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Abstract

The generalization performance of kernel methods is largely
determined by the kernel, but spectral representations of
stationary kernels are both input-independent and output-
independent, which limits their applications on complicated
tasks. In this paper, we propose an efficient learning frame-
work that incorporates the process of finding suitable ker-
nels and model training. Using non-stationary spectral ker-
nels and backpropagation w.r.t. the objective, we obtain fa-
vorable spectral representations that depends on both inputs
and outputs. Further, based on Rademacher complexity, we
derive data-dependent generalization error bounds, where we
investigate the effect of those factors and introduce regular-
ization terms to improve the performance. Extensive experi-
mental results validate the effectiveness of the proposed algo-
rithm and coincide with our theoretical findings.

Introduction
Kernel methods have achieved great success in many con-
ventional domains over past decades, while they show rela-
tively inferior performance on complicated tasks nowadays.
The fundamental limitation of common kernels has been re-
vealed that they are both stationary and monotony (Bengio,
Delalleau, and Roux 2006). The stationary property shows
that stationary kernels only depend on the distance ‖x−x′‖
while are free from the input x itself. The monotony prop-
erty indicates that values of stationary kernels decrease over
the distance, ignoring the long-range interdependence.

Spectral approaches were developed to fully character-
ize stationary kernels with concise representation forms,
such as sparse spectrum kernels (Quiñonero-Candela et al.
2010), sparse mixture kernels (Wilson and Adams 2013)
and random Fourier features methods to handle with large
scale settings (Rahimi and Recht 2007; Le, Sarlós, and
Smola 2013; Li, Liu, and Wang 2019). With sound theo-
retical guarantees, namely Bochner’s theorem (Rudin 1962;
Stein 2012), spectral kernels are constructed from the in-
verse Fourier transform in the frequency domain. Although
approximate spectral representation provides an efficient ap-
proach for stationary spectral kernels, the performance of
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Figure 1: The overview of ASKL.

random features is limited because stationary kernels are
input-independent and output-independent. Yaglom’s theo-
rem, rather than Bochner’s theorem, provides more general
forms which encompass both stationary and non-stationary
kernels via inverse Fourier transform (Yaglom 1987; Samo
and Roberts 2015). Recently, due to its general and con-
cise spectral statements, non-stationary kernels have been
applied to Gaussian process regression (Remes, Heinonen,
and Kaski 2017; Sun et al. 2019).

Hyper parameters for kernels determine the performance
of kernel methods. Meanwhile, kernel selection approaches
have been well-studied (Liu and Liao 2014; Li et al. 2017;
Ding et al. 2018; Liu et al. 2018; 2019). However, due to the
separation of kernel selection and model training, those tech-
niques are inefficient and lead the undesirable performance.

In this paper, to achieve better performance ability for ker-
nel methods, we propose an efficient algorithm, namely Au-
tomated Spectral Kernel Learning (ASKL), learning suitable
kernels and model weights together. A brief overview is il-
lustrated in Figure 1. On the algorithmic front, ASKL con-
sists of: (1) non-stationary kernels to obtain input-dependent
features, (2) backpropagation w.r.t the objective to make fea-
tures output-dependent, (3) regularization terms to achieve
sharper generalization error bounds. On the theoretical front,
the theoretical underpinning is Rademacher complexity the-
ory, which indicates how the feature mappings affect the per-
formance and suggests ways to refine the algorithm.
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Background
In ordinary supervised learning settings, training samples
{(xi,yi)

n
i=1} are drawn i.i.d. from a fixed but unknown dis-

tribution ρ over X × Y , where X = R
d is the input space

and Y ⊆ R
K is the output space in single-valued (K = 1)

or vector-valued (K > 1) forms. The goal is to learn an es-
timator f : X → Y , which outputs K predictive labels. We
define a standard hypothesis space for kernel methods

H =
{
x → f(x) = W Tφ(x)

}
,

where W ∈ R
D×K is the model weight, φ(x) : Rd → R

D

is a nonlinear feature mapping. For kernel methods, φ(x) is
an implicit feature mapping associated with a Mercer ker-
nel k(x,x′) = 〈φ(x), φ(x′)〉. To improve the computa-
tional efficiency but also retain favorable statistical proper-
ties, random Fourier features were proposed to approximate
kernel with explicit feature mappings φ(x) via k(x,x′) ≈
〈φ(x), φ(x′)〉 (Rahimi and Recht 2007).

