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Abstract

Typically, learning a deep classifier from massive cleanly an-
notated instances is effective but impractical in many real-
world scenarios. An alternative is collecting and aggregat-
ing multiple noisy annotations for each instance to train the
classifier. Inspired by that, this paper proposes to learn deep
classifier from multiple noisy annotators via a coupled-view
learning approach, where the learning view from data is rep-
resented by deep neural networks for data classification and
the learning view from labels is described by a Naive Bayes
classifier for label aggregation. Such coupled-view learning is
converted to a supervised learning problem under the mutual
supervision of the aggregated and predicted labels, and can be
solved via alternate optimization to update labels and refine
the classifiers. To alleviate the propagation of incorrect labels,
small-loss metric is proposed to select reliable instances in
both views. A co-teaching strategy with class-weighted loss
is further leveraged in the deep classifier learning, which uses
two networks with different learning abilities to teach each
other, and the diverse errors introduced by noisy labels can
be filtered out by peer networks. By these strategies, our ap-
proach can finally learn a robust data classifier which less
overfits to label noise. Experimental results on synthetic and
real data demonstrate the effectiveness and robustness of the
proposed approach.

1 Introduction

With the availability of a cleanly annotated large-scale
dataset, recent deep learning has proven success in various
classification tasks. For example, the ResNet model (He et
al. 2016) has achieved 6.43% error rate in CIFAR10 ob-
ject classification task (Krizhevsky 2009), while the Arc-
Face model (Deng et al. 2019) achieves a surpassing human-
level accuracy of 99.82% in recognizing faces on the LFW
benchmark (Huang et al. 2007). Generally, such success
arises from deep networks’ powerful capacity in extracting
knowledge from massive labeled data in a supervised learn-
ing manner. However, the clean annotations for supervised
learning are very difficult to collect in many real-world sce-
narios, e.g., video surveillance in the wild (Sun et al. 2018)
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Figure 1: The coupled-view perspective of our learning ap-
proach. It alternately learns a data classifier and a label ag-
gregator under the mutual supervision of the aggregated and
predicted labels that are updated during training.

and medical data analysis (Amy 2018). Recently, the crowd-
sourcing approaches like Amazon Mechanical Turk (AMT)
(Buhrmester, Kwang, and Gosling 2011) have been estab-
lished as a cost-effective solution to annotate large collec-
tions of data. This manner provides a feasible way to create
massive data with single or multiple noisy labels.

For learning from single noisy labels, some approaches
(Salla et al. 2018; Liu and Tao 2016) tried to model noise
confusion matrix or select the clean labels. They generally
improve accuracy by learning from single noisy labels or
aggregated labels. Recently, the co-teaching approach pro-
posed by (Han et al. 2018) has showed good ability in se-
lecting clean labels by using two networks with the same
structure to update each other’s training instances, leading
to superior performance. Generally, these methods provide
some effective ways to reduce the overfitting to label noises.

Learning from multiple noisy labels provides an intuitive
way to lessen label noises. As noisy labels are relatively
easy to acquire from multiple annotators (e.g., different de-
vices, persons or models), the common practice is to col-
lect multiple weak labels for an instance and then aggre-
gate them to get a more reliable label. Toward this end, it
is necessary to explore an effective solution that can ad-
dress a key challenge: how to aggregate multiple noisy an-
notators to facilitate deep classifier learning? A simple ap-
proach is regarding the results of majority voting (Cheru-



bin 2019) as the groundtruth labels. But this practice ne-
glects the different characteristics of annotators, and the
multiple annotators may obey various noise distributions,
leading to uneven label quality. More advanced practices,
like expectation maximization (EM) algorithm (Bekker and
Goldberger 2016) and its variants (Huang and Chen 2017;
Khetan, Anandkumar, and Lipton 2018), from the viewpoint
of probability, jointly estimate the unknown biases of the an-
notators and network parameters. However, these algorithms
are unstable and often doesn’t converge to the optimal re-
sults or even get worse after a number of rounds.

