy information, which
may not always be available; 2) The graph’s structure needs
to be intact, and there needs to be a subgraph that covers
all the targeted classification classes/nodes as well as their
neighbors. A sparse graph containing neighbor nodes with
many missing features would introduce noise when passing
information through connected nodes, which might lead to a
computational overhead that prevents the propagation being
completed within a few steps. To flexibly apply graph prop-
agation to classes regardless of how they are distributed in
the actual class hierarchy, nodes with missing information
are excluded from the propagation stage. In this way, the
propagation process is not disturbed by those “blank” nodes
uncovered by the training set.

4.2 Node Feature Representations

In this work, we assume that each node is associated
with a feature representation. Encoded attributes for each
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class/node y € ) are used for the initial node feature rep-
resentations X, following the model in (Zhang and Shi
2019):

k
X) = ReLU[®;(s, — Ci)], (1)
=1

where s, € S'is the provided side information, i.e., the class
name embeddings for every class/node. C' is the matrix for
the centroids of the class attribute space, which is generated
by k-means clustering and covers all training class attributes
vectors S. Each line C; in the matrix stores one of the cen-
troids. ©; is a linear transformation. We chose this model for
its efficiency, since multiple attributes can share the encod-
ing parameters g;. Therefore, the number of parameters only
grows linearly according to the number of centroids |C/|.
Less learnable parameters can reduce problems with over-
fitting, which are common with zero-shot learning. Also,
after encoding, the semantic information with different di-
mensions is unified so that the subsequent modules can use
parameters of the same dimensions.

4.3 Finding the Graph Edges

As mentioned, the graph nodes are selected as a batch of
nodes/classes that are available in the current task, with en-
coded class attributes as the node feature representation.
Now we need to connect the nodes by deriving an adja-
cency matrix of the graph. An intuitive way to do this is to
define a value in the adjacency matrix between node ¢ and
node j according to the predefined distance in the class hi-
erarchy of the whole graph. For example, for the classes in
ImageNet (Deng et al. 2009), each entry in adjacency ma-
trix would be A;; = 1 /dij, where the distance d;; is the
number of hops between node ¢ and node j; on WordNet.
(Note that we tried this type of adjacency matrix, and it gen-
erated similar results to APNet). Unfortunately, this kind of
strategy requires extra information about the class hierarchy,
e.g., WordNet. Hence, in our approach, we propose to gen-
erate the graph edges according to the node feature repre-
sentations using an attention mechanism. More specifically,
the attention learns a similarity metric a(-,-) between node
feature representation pairs and generates an edge between
pairs with high similarity. The set of edges on graph G is:

5:{(y,z):y,ze)&a(Xg,Xg)Ze}, 2)

s (), f(9)
) = ) 3
R F AT P
where f(-) is a learnable transformation; and e is a thresh-

old for the similarity of the edge connection. For, simplicity,
the edges are assumed to be undirected.

4.4 Attribute Propagation

The attribute propagation is based on the graph constructed
in the previous subsections. The propagation is bidirectional
through the edges using the learned attention mechanism.
The node feature representations are a weighted sum of the
features representations of its neighboring nodes N, whose
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Figure 4: One-step of attribute propagation. Before propa-
gation: The nodes, denoted by different-colored circles rep-
resent the different classes and the node features are the
corresponding attribute feature representation of this class,
denoted in the columns. The edges are generated based on
the similarity between every node feature pair. Propagat-
ing the node features (attributes): Propagation computes
a weighted sum of its neighbors’ node features, where the
weights are produced by an attention module applied to ev-
ery node feature and its neighbors (including itself). After-
propagation: The attribute representations comprise a mix-
ture of attribute representations from neighbors.

weights were obtained from the attention mechanism us-
ing Eq. (3). At step t, the propagation proceeds as follows:
XM e Y (X)X x XL
ZeNy

“

where a'(-,-) is the normalized attention score over the
neighbors N, using softmax with hyper-parameter tempera-
ture v that controls the smoothness of the softmax function:

exp[na(X, X))
>z, expma(X), X

The propagation can be applied multiple times to collect
messages from indirectly-connected neighbors and, in so
doing, amass a more comprehensive understanding of the
graph structure. Figure 4 shows an example of one-step
propagation.

d (X, X1) = ®)