In statistical learning theory, the supervised learning prob-
lem is to minimize the expected loss on X × Y

inf
f∈H

E(f), E(f) =
∫
X×Y

�(f(x),y) dρ(x,y), (1)

where � is a loss function related to specific tasks.

Stationary Kernels

The connection between the stationary kernel k(τ) and its
spectral density s(ω) is revealed in Bochner’s theorem via
inverse Fourier transform.
Theorem 1 (Bochner’s theorem). A stationary continuous
kernel k(x,x′) = k(x−x′) on R

d is positive definite if and
only if it can be represented as

k(x,x′) =
∫
Rd

eiω
T (x−x′)s(ω)dω, (2)

where s(ω) is a non-negative measure.
The spectral density s(ω) is the probability density of the

corresponding kernel. From the inverse Fourier transform,
we find that spectral kernels are highly relevant to the prob-
ability measure s(ω). E.g. s(ω) for Gaussian kernels with
the width σ correspond to Gaussian distribution N (0, 1/σ).

Non-Stationary Kernels

While the stationary kernels ignore input-dependent infor-
mation and long-range correlations, non-stationary kernels
alleviate these restrictions because they depend on the in-
puts themselves (Samo and Roberts 2015).
Theorem 2 (Yaglom’s theorem). A general kernel k(x,x′)
is positive definite on R

d is positive define if and only if it
admits the form

k(x,x′) =
∫
Rd×Rd

ei(ω
Tx−ω′Tx′)μ(dω, dω′), (3)

where μ(dω, dω′) is the Lebesgue-Stieltjes measure asso-
ciated to some positive semi-definite (PSD) spectral density
function s(ω,ω′) with bounded variations.

When μ is concentrated on the diagonal ω = ω′, the spec-
tral characterization of stationary kernels in the Bochner’s
theorem is recovered. s(ω,ω′) is a joint probability density.

Figure 2: The architecture of learning framework

Automated Spectral Kernel Learning
In this section, we devise a learning framework for arbitrary
kernel-based supervised applications:
• We present the learning framework with the minimization

objective, integrating empirical risk minimization (ERM)
with regularizers on feature mappings and model weights.

• Spectral representation for non-stationary spectral kernels
based on Yaglom’s theorem is conducted.

• We apply first-order gradient approaches to solve the min-
imization objective. We update frequency matrices Ω,Ω′

together with model weights W via backpropagation.

Learning Framework

The minimization of the expected loss (1) is hard to estimate
in practical problems. In this paper, we put two additional
regularization terms into the ERM, thus the empirical objec-
tive Ê(W ,Ω,Ω′) becomes

argmin
W ,Ω,Ω′

1

n

n∑
i=1

�(f(xi),yi)︸ ︷︷ ︸
g(W )

+λ1‖W ‖∗ + λ2‖φ(X)‖2F ,
(4)

where both feature mappings φ(X) ∈ R
D×n on all data and

f(xi) = W Tφ(xi) ∈ R
D use the non-stationary spectral

representation φ(·), which is presented as

φ(x) =
1√
2D

[
cos(ΩTx+ b) + cos(Ω′Tx+ b′)

]
.

The trace norm ‖W ‖∗ and the squared Frobenius norm
‖φ(X)‖2F exerts constraints on updating model weights W
and frequency matrices Ω,Ω′, respectively. Those two reg-
ularization terms, especially the norm on feature mappings,
are rarely used in the R-ERM, leading to the better general-
ization performance as proven in next section.

In the objective (4), we update model weights W and fre-
quency pairs Ω,Ω′ to learn feature mappings both input-
dependent (non-stationary kernels) and output-dependent
(backpropagation towards the objective). As shown in Fig-
ure 2, the architecture can be regarded as a single hidden
layer neural network with cosine as activation. The spec-
tral density surface s(ω,ω′) (joint probability density), de-
termining the performance of spectral kernels, is optimized
by updating frequency matrices Ω,Ω′ via backpropagation
(Rumelhart et al. 1988). In this structure, only W and Ω,Ω′

are trainable and optimized towards the objective.
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Non-Stationary Spectral Kernels Representation

According to Yaglom’s theorem, to produce a positive semi-
definite (PSD) kernel, the spectral density needs to be a
PSD function. In order to construct a PSD spectral density
s(ω,ω′), we include symmetries s(ω,ω′) = s(ω′,ω) and
sufficient diagonal components s(ω,ω) and s(ω′,ω′). We
integrate exponential components and the corresponding in-
tegrated spectral density s(ω,ω′) and get