To address the challenge, from the perspective of coupled-
view learning, we propose to regard EM algorithm’s joint es-
timation problem as a problem of mutual learning between
two learning views: the learning view from data and the
learning view from labels, as shown in Fig.1. The learning
is performed alternatively to optimize both learning views:
1) the learning view from data aims to train a deep classi-
fier with the supervision of aggregated labels from another
view, and 2) the learning view from labels models the bi-
ases of annotators, then aggregates weak labels from them,
with the help of the prediction of the deep classifier (known
as predicted labels). In this way, the learning from multiple
noisy annotators is transformed into a supervised learning
problem, and next we are faced with the critical issue: how
to facilitate the learning converging to the good and stable
results? To make the learning convergent, the performance
of both learning views should be improved progressively in
each round. We experimentally find that the learning per-
formance is affected by two main factors: the propagation
of incorrect labels and the class-imbalance of correct labels.
To address the first factor, we adopt small-loss metric to se-
lect cleaner instances in both views and further a co-teaching
strategy in the learning view from data to mitigate random
error bias introduced by initialization of deep networks. The
second factor arises from the instance selection and thus we
introduce a dynamic class-weighted loss in the learning view
from data, and set a class-balanced prior distribution in an-
other view. By these strategies, our approach has a more sta-
ble convergence and reduces the overfitting to wrong labels,
which is a critical bottleneck in previous methods.

The main contributions of this paper are summarized as
three folds: 1) We propose a coupled-view learning ap-
proach to learn deep classifiers from multiple noisy annota-
tors, which outperform the other state-of-arts; 2) We propose
small-loss metric to select reliable instances in both learn-
ing views and co-teaching strategy with a dynamic class-
weighted loss to further reduce the effect of label noises in
neural network, which facilitates the good and stable con-
vergence of deep classifier learning; and 3) We conduct com-
prehensive experiments on synthetic and real data to demon-
strate the effectiveness and robustness of the proposed ap-
proach, which may be helpful for developing deep classifiers
in other real-world scenarios.

2 Related Works
The approach we proposed in this paper aims to learning
classifier from multiple noisy labels with a coupled-view
learning method. Therefore, we briefly review related works
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from two aspects, including learning with noisy labels and
multi-view learning methods.

2.1 Learning with Noisy Labels

In order to learn from data with noisy labels, one direction
of some recent works is modeling label noises or reducing
the effect of noisy labels. Some methods focus on estimating
the noise transition matrix or make probabilistic model for
noises. For example, Bekker and Goldberger (2016) adopted
EM algorithm to take turns to estimate true labels and noise
transition. Goldberger and Ben-Reuven (2017) added an ad-
ditional softmax layer after the true output layer to model the
noise transition matrix. By the contrast, Liu and Tao (2016)
proposed using surrogate loss for label noises and proved
that any surrogate loss function can be used for classifica-
tion with noisy labels by using importance reweighting. Yu
et al. (2018) provided a method to modify traditional loss
and extends standard neural network classifiers to learn with
biased labels. Xia et al. (2019) presented a risk-consistent
estimator and employed this estimator to tune the transi-
tion matrix. Another line is estimating true labels and then
learning with them. PENCIL (Yi and Wu 2019) employed
similar idea and proposed continuously updating the label
distribution through backpropagation. There are also other
attempts to refine the noisy labels. By using a small clear
dataset and label relations in knowledge graph as assistance,
Li, Yang, and Song (2017) proposed a unified distillation
framework to hedge the risk of learning from noisy labels.
These methods are generally effective at low noise level but
most of them may suffer from errors when having heavy la-
bel noises. Recently, a new insight is selecting reliable noisy
labels. Jiang et al. (2018) pretrained an guide network for se-
lecting clean instances to update the learning network. Han
et al. (2018) proposed co-teaching that leverages two net-
works’ different learning abilities to filter out different types
of errors introduced by noisy labels. Cheng et al. (2019) in-
troduced the concept of distilled examples and propose a
learning algorithm robust to label noise. When label noise is
heavy, selective methods outperform most of other methods
as the classifier will not fit in the dropped incorrect labels.

When having multiple noisy labels, a naive approach
is aggregating the labels with majority voting. MBEM
(Khetan, Anandkumar, and Lipton 2018), an improved EM
algorithm, proposed combining the learning from labels
and estimated workers’ quality for learning. Rodrigues and
Pereira (2018) proposed adding the crowd layer to the out-
put of common network, and the layer adjusts the gradients
coming from the labels of annotators. Guan et al. (2018)
learned different models for every annotator, and the whole
output is weighted integration of multiple models’ output.
A key challenging issue of these approaches is how to per-
form effective label aggregation to facilitate deep classifier
and make it converge to the good and stable results.

