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Abstract

We propose a novel continual learning method called Resid-
ual Continual Learning (ResCL). Our method can prevent the
catastrophic forgetting phenomenon in sequential learning of
multiple tasks, without any source task information except
the original network. ResCL reparameterizes network param-
eters by linearly combining each layer of the original network
and a fine-tuned network; therefore, the size of the network
does not increase at all. To apply the proposed method to gen-
eral convolutional neural networks, the effects of batch nor-
malization layers are also considered. By utilizing residual-
learning-like reparameterization and a special weight decay
loss, the trade-off between source and target performance is
effectively controlled. The proposed method exhibits state-of-
the-art performance in various continual learning scenarios.

Introduction

Deep learning with artificial neural networks is now one of
the most powerful artificial intelligence technologies. It ex-
hibits state-of-the-art performance in various machine learn-
ing fields such as computer vision (He et al. 2016a), nat-
ural language processing (Wu et al. 2016), and reinforce-
ment learning (Silver et al. 2017). However, it requires large
amounts of training data and time to train such deep net-
works as network structure becomes complicated. To alle-
viate this difficulty, transfer learning methods such as fine-
tuning (Yosinski et al. 2014) are used to utilize source task
knowledge and to boost training for target tasks.

As transfer learning methods consider only target task
performance during training, most of source task perfor-
mance is lost as a side effect called the catastrophic for-
getting phenomenon (French 1999; McCloskey and Cohen
1989). This is a serious problem if high performance is re-
quired for both source and target tasks. Continual learning
methods should be adopted to resolve this problem.

Our main goal is to achieve good target task performance
while maintaining source task performance. Specifically, we
focus on image classification tasks with Convolutional Neu-
ral Networks (CNNs). Moreover, we impose two practical
conditions for the problem. First, we assume that no source
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task information is available during target task training.
In many real-world applications, source data are often too
heavy to handle or do not have a public license. If they are
available, joint training of source and target data would be a
better solution. Further, we also assume that not only source
data but also any other forms containing source task infor-
mation are not available. Recent studies on continual learn-
ing do not use the source data directly, but they often refer
to parts of the information about source data, for example in
forms of generative adversarial networks (Shin et al. 2017)
or Fisher information matrices (Kirkpatrick et al. 2017;
Ritter, Botev, and Barber 2018), which somewhat dilutes
the original purpose of continual learning. Second, the size
of a network should not increase. Without this condition,
a network can be expanded while keeping the entire origi-
nal network, e.g., (Terekhov, Montone, and O’Regan 2015;
Rusu et al. 2016). Such network expansion methods show
good performance in both source and target tasks, but it is
difficult to use them with deep neural networks in practice
because the size of a network becomes heavier as the num-
ber of tasks increases.

The main features are as follows.

• Residual-learning-like reparameterization allows contin-
ual learning, and a simple decay loss controls the trade-off
between source and target performance.

• No information about source tasks is needed, except the
original source network.

• The size of a network does not increase at all for inference
(except last task-specific linear classifiers).

• The proposed method can be applied to general CNNs
including Batch Normalization (BN) (Ioffe and Szegedy
2015) layers in a natural way.

• We propose two fair measures for comparing different
continual learning methods, maximum achievable aver-
age accuracy for an ideal measure and source accuracy
at required target accuracy for a practical measure.

Related Work

Learning without Forgetting (LwF) (Li and Hoiem 2018) is a
simple but effective continual learning method. An LwF loss
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restricts source task outputs of a new network to be close
to those of a source network using only target task data. In
that work, softmax layers with high temperatures are used to
soften the original output distributions in a sense of knowl-
edge distillation (Hinton, Vinyals, and Dean 2015). Our
method, Residual Continual Learning (ResCL), includes the
LwF method as a special case since we use an LwF loss to
train a combined network. ResCL falls back to LwF if train-
ing is performed on a source network instead of a combined
one with true target labels instead of softened ones.