Eω,ω′(x,x′) =
1

4

[
ei(ω

Tx−ω′Tx′) + ei(ω
′Tx−ωTx′)

+ei(ω
Tx−ωTx′) + ei(ω

′Tx−ω′Tx′)].
The PSD kernel can be rewritten as

k(x,x′) =
∫
Rd×Rd

Eω,ω′(x,x′)μ(dω, dω′). (5)

where s(ω,ω′) is the spectral density surface. Similar spec-
tral representation forms for non-stationary kernels are also
used in (Samo and Roberts 2015; Remes, Heinonen, and
Kaski 2017). When ω = ω′, non-stationary kernel in (5) de-
grades into stationary kernel as in Bochner’s theorem (2) and
the probability density function becomes univariate s(ω).

In the stationary cases, random Fourier features are used
to approximate stationary kernels (Rahimi and Recht 2007).
Similarly, in the non-stationary cases, we can approximate
(5) with Monte Carlo random sampling

k(x,x′) =
∫
Rd×Rd

Eω,ω′(x,x′)μ(dω, dω′)

= Eω,ω′∼s

[Eω,ω′(x,x′)
]

= Eω,ω′∼s
1

4

[
cos(ωTx− ω′Tx′) + cos(ω′Tx− ωTx′)

+ cos(ωTx− ωTx′) + cos(ω′Tx− ω′Tx′)
]

≈ 1

4D

D∑
i=1

[
cos(ωT

i x− ω′T
i x′) + cos(ω′T

i x− ωT
i x

′)

+ cos(ωT
i x− ωT

i x
′) + cos(ω′T

i x− ω′T
i x′)

]
= 〈ψ(x), ψ(x′)〉

where (ωi,ω
′
i)

D
i=1

i.i.d.∼ s(ω,ω′),D is the number of features
and random Fourier feature mapping of spectral kernel is

ψ(x) =
1√
4D

[
cos(ΩTx) + cos(Ω′Tx)
sin(ΩTx) + sin(Ω′Tx)

]
,

where features mapping are R
d → R

2D. To alleviate com-
putational costs, we use the following mapping R

d → R
D

φ(x) =
1√
2D

[
cos(ΩTx+ b) + cos(Ω′Tx+ b′)

]
, (6)

where frequency matrices Ω,Ω′ ∈ R
d×D are integrated

with (ωi,ω
′
i)

D
i=1 that Ω = [ω1, · · · ,ωD] and Ω′ =

[ω′
1, · · · ,ω′

D]. The phase vectors b, b′ are drawn uniformly
from [0, 2π]D. In fact, the spectral kernels induced by ψ(x)
and φ(x) are equivalent in the expectation manner.

Remark 1. Equation (6) provides explicit feature mappings
to approximate non-stationary kernels, where suitable fre-
quency matrices Ω,Ω′ are the key to obtain a favorable
performance. Standard random Fourier features generate
frequency matrices via samples from the assigned spectral
density s(ω,ω′), e.g frequency matrices correspond to ran-
dom Gaussian matrix for Gaussian kernels. In the proposed
algorithm ASKL, the frequency matrices Ω,Ω′ are jointly
optimized together with model weights W during training.

Update Trainable Matrices

As shown in the previous section, non-stationary spectral
kernels are input-dependent. Further, we propose a gen-
eral learning framework, namely Automated Spectral Kernel
Learning (ASKL), that optimizes frequency matrices Ω,Ω′

for non-stationary kernels according to the objective via
backpropagation. Therefore, the learned feature mappings
are both input-dependent and output-dependent.

The learning frame ASKL can be solved by first-order gra-
dient descent methods, such as stochastic gradient descent
(SGD) and its variants Adadelta (Zeiler 2012) and Adam
(Kingma and Ba 2014). Using the backpropagation, we de-
rive how to update estimator weights W and frequency ma-
trices Ω,Ω′ in the following analyses. More generally, we
consider mini-batch gradient descent where we use m ex-
amples in each iteration. Specifically, full gradient descent
is the special case m = n where all examples are used and
stochastic gradient descent (SGD) corresponds to the special
case m = 1 where only one example is used.