2.2 Multi-view Learning

Multi-view learning is mainly applied for unsupervised
and semi-supervised learning. The approaches have several
styles such as co-training, multiple kernel learning, sub-
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Figure 2: The whole framework of coupled-view learning. Several schemes including small-loss metric, co-teaching strategy
and class-weighted loss are used to achieve the good and stable convergence in both learning views.

space learning and so on. Here we introduce co-training ap-
proaches which inspire our approach.

Co-training (Mitchell and Blum 1998) is one of the ear-
liest approaches for multi-view learning, in which learn-
ers are trained alternately on two distinct views with con-
fident labels for the unlabeled data. According to the mea-
sure way of label confidence, co-training has a series of vari-
ants, such as democratic co-learning (Goldman and Zhou
2000), cotrace (Zhang and Zhou 2011), tri-training (Zhou
and Li 2005) and self-paced co-training (Ma et al. 2017).
Wang and Zhou (2017) show that if the classifiers in two
sufficient views have large diversity, co-training algorithms
can improve performance. But if the view is insufficient, the
optimal classifier will mistakenly classify some examples.
The larger the insufficiency, the worse the performance of
the optimal classifier (Wang and Zhou 2017).

Note that, although our problem setting is weakly-
supervised learning, as both views in our method relabel in-
stances in every round, we can see it as two-view models
label unlabeled data in semi-supervised learning. That is to
say, our method and co-training both exchange useful infor-
mation by labeling instances. Hence, some theoretical anal-
ysis of co-training may be suited to our method. If our two
views are conditionally independent and have heavy differ-
ence, which means label noise and data is independent when
the class is known, we believe that the views can help to im-
prove each other on certain conditions and it’s demonstrated
by our experiments. But due to insufficiency of both views,
the propagation of incorrect labels may worse performance
and our method proposes small-loss metric and co-teaching
strategy to reduce it.

3 Our Approach
3.1 Problem Formulation

Our purpose refers to exploit an effective way to aggregate
multiple weak labels to facilitate the learning of deep clas-
sifier from massive data. It needs to address two main is-
sues: 1) reliable aggregation from noisy labels and 2) robust
learning from massive data. Toward this end, our couple-
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view learning approach achieves that in a unified manner by
collaborating two learning views (see Fig. 2): 1) the learn-
ing view from labels ¢; (y; w;) aggregates a m-dimensional
noisy label vector y from fixed m annotators to generate
an estimated distribution, which is used to update an aggre-
gated label y! € {1,2,...,c}, and 2) the learning view from
data ¢4 (; wy) is a deep classifier that takes an instance x
(an image, a signal or a feature) as the input and outputs a
predicted distribution, which can be converted to a predicted
label y¢ € {1,2,...,c}. Here, wy and w; are the learned
parameters of the classifiers ¢4 and ¢; respectively, c is the
size of label space or the class number. Thus, the objective
of coupled-view learning is to learn the classifier parame-
ters {wq, w;} from given dataset x = {x;}? ; and multi-
ple noisy label set y = {y,} ;, where n is the number of
training instances and ¥y, = (Y1, Yi2, .-, Yim ) 1S @ m-d noisy
vector.

To achieve that, with the help of the predicted labels
y? = {yd}7_, and the aggregated labels y' = {y!}7, as
two pseudo label sets, we transform this weakly-supervised
learning problem into a mutual supervised learning one:

(D

where £4(.) and ¢;(.) are the loss functions for training ¢g4
and ¢, respectively. After initialization and pretraining, the
problem can be solved with alternate optimization under the
supervision of the predicted labels and the aggregated labels
that are updated alternately during training. This coupled-
view manner provides an simple and general way to make
the label aggregator and the data classifier exchange knowl-
edge with each other. Now, the focused issue is converted to
the following: how to help the mutual learning converging
to the good and stable results. To this end, we propose sev-
eral strategies in both learning views that will be described
in detail.