In Incremental Moment Matching (IMM) (Lee et al.
2017), the posterior distributions of each task and the com-
bined task are approximated as Gaussian distributions. The
moments of the posterior distribution for the combined task
are incrementally matched by mean-IMM or mode-IMM.
Mean-IMM simply averages the weights of the original and
new networks as the minimization of the Kullback–Leibler
divergence between the posterior of the combined task and
the mixture of each task. Mode-IMM merges two networks
with their covariance information to approximate the mode
of the mixture of two Gaussian posteriors. Our method also
uses the combination of two networks as IMM does. The
difference is that the coefficients of the combination in IMM
are determined with a hyperparameter of the mixing ratios of
each task in a framework of Bayesian neural networks, and
there is no additional training for a combined network. As
neural networks are not linear or convex, we cannot be sure
that a combined network works properly without additional
training. In ResCL, weights and combination coefficients are
learnable, so we can ensure that a combined network works
properly.

(Terekhov, Montone, and O’Regan 2015; Rusu et al.
2016) can prevent forgetting perfectly by expanding a net-
work while keeping the entire original network, but they
increase the size of a network. (Kirkpatrick et al. 2017;
Ritter, Botev, and Barber 2018) protect source task perfor-
mance by a quadratic penalty loss where the importance of
each weight is measured by the Fisher information matrix.
However, source data are required to calculate the Fisher in-
formation matrix. (Aljundi et al. 2018) proposes to measure
the importance of a parameter by the magnitude of the gra-
dient, which also requires source data. (Zenke, Poole, and
Ganguli 2017) also defines a quadratic penalty loss designed
with the change in a source task loss over an entire trajec-
tory of parameters during source task training. (Mallya and
Lazebnik 2018) adds multiple tasks to a single network by
iterative pruning and re-training with source data.

Basically, our method uses linear combination of filters,
which has also been studied for multitask or transfer learn-
ing, as in (Rebuffi, Bilen, and Vedaldi 2017) and (Rosen-
feld and Tsotsos 2018) for example. The main purpose of
those methods is to learn multiple networks or parameter
sets across multiple tasks but with maximized parameter
sharing for efficiency, since they focus on multitask or trans-
fer learning. Therefore, when those are applied to sequential
learning, every single task should retain its own network or
parameters. In contrast, our method aims to reduce catas-
trophic forgetting in sequential learning where only a sin-
gle network is allowed to represent whole tasks. In (Rebuffi,

Bilen, and Vedaldi 2017), different BN parameters and 1×1
filters are learned for each task but with remaining param-
eters shared across all the given tasks. So, the proposed so-
lution is only applicable to networks that retain BN by def-
inition. Then, it is unsuitable for cases where BN does not
work properly, for example, when minibatch size cannot be
set large enough due to memory constraints. However, our
solution does not depend on BN or specific network archi-
tecture, thus more general. In (Rosenfeld and Tsotsos 2018),
newly added filters for a target task are learned in the form
of linear combination with existing filters of source tasks.
However, the coefficients necessary for the linear combi-
nation are restricted to binary digits 0 or 1 during training.
Furthermore, the coefficients are shared across all layers in a
network, which could be suboptimal. In contrast, our method
finds a better solution by learning optimal different real co-
efficients for each layer and each filter during training.

Method

Continual learning is essentially to reach a good midpoint
between two tasks. A simple idea is linearly combining each
layer of source and target networks to obtain a middle net-
work between them, where the source network is the original
network that is trained on the source task, and the target net-
work is a fine-tuned network from the original one for the
target task. By combining them, we can obtain a network
that lies between the source and target task solutions. This
basic idea is similar to what IMM (Lee et al. 2017) does,
and we also start from here.

However, the performance of a linearly combined net-
work is not guaranteed, as neural networks are not linear
or convex. Therefore, after two networks are combined, we
have an additional training phase for the combined network
to ensure that it will work properly. Because an additional
training can hurt the source knowledge, the original weights
should be freezed in the combined network. In this paper,
we often call the source network as the original network.