Update W in Proximal Gradient Approach To mini-
mize the objective (4), we use first-order gradient descent
algorithms to update W in the direction of negative gradi-
ent. The updates of gradient of W depend on empirical loss
and trace norm in (4), but trace norm is nondifferentiable on
many points for each dimension (unlike hinge loss and Relu
are nondifferentiable only on one point), thus the deriva-
tive/subgradient of the trace norm cannot be applied to stan-
dard gradient approaches. We employ singular value thresh-
olding (SVT) to solve the minimization of trace norm with
proximal gradient descent (Cai, Candès, and Shen 2010).

We simply the updates of W in two steps and put detailed
deduction process in the Appendix section:
1) Update W with SGD on the empirical loss

Q = W t − η∇g(W t), (7)

where η is the learning rate and the gradient of empirical
loss on m-batch examples is

∇g(W ) =
1

m

m∑
i=1

∂�(f(xi),y)

∂W

=
1

m

m∑
i=1

φ(xi) ·
[
∂�(f(xi),y)

∂f(xi)

]T
∈ R

D×K ,

and Q is an intermediate matrix and m examples are
used.

2) Update W with SVT on the trace norm

W t+1 = Udiag
( {σj − λ1η}+

)
V T , (8)
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where Q = UΣV T is the singular values decomposi-
tion, Σ is the diagonal diag({σj}1≤i≤r) and r is the rank
of Q.

Update Ω,Ω′ Using the chain rule for computing the
derivative, the derivative of objective only depends on em-
pirical loss �(f(xi),y) in terms of Ω,Ω′. Both empirical
risk �(f(xi),y) and squared Frobenius norm ‖φ(X)‖2F are
differentiable with respect to Ω,Ω′. We derive the gradient
of the minimization objective (4) w.r.t. Ω as an example.

Ωt+1 = Ωt − η∇Ê(Ωt) (9)

where the gradients w.r.t Ω are

∇Ê(Ω) =
1

m

m∑
i=1

∂�(f(xi),y)

∂Ω
+ λ2

∂‖φ(X)‖2F
∂Ω

,

∂�(f(xi),y)

∂Ω
= xi ·

[
D ·W · ∂�(f(xi),y)

∂f(xi)

]T
,

∂‖φ(X)‖2F
∂Ω

=
1

m

m∑
i=1

2xi · φ(xi)
T ·D

and D is a diagonal matrix inD×D size filled with a vector

D = diag

{
−1/

√
2D

sin(ΩTxi + b)

}
D×D

.

Specific Loss Functions For gradients in (7) and (9), only
gradients w.r.t. the loss function ∂�(f(xi),y)

∂f(xi)
are uncertain.

• Hinge Loss for Classification Problems.
Let the label y = [0, · · · , 0, 1, 0, · · · , 0]T only one ele-
ment (its category) is not zero. The hinge loss is defined
as �(f(xi),y) = |1−(yT f(xi)−maxy′ �=y y′T f(xi))|+.
The sub-gradient of hinge loss w.r.t the estimator is

∂�(f(xi),y)

∂f(xi)
=

{
0, yT f(xi)−max

y′ �=y
y′T f(xi) ≥ 1,

y′ − y, else.

• Squared Loss for Regression Problems.
Let y be the K-size vector-valued label where K > 1
for multi-label regression and K = 1 for univariate re-
gression. The Squared loss function is �(f(xi),y) =
‖f(xi)− y‖22. Then, the gradient of squared loss is

∂�(f(xi),y)

∂f(xi)
= 2(f(xi)− y).

Theoretical Guarantee

In this section, we study the generalization performance
for the proposed algorithm ASKL. A data-dependent excess
risk bound is derived, and then we explore how the input-
dependent and output-dependent feature mappings affect the
statistical performance and how to improve the algorithm by
utilizing additional regularization terms.
Definition 1. The empirical Rademacher complexity of hy-
pothesis space H is

R̂(H) =
1

n
Eε

[
sup
f∈H

n∑
i=1

K∑
k=1

εikfk(xi)

]
,

where fk(xi) is the k-th value of the estimator f(xi) with
K outputs and εiks are n × K independent Rademacher
variables with equal probabilities P(εik = +1) = P(εik =

−1) = 1/2. Its deterministic estimate is R(H) = E R̂(H).