4.5 Parameterized KNN for Prediction

In this approach, we learn a similarity metric between an
attribute representation and a query image representation as
the parametric KNN. A learned metric calculates the similar-
ity between the ¢-th step propagated attribute matrix X*+!
and the query image feature vectors. Inspired by the concept
of additive attention (Vaswani et al. 2017), the similarity
between an image with feature x and class ¥ is:

X, )

(6)

where W, W2 b, w and bV are learnable parameters,
and o) is a nonlinear activation function. The class whose
propagated attribute vector with the highest similarity to the
image vector is taken as the final prediction. The probability
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of predicting « as class y normalized with temperature o
over a batch of classes Y7 is

exp(v2h(X [T, x))
> eyr exp(h(XIH @)’

We assume that the attribute propagation does not affect the
associated attribute labels so the label for the propagated at-
tributes is the same as the original associated label before
propagation, i.e., X 5 is the attribute for class y before prop-
agation while the X ;“ is still the attribute for class y after
propagation.

Pr(ylz; XH) =

)

4.6 Training Strategy and Scalability

Training APNet over all the nodes/classes in a dataset would
be too computationally expensive since the size of the at-
tention score matrix grows exponentially as the number of
nodes/classes grows. Moreover, applying a cost constraint
over the loss computation may make the optimization un-
stable. Hence, for training efficiency, we only sample a sub-
graph to apply the propagation per iteration. Additionally, to
improve the generality of our model to unseen nodes/classes,
we train APNet on different classification tasks in every
iteration, so it can quickly adapt to different new tasks.
This technique was inspired by the training strategy of
meta-learning originally developed for few-shot learning
in (Vinyals et al. 2016). The aim of few-shot learning is to
build a model that can adapt quickly to any new task with
only a few training samples. In contrast, the goal of zero-shot
learning is to learn a model that can generalize to a new task
with only the semantic information provided. However, we
found the idea of meta-learning training strategy designed
for “fast adaptability” could also improve the generality of
our model. Interestingly, this training strategy might also
benefit other models in the literature of zero-shot learning.

In every iteration, a task 7" is sampled from a task distribu-
tion 7. The aim is to minimize the loss for this classification
task based on our APNet model. The training objective is to
minimize the empirical risk:

minEr7E( ) pr —logPr(ylz; X7), ()
where each task 7" is defined as a subset of classes YT C
yseen; DT s the distribution of data-label pair (x,y) with
y € Ysen; XT is the corresponding propagated attributes
matrix for classes in task 7'; © are the learnable parameters.

5 Experiments
5.1 Datasets

We used five widely-used zero-shot learning datasets in
our experiments: AWA1 (Lampert, Nickisch, and Harmel-
ing 2014), AWA2 (Xian et al. 2019), SUN (Patterson and
Hays 2012), CUB (Welinder et al. 2010) and aPY (Farhadi
et al. 2009). To avoid overlaps between the test sets and
ImageNet-1K, which is used for pretraining backbones, we
followed the splits proposed in (Xian et al. 2019). AWAI,
AWA?2 and CUB are subsets of ImageNet. AWA1 and AWA2
have 50 animals classes with pre-extracted feature represen-
tations for each image. CUB is also a subset of ImageNet



Table 1: Datasets Statistics. “#*” denotes the number of *. “Tr-S”, “Te-S” and “Te-U” denotes seen classes in training, seen

classes in test and unseen classes in test, respectively.

Dataset Granularity #Attributes #Seen classes #Unseen classes #Imgs(Tr-S) #Imgs(Te-S) #Imgs(Te-U)
SUN fine 102 645 72 10,320 2,580 1,440
CUB fine 312 150 50 7,057 1,764 2,967
AWA1 coarse 85 40 10 19,832 4,958 5,685
AWA2 coarse 85 40 10 23,527 5,882 7,913
aPY coarse 64 20 12 5,932 1,483 7,924

Table 2: Performance comparisons for generalized zero-shot learning between our method and baselines on five datasets, where
“S” denotes per-class accuracy (%) for seen classes, “U” denotes per-class accuracy (%) for unseen classes and “H” denotes
harmonic mean of “S” and “U”. Parts of the results are from (Xian et al. 2019).