Wndl}{}vl Ly (X, yl;Wd) + 4 (y7yd§Wl) ,

3.2 Learning View from Labels

Base model. With the assumption that each annotator’s la-
bel noise is random and independent, we propose a Naive



Bayes classifier with noise confusion matrices as the base
model, which is similar to (Albarqouni et al. 2016; Khetan,
Anandkumar, and Lipton 2018). Based on Bayesian for-
mula, when the noise confusion matrix 7 and the class
distribution g are known, ¢;(y;; w; = (7,q)), = ply! =
klyi; 7, q], the posterior probability of the true label of ith
sample for kth class is calculated as Eq. (2).

eI 0y Ty

S (awr T (s o = slmil))
(2
where y;; is the jth weak label of the ith instance; I[.] is the
indicator function which takes 1 if the identity index is true
and O otherwise. 7r,(€js) is the probability of misclassifying the
kth class into the sth class for the jth annotator; ¢ is the

probability of kth class.

= sJil)

¢l(yi; ™, q)k

Train classifier. The Naive Bayes classifier will encounter
view insufficiency. The view is insufficient when there exist
instances (x;,y!) or (y;,y!), on which the posterior prob-
ability P(y! = kl|x;) or P(y! = k|y,) is not equal to 1
or 0 due to the insufficient information provided by x; or
y, for predicting the label. For these instances, the optimal
classifier can not perfectly predict their labels because of the
view insufficiency. This will raise the noises of pseudo labels
from begin to end (Wang and Zhou 2013). In our approach,
the learning view from labels is a highly insufficient view,
and for every instance P(y! = k|y,) is not equal to 1 or 0,
if each label is noisy. Besides, the learning view from data
is also an insufficient view in some cases, due to feature cor-
ruption or feature noises. To minimize the empirical risk, the
algorithm should search the classifier which has the lowest
observed inconsistent training instances, so the key is to pre-
vent the propagation of incorrect labels.

We propose small-loss metric to measure label confidence
for reliable instance selection. That is to say, each learn-
ing view chooses small-loss instances from another view’s
pseudo labels for itself to train in every round. Its effective-
ness has been demonstrated in (Meng, Zhao, and Jiang 2015;
Ma et al. 2017; Han et al. 2018; Jiang et al. 2018), as it can
select more clean instances effectively.

In the learning view from labels, as Naive Bayes usually
get parameters by maximum likelihood estimation (MLE),
we can get its loss function with small-loss metric as:

Gy, yhma)= > C(aysma), b)), )
iel' (o)

where £(.) is the cross-entropy loss function; h(.) is the one-

hot function; yfl is the predicted label of the :th instance;

I' is ¢;’s confident small-loss instance set and that is to

say I' = argming, 7). o, 1y Zieq (61(y,), h(y{)) and

the setting of ratio coefficient «; € (0, 1] will be discussed

later. Then 7 is acquired by Eq. (4). Note that, I Lis updated
every epoch.

20— ZiEIZ(al) Zy;l I [ygl = k] [yij = s]
ks 7
Z’LGIL(QZ) I[yf = k]

Besides, we set g = 1/c¢, in order to balance class.

“
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Update aggregated labels. In every round, the view up-
dates its own pseudo labels y' as:
1,2

g Ly oee

yh = argmjax@(yé)j,i = M. 5)

3.3 Learning View from Data

Base model. As deep network has a high capacity to learn
from data, we regard deep networks as data classifier.

Train classifier. As well as small-loss metric, we further
propose two strategies in this view. First, due to high capac-
ity of deep networks in fitting all data (Zhang et al. 2016),
it may introduce high accumulation of initialization-induced
error biases even after the usage of small-loss metric. In-
spired by (Han et al. 2018), we further employ co-teaching
strategy. It means that ¢4 uses two networks ¢4 and ¢4
with same structure but different initialization, and in ev-
ery “batch” each network regards its selected small-loss in-
stances as useful knowledge, and teaches such instances to
its peer network for updating the parameters. Since two net-
works have different learning abilities, they can filter out
different types of errors introduced by noisy labels. In this
exchange procedure, the error can be reduced by peer net-
works mutually. Second, as the selected instances is usu-
ally class-imbalanced, a class balance constraint is neces-
sary. For deep classifier, since our method selects instances
in every mini-batch, we make a dynamic class-weighted loss
in every mini-batch to prevent network from excessive pref-
erence for some particular classes.