Theorem 3 (Excess Risk Bound). Assume that B =
supf∈H ‖W ‖∗ < ∞ and assume the loss function � is L-
Lipschitz for RK equaipped with the 2-norm, with probabil-
ity at least 1− δ, the following excess risk bound holds

E(f̂n)− E(f∗) ≤ 4
√
2LR̂(H) +O

(√ log 1/δ

n

)
, (10)

where f∗ ∈ H is the most accurate estimator in the hypoth-
esis space, f̂n is the empirical estimator and

R̂(H) ≤ B

n

√√√√K n∑
i=1

〈φ(xi), φ(xi)〉

=
B

n

√√√√K

D

n∑
i=1

D∑
j=1

1

2

[
cos
(
(ωj − ω′

j)
Txi

)
+ 1
]
.

(11)

The proof is given in the Appendix. The error bounds de-
pend on Rademacher complexity term. Due to cos

(
(ωj −

ω′
j)

Txi

) ≤ 1, Rademacher complexity in (11) is naturally
bounded by R̂(H) ≤ B

√
K/n, thus the convergence rate is

E(f̂n)− E(f∗) ≤ O
(
B

√
K

n

)
. (12)

Based on the theoretical findings, we make some technical
comments to understand how the factors, including feature
mappings and regularization terms, affect the generalization
performance and suggest ways to refine the algorithm:

• Influence of Non-Stationary Kernels. As mentioned in
the above section, non-stationary kernels depend on in-
puts themselves instead of the distance between inputs.
We explore the impact of non-stationary kernels based
on Rademacher complexity in (11), which depends on
the trace

∑n
i=1 k(xi,xi). For stationary kernels (shift-

invariant kernels), the spectral representation holds the
diagonals as k(xi,xi) = cos(ωT (xi − xi)) = 1, thus
the trace of kernel matrix

∑n
i=1 k(xi,xi) = n, which

corresponds to the worst cases. While for non-stationary
kernels, k(xi,xi) = cos((ω − ω′)Txi) ∈ [−1, 1]. For
most instances xi, the diagonals are k(xi,xi) < 1, so
the trace

∑n
i=1 k(xi,xi) � n. Therefore, error bounds

of non-stationary spectral kernels are much tighter than
bounds of stationary kernels, where non-stationary ker-
nels achieve the better generalization performance.

• Influence of Spectral Learning. If frequency matrices
Ω,Ω′ are just assigned according to specific spectral
density s(ω,ω′), the non-stationary kernels are input-
dependent but output-independent. By dynamically opti-
mizing frequency matrices Ω,Ω′ towards the objective,
we acquire more powerful feature representations. Then,
the spectral measure s(ω,ω′) of optimal kernels can be
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estimated from optimized frequency matrices Ω,Ω′. The
learned feature mappings are dependent on both inputs
and outputs, offering better feature representations.

• Using the Trace Norm ‖W ‖∗ as a Regularizer. The
convergence rate B = supf∈H ‖W ‖∗ < ∞ is also de-
pendent on a constant B, that is the supremum of trace
norm ‖W ‖∗ in terms of the specific hypothesis space. As
a result, the minimization of trace norm ‖W ‖∗ is use-
ful to reduce B and obtain better error bounds. Based
on Rademacher complexity theory, the use of trace norm
‖W ‖∗ instead of squared Frobenius norm ‖W ‖2F as reg-
ularization terms was also explored for linear estimators
in (Xu et al. 2016; Li et al. 2019).

• Using Squared Frobenius Norm ‖φ(X)‖2F as a Reg-
ularizer. From (10), Rademacher complexity is bounded
by the trace of the kernel and it can be written as

n∑
i=1

〈φ(xi), φ(xi)〉 =
n∑

i=1

‖φ(xi)‖22 = ‖φ(X)‖2F .

In standard theoretical learning for Rademacher complex-
ity, the kernel trace cannot be used to improve learning al-
gorithm because feature mappings are constants for spe-
cific inputs. For example, all diagonals are k(xi,xi) = 1
for shift-variant kernels thus the trace is the number of
examples n. Note that, instead of assigned kernel param-
eters, our algorithm automatically learns optimal spectral
density for kernels, thus the trace of the kernel is no longer
a constant. Meanwhile, we use it as two regularization
terms to improve the performance (avoid overfitting).

Experiments

In this section, compared with other algorithms, we evalu-
ate the empirical behavior of our proposed algorithm ASKL
on several benchmark datasets to demonstrate the effects of
factors used in our algorithm, including the non-stationary
spectral kernel, updating spectral density with backpropaga-
tion and additional regularization terms.