Linear Combination of Two Layers

Suppose that we want to combine two fully connected lay-
ers whose weight matrices are Ws ∈ R

Co×Ci and Wt ∈
R

Co×Ci . For an input x ∈ R
Ci , our combination layer sim-

ply combines two outputs linearly with the combination pa-
rameters αs ∈ R

Co and αt ∈ R
Co as follows:

(�Co +αs) ◦ (Wsx) +αt ◦ (Wtx) , (1)

where �Co
is a Co-dimensional vector with all ones, and ◦

denotes element-wise multiplication. The biases are omitted
for brevity. Note that the combination parameters αs and
αt are vectors with the dimension Co and not scalars; thus,
the combination layer can set a different importance for each
feature. Moreover, αs and αt do not share their values to al-
low the combination layer to freely manipulate two features.
Each combination layer in a network has different values of
αs and αt for the same reason.

In the ResCL framework, Ws is a weight of the source
network, and Wt is that of the target network fine-tuned
to the target task from the source network. Wt is addition-
ally trained to refine its features to be combined well with
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Figure 1: An illustration of our method. Learnable parameters are shown in red. We begin with an original network nets,
which was trained with source data. First, nets is fine-tuned with target data to obtain nett. Each linear block in nets and
nett is combined with a combination layer as in netc. Continual learning on netc is performed with an LwF loss Ls for
preserving performance for the source task and a distillation loss Lt for adapting to the target task. There is also a special
decay loss Ldecay , which is the most important loss to prevent forgetting. DKL(·||·) refers to the Kullback–Leibler divergence
with a softmax temperature of 2. Note that each task has its own last task-specific fully connected layer since source and target
tasks have different class categories in general. Therefore, netc has two different outputs: netc(·; tasks) for a source task and
netc(·; taskt) for a target task.

Ws, whereas Ws is fixed to prevent catastrophic forgetting.
Moreover, the combination parameters are also learned by
backpropagation to optimally mix two features. Therefore,
the learnable parameters in the combined network are Wt

and α = (αs,αt).
One can easily find that the two fully connected layers

and combination layer can be equivalently expressed as one
fully connected layer whose weight is

(
( Co

+αs)
T
Ci

) ◦Ws +
(
αt

T
Ci

) ◦Wt (2)
owing to their linearity. This is the reason why we can call
our method a type of reparameterization; thus, the size of a
network does not increase for inference once training is fin-
ished. Any nonlinear layer such as sigmoid or ReLU should
not be included in the combination, as in Fig. 1 and Fig. 2.
Otherwise, those layers cannot be merged into one layer;
then the network size increases as the number of tasks in-
creases.

Training

There are two Kullback–Leibler divergence losses for train-
ing of the combined network: one for maintaining the source
performance and the other for solving the target task. For the
former loss, we adopt an LwF loss (Li and Hoiem 2018),
which preserves the source information well. That is, the
outputs for the source task are constrained to be similar to
those of the original network. Softmax layers with a temper-
ature of 2 are also used. For the latter loss, the distillation
loss (Hinton, Vinyals, and Dean 2015) from the fine-tuned
network with a temperature of 2 is used for better generaliza-
tion and as a natural counterpart of the LwF loss. Therefore,

the outputs for the target task are constrained to be similar
to those of the fine-tuned network.