During training, we first shuffle and divide {x,y'} into p
mini-batch {xy,yL}, k¥ = 1,2,...,p in every epoch. Then
in kth batch {xk,yk}, we train ¢4; and ¢ 4o on each other’s
confident small-loss instance set I ﬁQ and I 21 with a class-
weighted loss, respectively. The loss function in kth batch
can be written as Eq. (6).

Cak (X, Yl War, Waz) =

> wgff(%l(ﬂvi;wdﬂ,h(yf))+>\d||Wd1||§
el (aq)

+ Y wzg-lﬁ(%z(wj;wdz)ah(yé))+>‘d||wd2||g’
jel i (aq)

(6)

where wg and wgo are the learnable param-
eters of g1 and pgo, respectively; I
argmin[:\Ibad\Xkl ZieI €(¢d1(wi),h(yﬁ)), T, € Xi

and the setting of ratio coefficient ag € (0, 1] is discussed

later; wjl is the weight of yth class in I ﬁl, and it can be
simply defined as wi' = <<*—, where r; = -L and
j=1"T3j J

n; is the number of jth class instances in I dl; I gQ and

daz . : d1 a1
w,* are similar with I}~ and w;~, except that they are

from the viewpoint of ¢42; Note that w, and w; change

every batch, and T Zl and I 22 are updated every epoch. And
the whole loss function ¢4 (x, yliwar, de) is equal to

Soh_i ik (Xi, Yl War, Waz).



Update predicted labels. In every round, when ygﬂ
arg max; da1(x;); and y#? = argmax; dao(x;)

., the
_] 9
learning view updates its own pseudo labels y¢ by Eq. (7).

gi = Jit iyt =y
! yd, else, i=1,2,..

(N

M.

3.4 Algorithm Details

The whole algorithm is summarized in Alg. 1, where the pre-
dicted and aggregated labels are first initialized and then the
alternate optimization is performed. After the two networks
¢q1 and @40 are trained, one network or their ensemble is
used for testing according to the deployment resources.

The setting of ratio coefficients. The ratio coefficients ay
and o decide the proportion of selected training instances.
Intuitively, they should increase as the pseudo label error
rate falls and correct rate rises in each round. Hence, we
simply set o; = 1 — S;¢; in each round, where ¢ = d and
j=1lori=1land j = d. ¢; is the error rate of ¢;’s pseudo
labels and j3; is a hyperparameter. Therefore, our approach
needs a way to know the error rate of pseudo labels. In our
simulation experiments, we estimate it through a small vali-
dation set which has both clean and noisy labels. As for [3;,
we also get it through validation set and its optimal value is
between 1.0 and 2.0 in our experiments when giving enough
instances. If £; can’t be estimated, we increase «y each iter-
ation until deep model isn’t improved by raising it.

Outlier detection. Besides, as the estimation of €; tends
to be inaccurate in practice as well as the proportion of cor-
rect labels in each batch is not always the same, we add
a simple method to detect outliers in selected instances.
First, we calculate the mean p and standard deviation o of
bai(i = 1,2)’s losses in I (ag). Second, we drop out those
instances whose loss ¢’ can’t satisfy |[¢' — u| < po, where p
is an abnormal coefficient. With outlier detection, on mini-
batch xk,yfp, the I{(vy) is changed to I (avg, p), which
refers to I{ () after dropping outliers. And w, is changed

to the weight of yth class in Iﬁj’(af, p).

4 Experiments

To verify the effectiveness of the proposed approach (de-
noted as CVL), we conduct the experiments on two syn-
thetic datasets (MNIST (LeCun et al. 1998) and CI-
FARI10 (Krizhevsky 2009)) and one real dataset (LabelMe-
AMT (Rodrigues and Pereira 2018)).

4.1 Experiment Setting

Datasets. We use MNIST and CIFARI10 to generate
datasets with noisy labels. MNIST is a handwritten digital
dataset, which has a training set of 60K instances, and a test
set of 10K instances. The CIFAR-10 is an image classifi-
cation dataset that consists of 60K 32x32 colour images in
10 classes, with 6K images per class. There are 50K train-
ing images and 10K test images. Like (Yi and Wu 2019;
Han et al. 2018), we retain 10% of the training instances for
validation, and corrupt these datasets manually by the noise
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Algorithm 1 Coupled-view Classifier Learning