Methods \ SUN \ CUB \ AWAL \ AWA2 \ aPY

S U H | S U H|S U H|S U H|S U H
DEVISE (Frome et al. 2013) 274 169 209 [ 53.0 238 328|687 134 224|747 171 278[769 49 92
CONSE (Norouzi et al. 2013) 399 68 116|722 16 3.1 |86 04 08 906 05 10 |92 00 00
SYNC (Changpinyo et al. 2016) 433 79 134709 115 198|873 89 162 [905 1000 180 | 663 74 133
SAE (Kodirov, Xiang, and Gong 2017) | 18.0 88 118 [540 78 136|771 18 3.5 |82 L1 22 809 04 09
DEM (Zhang, Xiang, and Gong 2017) | 343 205 25.6 | 57.9 19.6 29.2 | 847 328 473|864 305 451|751 111 194
RN (Sung et al. 2018) - - - |6L1 381 470|913 314 567|934 300 453 | - - -
PQZSL (Li et al. 2019) 353 351 352|514 432 469 | 709 317 438 - - | 641 279 388
CRNet (Zhang and Shi 2019) 365 341 353|568 455 505|747 581 654|788 526 631 | 684 324 440
APNet(ours) | 406 354 378|559 481 517766 597 67.1|839 548 664|747 327 455

with images of 200 bird species (mostly North American).
SUB is a Scene benchmark containing 397 scene categories.
aPY is a small dataset including 32 classes. Detailed statis-
tics are provided in Table 1.

5.2 Implementation Details

For a fair comparison with baselines, we followed (Xian et
al. 2019)’s implementation and used a pre-trained ResNet-
101 (He et al. 2016) on ImageNet-1K to extract 2048-
dimensional image features with no fine-tuning on the back-
bone. We trained our APNet with Adam (Kingma and Ba
2015) for 360 epochs with weight decay factor of 0.0001.
The initial learning rate was 0.00002 with a decrease of 0.1
every 240 epochs. The number of iterations in every epoch
under an N-way-K -shot training strategy was | X*"||/N K,
where N was 30 and K was 1 in our exeperiments. The tem-
perature y; was 10 and ~» was 30. Transformation functions
g; and f were linear transformations. The threshold for con-
necting edges was set to cosine40° = 0.76. All nonlinear
functions were ReLLU except for o, which was implemented
using Sigmoid to map the result between 0 and 1.

5.3 Evaluation Criterion

To mitigate the bias caused by imbalance of test data for ev-
ery class, following the most recent works (Xian et al. 2019),
we evaluate the APNet’s performance according to averaged

per-class accuracy.
ACCy = |y|2 5y > Vi=u
(m,y)GDy

where D, is the dataset of the data-label pairs for class
y, and ¥ is the prediction of the image feature representa-
tion . We measured the overall accuracy of the data in the

(€))
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seen and unseen classes in terms of the harmonic mean of
the per-class seen accuracy AC'C'y:cen and unseen accuracy

ACCyunseen following previous works (Xian et al. 2019):
H = 2%+ ACCyseen * ACCyunseen
ACCySeen-’rACCyunseen :

5.4 Experimental Results

Generalized Zero-shot Learning.

With generalized zero-shot learning, the setting is to classify
samples (x, y € Y*°°" U Y“"*¢") from both seen and un-
seen classes while training on samples (x, y € Y*¢°™) from
seen classes. The comparison results for APNet and other
baselines are shown in Table 2.

Classical zero-shot learning methods, e.g., CMT,
CONSE, usually suffer from the imbalance problem be-
tween the training and testing stages. Their models perform
well on the seen classes but the per-class accuracy on the
unseen classes is low, with some models even achieving
close to 0% per-class accuracy. It is challenging to achieve
competitive results on every dataset for the generalized
zero-shot learning due to the imbalanced accuracy for seen
classes and unseen classes because of model overfitting
to samples from the seen classes. Our APNet outperforms
state-of-the-art results on all five datasets. Our model
achieves better results especially on datasets extracted from
ImageNet, i.e., CUB, AWAI, AWA2, and achieves over 3
points improvements on the overall criterion (H) for both
seen and unseen accuracy, and consistent improvements on
the unseen accuracy of up to ~ 3%.

Zero-shot Learning.