Experimental Setup

Based on random Fourier features, both our algorithm ASKL
and compared methods apply nonlinear feature mapping into
a fixed D-dimensional feature space where we set D =
2000. We apply Gaussian kernels as basic kernels because
Gaussian kernels succeed in many types of data by map-
ping inputs into infinite-dimensional space, of which fre-
quency matrices Ω,Ω′ are i.i.d. drawn from Gaussian distri-
butions N (0, σ2). The generalization ability of algorithms
are highly dependent on different parameters on λ1, λ2 and
Gaussian kernel parameter σ for spectral kernels. For fair
comparisons, we tune those parameters to achieve opti-
mal empirical performance for all algorithms on all dataset,
by using 5-folds cross-validation and grid search over pa-
rameters candidate sets. Regularization parameters are se-
lected in λ1, λ2 ∈ {10−10, 10−9, · · · , 10−1} and Gaus-
sian kernel parameter σ is selected from candidate set σ ∈
{2−10, · · · , 210}. Accuracy and mean squared error (MSE)

Methods Kernel Density Regularizer
SK Stationary Assigned ‖W ‖2F
NSK Non-stationary Assigned ‖W ‖2F
SKL Stationary Learned ‖W ‖2F
NSKL Non-stationary Learned ‖W ‖2F
ASKL Non-stationary Learned ‖W ‖∗, ‖φ(X)‖2F

Table 1: Compared algorithms.

are used to evaluate performance for classification and re-
gression, respectively. We implement all algorithms based
on Pytorch and use Adam as optimizer with 32 examples in
a mini-batch to solve the minimization problem.

Compared Algorithms To assess the effectiveness of fac-
tors used in our algorithm, we compare the proposed algo-
rithm with several relevant algorithms. As shown in Table 1,
compared methods are special cases of ASKL:
(1) SK (Rahimi and Recht 2007): known as random Fourier
features for the stationary spectral kernel. This approach di-
rectly assigned the spectral density for shift-invariant kernels
and uses the regularizer ‖W ‖2F on model weights .
(2) NSK (Samo and Roberts 2015): Similar to SK but it uses
spectral representation for non-stationary kernel which was
introduced in (6) with assigned frequency matrices.
(3) SKL (Huang et al. 2014): Random Fourier features for
stationary kernels and squared Frobenius norm as regular-
ization term with updating spectral density during training.
(4) NSKL: A special case of ASKL with non-stationary
spectral, learned spectral density. But it uses squared Frobe-
nius norm on model weights ‖W ‖2F as regularization.

Datasets We evaluate the performance of the proposed
learning framework ASKL and compared algorithms based
on several publicly available datasets, including both clas-
sification and regression tasks. Especially, we standardize
outputs for regression tasks to [0, 100] for better illustration.
To obtain stable results, we run methods on each dataset 30
times with randomly partition such that 80% data for train-
ing and 20% data for testing. Further, those multiple test er-
rors allow the estimation of the statistical significance of dif-
ference among methods. To explore the influence of factors
upon convergence, we evaluate both test accuracy and ob-
jective on MNIST dataset (LeCun et al. 1998).

Empirical Results

Empirical results of all algorithms are shown in Table 2,
where accuracy is used for classification tasks and root mean
squared error (RMSE) is used for regression tasks. We bold
results which have the best performance on each dataset, but
also mark sub-optimal results with underlines which have a
significant difference with the best ones, by using pairwise
t-test on results of 30 times repeating data split and training.

The results in Table 2 show: (1) The proposed algo-
rithm ASKL outperforms compared algorithms on almost all
dataset that coincides with our theoretical results. (2) The
use of non-stationary kernels brings notable performance
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SK NSK SKL NSKL ASKL

Accuracy(↑)

segment 89.93±2.12 90.15±2.08 94.58±1.86 94.37±0.81 95.02±1.54

satimage 74.54±1.35 75.15±1.38 83.61±1.08 83.74±1.34 85.32±1.45

USPS 93.19±2.84 93.81±2.13 95.13±0.91 95.27±1.65 97.76±1.14

pendigits 96.93±1.53 97.39±1.41 98.19±2.30 98.28±1.68 99.06±1.26

letter 76.50±1.21 78.21±1.56 93.60±1.14 94.66±2.21 95.70±1.74

porker 49.80±2.11 51.85±0.97 54.27±2.72 54.69±1.68 54.85±1.28

shuttle 98.17±2.81 98.21±1.46 98.87±1.42 98.74±1.07 98.98±0.94

MNIST 96.03±2.21 96.45±2.16 96.67±1.61 98.03±1.16 98.26±1.78

RMSE(↓)