Require: training data {x,y}, data classifier {¢q1,da2}
and label aggregator ¢;; hyper-parameters (4, 51, Ad,
p; max round ¢,,,4,, max epoch e,,,, and batch size n,,
or number of mini-batch p.
Ensure: learned parameters {wg1, Waa} of {¢a1, daz}-
1: Initialize predicted labels y? and aggregated labels y
by majority voting from y.
2: Pretrain {¢41, paz} on {x,y?} and ¢; on {y,y'}.
3: fort =1,2,...,t,4e do
4: Setag=1-— ﬂd&‘l.

l

50 fore=1,2,...,mq4 do

6: Shuffle and divide {x, y?} into p mini-batch.
7: fork=1,2,...,pdo

8: Train {¢q1, ¢paa} on {xx,y'} by minimizing

Eq. (6) with outlier detection.

9: end for
10:  end for

11:  ift < t,,4, then

12: Set oy = 1 — [ieq,

13: Train ¢; on {y,y'} by Eq. (4),

14: Update y? by Eq. (7) and 4' by Eq. (5).

15:  endif

16: end for

17: return {wg1, wga}.

transition matrix @, where Q;; = Pr(y = jly' = 1), given
that noisy label y is flipped from clean y*. In our setting,
each instance has serval noisy labels from different @, to
simulate m noisy annotators. We generate weak labels with
three types of noise transition matrix, including 1) symmetry
flipping which simulates that labelers often correctly anno-
tate but may chooses false labels uniformly at random with
probability €, 2) pair flipping which simulates that labelers
may make mistakes only within similar classes with proba-
bility €, and 3) class-wise flipping which simulates that la-
belers only do good in particular classes but chooses labels
uniformly at random for other classes. For each dataset, we
further design 3 groups with 3 noisy annotators, resulting in
6 noisy datasets (see Tab. 1).

The real dataset LabelMe-AMT is taken from the 8-class
image classification dataset (Rodrigues and Pereira 2018). It
consists of a total of 2,688 images, where 1,000 of them are
used to obtain labels from Amazon Mechanical Turk. Each
image is labeled by an average of 2.547 workers (59 workers
in total). 500 images are used for validation. The remaining
images are used for testing.

Training setting for synthetic datasets. For ¢4 and ¢40,
We adopt a 22-layer VGG-like Convolutional Neural Net-
work (CNN) for training deep classifiers, including three
blocks followed by two fully-connected layers with 128 and
10 neurons respectively. Each block consists of three 3x3
convolutional layers following by leaky ReLU activation.
The first two blocks contain 128 and 256-channel convolu-
tional layers, and follow max-pooling and 25% rate dropout
layers. Average pooling is used after the last block.

For noisy MNIST-i (i=1,2,3) dataset, the learning rate



Table 1: The generated noisy datasets by simulating different types of annotators on MNIST and CIFAR10.

Experiments Ist annotator 2nd annotator 3rd annotator
MNIST-1 Symmetry, e = 0.8 Symmetry, ¢ = 0.7 Pair, e = 0.45
MNIST-2 Symmetry, e = 0.8  Symmetry, ¢ = 0.7 Class-wise, correct class 6
MNIST-3 Symmetry, e = 0.6 Symmetry, ¢ = 0.7  Class-wise, correct class 8,9

CIFAR10-1  Symmetry, e = 0.8 Symmetry, ¢ = 0.7 Pair, e = 0.45

CIFAR10-2  Symmetry, € = 0.6 Pair, e = 0.45 Class-wise, correct class 3,5,7

CIFAR10-3  Symmetry, € = 0.6 Pair, e = 0.45 Class-wise, correct class 7,8,9

is le-3, A\y = 0 and B; = 1.05. For noisy CIFARI10-i
(i=1,2,3), the learning rate is from le-3 down to 7e-6 lin-
early, \; = le — 4 and ; = 1.2. For all datasets, the batch
size is 384, B, = 1.1, p is from 2 down to 0.5 linearly. We
estimate £;(j = d, ) through the validation set which has
both clean and noisy labels. We use Adam optimizer to train
200 epochs for all models. The deep classifiers are all ini-
tialized pretrained by “co-teaching” (Han et al. 2018) with
the initial labels. All the results are reported as the average
figures of five trials.