The setting with zero-shot learning is to classify samples (z,
y € YU"5°°™) from unseen classes while training on samples
(x, y € Y?*°™) from seen classes. The comparison results
for APNet and the other baselines are shown in Table 3. AP-



Table 3: Per-class accuracy (%) comparisons over unseen classes for zero-shot learning between our method and baselines on

five datasets. Parts of the results are from (Xian et al. 2019).

Methods | SUN | CUB | AWA1 | AWA2 | aPY
DEVISE (Frome et al. 2013) 56.5 | 52.0 54.2 59.7 | 39.8
ALE (Akata et al. 2015a) 58.1 | 54.9 59.9 62.5 | 39.7
SYNC (Changpinyo et al. 2016) 56.3 | 55.6 54.0 46.6 | 239
SAE (Kodirov, Xiang, and Gong 2017) | 40.3 | 33.3 53.0 54.1 8.3
RN (Sung et al. 2018) - 55.6 68.2 64.2 -
GAFE (Liu et al. 2019c¢) 62.2 | 52.6 67.9 674 | 443
APNet(ours) | 62.3 | 57.7 | 68.0 | 68.0 | 413

Net achieves competitive results in this setting. Similar to
the results in GZSL, APNet is more powerful on subsets of
ImageNet datasets, i.e., CUB, AWA1, AWA2, where APNet
achieves up to 2% accuracy improvements compared to the
most recent baselines.

Comparing the results for both generalized zero-shot

learning in Table 2 and zero-shot learning in Table 3 settings,
it is challenging to perform well on both settings. Meth-
ods that perform well on zero-shot learning do not guar-
antee a good performance on generalized zero-shot learn-
ing. DEM (Zhang, Xiang, and Gong 2017) achieved simi-
lar performance compared to our APNet on AWAI. How-
ever, the generalization ability of DEM, which is measured
by the performance in the setting of generalized zero-shot
learning, has space for improvements. This is probably be-
cause DEM treats visual space as the embedding space for
nearest neighbor search. Comparatively, we mainly do trans-
formation over the semantic embeddings by propagation on
a shared graph of training and test classes and use a para-
metric KNN classifier for a semantic-visual joint similar-
ity prediction. The visual space used in DEM has high bias
and non-i.i.d. problems and might be difficult to generalize
when considering predictions over both seen classes and un-
seen classes. GAFE (Wang et al. 2017) achieved better per-
formance on aPY dataset but also suffers from the general-
ization ability problem. Similar to DEM, they also focused
on the visual space and proposed a reconstruction regular-
izer on the visual feature representations. In remains open if
the regularizer can generalize on the unseen classes without
their visual feature representations during training stage.
Ablations and Variants of APNet.
We did ablation study and developed some variants of AP-
Net in Table 4. In the ablation of propagation (x in “Graph
Hierarchy”), we skip the propagation step and directly use
the node feature representations for similarity comparison
and prediction. Propagation can achieve above 1 point im-
provement on H under different training strategies.

Two variants of APNet are developed by adjusting the
training strategy to traditional minibatch training (denoted
by X in “Meta training”) and replacing the graph hierarchy
used in propagation with the hierarchy defined in WordNet.
The meta-learning style training strategy we used can bring
2 ~ 3% accuracy improvements on unseen accuracy and
2 ~ 3 points improvement on H while keeping the rest
components the same, which verifies that training on differ-
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Table 4: Ablations and performance comparisons on variants
of APNet on AWA?.

Meta Training  Graph Hierarchy | S U H
X X 82.8 502 625
X WordNet 839 504 629
X Learned 81.2 526 639
v X 844 534 654
v WordNet 82.6 557 66.6
v Learned 83.9 548 664

ent tasks in every iteration can get better model generality.
When the hierarchy is defined by WordNet, the propagation
graph is assumed to be fully connected and the value of the
adjacency matrix for node ¢ and node j (A;;) is defined as
1/d;;, where d;; is the number of hops between node ¢ and
node j on WordNet. Predefined graph hierarchy can bring
improvements but is sensitive to the training strategy. The
reason is probably that the exact/optimal formulation for
generating the adjacency matrix based on the distance be-
tween nodes is unclear even though intuitively closer nodes
should have higher values for its adjacency matrix. Dedi-
cated designs on how to integrate the hierarchy information
more effectively have the potential to boost the performance.
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