abalone 10.09±0.42 9.71±0.28 8.35±0.28 7.85±0.42 7.88±0.16
space ga 11.86±0.26 11.58±0.42 11.40±0.18 11.39±0.46 11.34±0.27

cpusmall 2.77±0.71 2.84±0.38 2.56±0.72 2.57±0.63 2.42±0.48

cadata 50.31±0.92 51.47±0.32 47.67±0.33 47.71±0.30 46.34±0.23

Table 2: Classification accuracy (%) for classification datasets and RMSE for regression datasets. (↑) means the lager the better
while (↓) indicates the smaller the better. We bold the numbers of the best method and underline the numbers of the other
methods which are not significantly worse than the best one.

Figure 3: Accuracy curves on MNIST

improvement but approaches based on stationary kernels
still perform well on easy tasks, e.g. shuttle and cpusmall.
(3) Due to the difference between assigned spectral density
and learned frequency matrices, there are significant per-
formance gaps between those two groups {SK, NSK} and
{SKL, NSKL}, especially on complicated datasets satim-
age and letter. It confirms that learning feature mappings
in both input-dependent and output-dependent ways leads
to better generalization performance. (4) The proposed al-
gorithm ASKL usually provides better results than NSKL.
That shows the effectiveness of regularization terms ‖W ‖∗
and ‖φ(X)‖2F . The experimental results demonstrate the ex-
cellent performance and stability of ASKL, corroborating the
theoretical analysis and excellent performance of ASKL.

During iterations, test accuracy and the objective were
recorded for every 200 iterations with batch size 32. Evalua-
tion results in Figure 3 and Figure 4 show that ASKL outper-
forms other algorithms significantly. Accuracy curves and
objective curves are correlated as the smaller objective cor-
responds to the higher accuracy. Figure 3 and Figure 4 em-
pirically illustrate that ASKL achieves lower error bounds
than with fast learning rates.

Figure 4: Objective curves on MNIST

Conclusion and Discussion

In this paper, we propose automatically kernel learning
framework, which jointly learns spectral density and the
estimator. Both theoretical analysis and experiments illus-
trate that the framework obtains significant improvements in
the generalization performance, owing to the use of three
factors: non-stationary spectral kernel, backpropagation and
two regularization terms. The use of non-stationary spec-
tral kernels makes feature mappings input-dependent, while
updating frequency matrices w.r.t the objective via back-
propagation that guarantees feature mappings are output-
dependent, obtaining more powerful representation abilities.
Further, we derive Rademacher complexity bounds for the
algorithm. To achieve sharper bounds, we minimize two reg-
ularization terms together with ERM.

Connection with Deep Neural Networks. The proposed
learning framework is also a neural network with a sin-
gle hidden layer and the cosine activation, thus the theo-
retical findings are also applied to this kind of neural net-
works. Those results can be extended to deep neural net-
works (DNN) by stacking φ in the hierarchical structure.
For example l-hidden layers are used that the spectral kernel
is k(x,x′) = 〈φl(φl−1(· · ·φ1(x))), φl(φl−1(· · ·φ1(x′)))〉.
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The outputs of other activations such as sigmoid and Relu
can also be seen as random feature mapping ϕ(x), corre-
sponding kernel function is k(x,x′) = 〈ϕ(x), ϕ(x′)〉. It is
a possible way to understand deep neural networks in ker-
nels view based on Rademacher complexity theory.

Appendix

Firstly, we introduce common notations used in Rademacher
complexity theory. The space of loss function associated
with H is denoted by

L =
{
�(f(x),y)

∣∣ f ∈ H} . (13)

Definition 2 (Rademacher complexity on loss space). As-
sume L is a space of loss functions as defined in Equation
(13). Then the empirical Rademacher complexity of L is:

R̂(L) = 1

n
Eε

[
sup
�∈L

n∑
i=1

εi�(f(xi),yi)

]
,

where εis are independent Rademacher random variables
uniformly distributed over {±1}. Its deterministic counter-
part is R(L) = E R̂(L).
Lemma 1 (Lemma 5 of (Cortes et al. 2016)). Let the loss
function � beL-Lipschitz for RK equaipped with the 2-norm,

|�(f(x),y)− �(f(x′),y′)| ≤ L‖f(x)− f(x′)‖2.
Then, the following contraction inequation exists

R(L) ≤
√
2LR(H).