Training setting for LabelMe-AMT. For ¢4 and ¢g42, in
order to fairly compare with other baselines, we use the pre-
trained CNN layers of the VGG-16 network and apply only
one FC layer (with 128 units and ReL U activations) and one
output layer on top with 50% dropout. For ¢;, only the noise
matrices whose worker provides the label are used for calcu-
lation. During training, the learning rate is le-4, A\ is 0 and
the total epochs are 50. Besides, the number of pretraining
epoch is 20, p = 2, B4 = 1.8. As most of the input features
in ¢; are missing value, we find the optimal 8; = 0. And
we estimate €;(j = d, ) through 10% of training set which
has both clean and noisy labels. Note that we just use clean
labels to get €5, not to train.

4.2 Results

We use the test accuracy of the best during training and
the last epoch to evaluate the performance and robustness
of all the classifiers. Although we can get two networks
to combine a better result, in order to fairly compare with
other baselines, we test one network ¢4; and other methods
with the same network structure. We compare our model
with several state-of-the-art benchmarks, including (i) MV
is a common baseline, meaning that the deep networks are
trained on datasets with the labels aggregated by majority
voting; (ii) AggNet (Albarqouni et al. 2016) uses EM al-
gorithm to jointly model workers’ skills and data classifier.
It treats the real label distribution as a hidden variable and
considers the learned model as an estimate of it by using
noise confusion matrices; (iii) Crowd Layer (Rodrigues and
Pereira 2018) adds the crowd layer to the output of common
network, and the layer adjusts the gradients coming from the
labels of that annotator according to its reliability; and (iv)
MBEM (Khetan, Anandkumar, and Lipton 2018) is an im-
proved EM algorithm that rewrites the likelihood of EM and
considers the estimated true labels as hard labels.

Noisy MNIST. Tab. 2 shows the results on three noisy
datasets, where some observations are concluded. First, the
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Table 2: The test accuracy (%) of the best during training
(left) and the last epoch (right) on noisy MNIST datasets.
The minimal accuracy improvement is also given.

Approach MNIST-1 MNIST-2 MNIST-3
MV 88.16/52.10  58.09/29.77  90.29/47.78
AggNet 99.57/99.30  97.10/55.57  99.07/81.41
Crowd Layer 99.53/75.01 98.38/41.67 99.14/52.14
MBEM 99.38/98.58  98.12/94.65 99.18/97.45
Our CVL 99.45/99.33  99.02/98.60  99.19/98.97
Mint -0.12/0.03  0.64 / 395 0.01 / 1.52
100
_. 8071
S
~ 601
®
- — MV A Ay A Ao
g 40114— AggNet
qu‘\mv’v\hww
< 201 —— Crowd Layer
— MBEM
—— Our CVL
0._
0 25 50 75 100 125 150 175 200

Epoch

Figure 3: The test accuracy during training on MNIST-2
dataset. It shows the robustness of our approach.

common baseline, MV that directly learns with the aggre-
gated labels by majority voting, is not effective when the
label noises are heavy, even for the best test accuracy during
training. This implies that effective label aggregation is very
crucial in improving the classifiers. Second, our CVL almost
outperforms other benchmarks on all three datasets under
the evaluation of both test accuracies, showing the effective-
ness of our approach. Third, we can find other benchmarks
overfit to the noisy labels more or less during later train-
ing stage, where their performance in last epoch declines
severely, compared with the best results. Due to small-loss
metric and co-teaching strategy, the accuracy drop of our
CVL is very small, showing the robustness of our approach.
Fig. 3 shows a clearer result, where our approach gradually
converges to the optimal value and does minor oscillation.



Table 3: The test accuracy (%) of the best during training
(left) and the last epoch (right) on noisy CIFAR10 datasets.
The minimal accuracy improvement is also given.

Approach CIFAR10-1 CIFAR10-2 CIFAR10-3
MV 57.58/36.95 67.24/50.49  74.42/53.83
AggNet 83.25/79.56  84.76/83.92  84.45/82.39
Crowd Layer 83.43/58.93 85.52/65.66 76.03/60.59
MBEM 81.55/79.81 85.16/84.05 83.68/82.29
Our CVL 83.98/83.73 86.81/86.67 85.42/85.26
Min?t 0.55 /392 1297262 097 /287
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Figure 4: The precision of instance selection (a) and the test
accuracy (b) on CIFAR10-1.