Proof of Theorem 3

Proof. A standard fact is the derivation of expected loss and
empirical means can be controlled by the Rademacher aver-
ages over loss space L (Lemma A.5 of (Bartlett et al. 2005))

E(f̂n)− E(f∗) ≤ 2
[
sup
f∈H

Ê(f)− E(f)
]
≤ 4R(L). (14)

Combining (14) with the contraction in Lemma 1 and con-
nection between R̂(H) and R(H) (Lemma A.4 of (Bartlett
et al. 2005)), there holds with high probability at least 1− δ

E(f̂n)− E(f∗) ≤ 4
√
2LR̂(H) +O

(√ log 1/δ

n

)
. (15)

Then, we estimate empirical Rademacher complexity R̂(H)

R̂(H) =
1

n
Eε

[
sup
f∈H

n∑
i=1

K∑
k=1

εikfk(xi)

]

=
1

n
Eε

[
sup
f∈H

〈W ,Φε〉
] (16)

where W ,Φε ∈ R
D×K and 〈W ,Φε〉 = Tr(W TΦε), we

define the matrix Φε as follows:

Φε :=

[
n∑

i=1

εi1φ(xi),

n∑
i=1

εi2φ(xi), · · · ,
n∑

i=1

εiKφ(xi)

]
.

Applying Hölder’s inequality and ‖W ‖∗ bounded by a con-
stant B to (16), we can obtain

R̂(H) =
1

n
Eε

[
sup
f∈H

〈W ,Φε〉
]

≤ 1

n
Eε

[
sup
f∈H

‖W ‖∗‖Φε‖F
]
≤ B

n
Eε [‖Φε‖F ]

≤ B

n
Eε

[√
‖Φε‖2F

]
≤ B

n

√
Eε ‖Φε‖2F .

(17)

Then, we bound Eε ‖Φε‖2F as follows

Eε ‖Φε‖2F ≤ Eε

K∑
k=1

∥∥∥ n∑
i=1

εikφ(xi)
∥∥∥2
2

≤
K∑

k=1

Eε

∥∥∥ n∑
i=1

εikφ(xi)
∥∥∥2
2

≤
K∑

k=1

Eε

n∑
i,k=1

εikεjk
[〈φ(xi), φ(xj)〉

]
= K

n∑
i=1

〈φ(xi), φ(xi)〉.

(18)

The last step is due to the symmetry of 〈φ(xi), φ(xi)〉 shown
in (6). The result is similar to (Bartlett and Mendelson 2002;
Li et al. 2018) Applying spectral representation in (5) of
non-stationary kernels, we further bound the Rademacher
complexity

R̂(H) ≤ B

n

√√√√K n∑
i=1

〈φ(xi), φ(xi)〉

=
B

n

√√√√K

D

n∑
i=1

1

2

[
cos
(
(Ω−Ω′)Txi

)
+ 1
] (19)

where B = supf∈H ‖W ‖∗. Substituting the above inequa-
tion (19) to (15), we complete the proof.

Singular Values Thresholding (SVT)

In each iteration, to obtain a tight surrogate of Equation (4),
we keep ‖W ‖∗ while relaxing empirical loss g(W ) only,
that leads proximal gradient (Parikh, Boyd, and others 2014)

W t+1 = argmin
W

λ1‖W ‖∗ + g(W )

= argmin
W

λ1‖W ‖∗ + g(W t)

+〈∇g(W t),W −W t〉+ 1

2η
‖W −W t‖2F

=argmin
W

λ1‖W ‖∗ + 1

2η
‖W − (W t − η∇g(W t)‖2F

=argmin
W

1

2
‖W −Q‖2F + λ1η‖W ‖∗

where Q = W t − η∇g(W t) and η is the learning rate.
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Proposition 1 (Theorem 2.1 of (Cai, Candès, and Shen
2010)). Let Q ∈ R

D×K with rank r and its singular values
decomposition (SVD) is Q = UΣV T , where U ∈ R

d×r

and V ∈ R
K×r have orthogonal columns, Σ is the diago-

nal diag({σi}1≤i≤r). Then,

argmin
W

{
1

2
‖W −Q‖2F + η‖W ‖∗

}
= UΣηV

T ,

where the diagonal is Ση = diag({σi − η}+).
Applying Proposition 1 (Cai, Candès, and Shen 2010; Lu

et al. 2015; Chatterjee and others 2015) to (8), we update W
twice in each iteration, as shown in (7) and (8).
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