Noisy CIFAR10. The performance shows similar results
on three noisy CIFAR10 datasets that contain more chal-
lenging images, as shown in Tab. 3. From the results, we can
find that our CVL delivers much better accuracy on all three
noisy datasets in terms of both effectiveness and robustness,
for example, the minimal improved accuracy reaches 2.62%
in last epoch while the maximal accuracy drop is 0.25% be-
tween the best and the last accuracy. It empirically demon-
strates the mutual learning process in our approach can con-
verge to the good and stable results. Fig. 4 (a) shows the pre-
cision of selected pseudo labels in both learning views, while
Fig. 4 (b) shows the mutual improvement of two learning
views during training. The pure selected labels make model
less overfit to false labels, and the selected labels get purer as
model improves. This result may partly explain why our ap-
proach is better in facilitating good and stable convergence.

Table 4: Test accuracy on LabelMe-AMT.
Approach Test accuracy (%)
MV 76.744 (£ 1.208)
DL-EM (Albarqouni et al. 2016) 82.677 (£ 0.981)
MA-sLDAc (Rodrigues et al. 2017) 78.120 (£ 0.397)
DL-DN (Guan et al. 2018) 81.888 (& 1.114)

DL-WDN (Guan et al. 2018) 82.410 (+ 0.397)
DL-CL (Rodrigues and Pereira 2018)  83.151 (£ 0.877)
Our CVL 86.027 (+ 0.313)

LabelMe-AMT. After the promise is achieved on syn-
thetic datasets, we further check the performance on the real
dataset. For fair comparison, we performed 30 executions of
our approach for 50 epochs and report average accuracy in
the last epoch. Then, we conduct the comparisons with base-
line (MV) and five state-of-the-art benchmarks, including
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Table 5: The test accuracy (%) on CIFAR10-1 under differ-
ent hyperparameter choices.

Ba/Bi | 0.5/1.1 1.0/1.1 1.2/1.1 14/1.1 2.0/1.1
Best 76.08 80.15 83.98 84.03 73.99
Last 69.94 79.58 83.73 83.85 73.76
Ba/B; | 1205 1.2/1.0 1.2/1.1 1.2/1.3 1.2/2.0
Best 83.96 84.00 83.98 84.08 84.04
Last 83.75 83.78 83.73 83.80 83.76
[-] Best [[] Last
) ; 83.89 83.85 8398
. 83.73 83.67 83.73
236
834
43 83.12 g3.08
82
22.6
Qurs_noCTS QOurs_noCWL Ours_noOD Ours

Figure 5: Impact of each component on CIFAR10-1.

DL-EM (Albarqouni et al. 2016), MA-sLDAc (Rodrigues
et al. 2017), DL-DN (Guan et al. 2018), DL-WDN (Guan et
al. 2018) and DL-CL (Rodrigues and Pereira 2018). Tab. 4
lists the results. Our approach achieves the accuracy 86.027
(£ 0.313)%, demonstrating its advantages as compared with
the other state-of-the-art methods.

4.3 Ablation Study

Choice of hyperparameter ;. The hyperparameter
Bi(i = d,l) effects the selection of reliable instances. We
test different 3; in a; on the noisy CIFAR10-1. Tab. 5 lists
all the results. When (3; is too small, the selected instances
may have a lot of incorrect labels. When j; is too large, it
may drop many difficult but important instances. The result
shows that /34 is crucial for good performance, while the re-
sult is insensitive to 3;, maybe because neural network has a
strong ability to fit all data while Naive Bayes classifier not.

Impact of each component. To study the impact of each
component, we use CIFARI10-1 to perform the evalua-
tion. We test our approach without co-teaching strategy
(Oursyects), class-weighted loss (Ours,,cwr,) and outlier
detection (Ours,,op), respectively. The results are shown
in Fig. 5, which shows that the performance of our approach
without any component will decline and each component
makes positive contributions to the performance.

5 Conclusion

In this paper, we propose a coupled-view learning approach
to facilitate deep classifier learning from massive data with
multiple noisy labels. It converts a weakly-supervised learn-
ing problem into a supervised learning one under mutual su-
pervision that can be solved via alternate optimization. Sev-
eral strategies are used, which makes our approach robust
to label noise and converge stably. Experimental results on



synthetic and real datasets shows the superior performance
in effectiveness and robustness. In the future, we will exploit
the proposed approach in more tasks.
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