One might be wondering why the combination coefficient
of Wsx is parameterized to + αs instead of simply αs

in Equation 1. Since a weight decay loss is widely used as a
regularization term to improve generalization of neural net-
works (Krogh and Hertz 1992), we will also use a weight
decay loss for not only Wt but also α. If we use simply αs

for the combination coefficient of Wsx, then the combined
output is

αs ◦ (Wsx) +αt ◦ (Wtx) . (3)

Now, the source information is lost by the decay loss for αs,
as it causes the coefficient of Wsx to be close to zero. Thus,
it is not a good idea to naively decay the combination coeffi-
cients; therefore, we carefully design the weight decay loss
of combination layers for continual learning. In ResCL, we
set the destination of the decay loss to the original network,
not a zero-weight network. This can be done by parameteriz-
ing the first coefficient of the combination to + αs rather
than just αs, as in Equation 1. With this modification, the
decay loss tends to protect the original weights against the
target distillation loss. We also experimentally found that the
L1 decay loss for α is slightly better than L2.

Although it seems to be a very simple reparameterization,
it is the key feature that allows continual learning with a
significant performance improvement. Actually, this idea is
very similar to that of residual learning (He et al. 2016a).
Residual learning tries to learn the residual of the iden-
tity mapping by reformulating a desirable mapping h(x) to
f(x) + x, where f(x) is a learnable residual function. If
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the identity mapping is desirable, this can be easily learned
by decaying the weights of f(x) to zeros. Similarly, ResCL
tries to learn the residual of the source layer by reparameter-
izing Wx to Wsx+αs◦(Wsx)+αt◦(Wtx). If returning
to the original source network is desirable to recover forget-
ting, it can be done easily with a decay loss λ||(αs,αt)||.

As learned residual functions in a residual network tend to
have small responses (He et al. 2016a), if altering some fea-
ture is not very helpful for a target task, the decay loss for
α will settle that feature near the original feature. Only the
necessary features for solving the target task will have large
deviations from the original features, and the importance of
each feature is automatically learned by the decay loss and
implicitly controlled by the trade-off hyperparameter λ in
Algorithm 1. As this residual-learning-like reparameteriza-
tion and the decay loss on α play a very important role in
our method, we call the proposed continual learning method
as Residual Continual Learning. The entire procedure of the
proposed ResCL method is summarized in Fig. 1 and Algo-
rithm 1.

Algorithm 1: Residual Continual Learning
Input: nets (·;θ∗

s) // given source network
Input: λ // source–target trade-off hyperparameter
Input: (Xt,Yt) // training data of target task
nett (·;θt)← nets (·;θ∗

s) ; // init nett as a copy of nets
θ∗
t ←
argminθt

DKL (Yt||nett (Xt;θt)) +
1
2λdec||θt||22;

// fine-tuning from the source network
Ŷs ← nets (Xt;θ

∗
s) ; // source network outputs for

LwF
Ŷt ← nett (Xt;θ

∗
t ) ; // fine-tuned net outputs for

distillation
(αs,αt)← (−1/2 · �, 1/2 · �) ; // init combination

params
θt ← θ∗

t ; // init θt as fine-tuned weight θ∗
t

netc (·; (αs,θ
∗
s,αt,θt) , task = ·)

← COMBINE (αs, nets (·;θ∗
s) ,αt, nett (·;θt)) ;

// init netc as in Fig. 1 and Fig. 2
(α∗

s,α
∗
t ,θ

∗∗
t )← argminαs,αt,θt

{
DKL(Ŷs||netc (Xt; (αs,θ

∗
s,αt,θt) , task = s))

+DKL(Ŷt||netc (Xt; (αs,θ
∗
s,αt,θt) , task = t))

+λ|| (αs,αt) ||1 + 1
2λdec||θt||22}; // train combined

net
Output: netc (·; (α∗

s,θ
∗
s,α

∗
t ,θ

∗∗
t ) , task = ·)

Convolution and Batch Normalization

An extension of the proposed framework to convolutional
layers is straightforward. Let Ws,Wt ∈ R

Co×Ci×Hk×Wk

be the weight tensors of two convolutional layers and
αs,αt ∈ R

Co be the corresponding combination parame-
ters. Note that combination parameters are shared across the
spatial dimension, in order to take advantage of the structure
of CNNs. Then, the two outputs of the convolutional layers
are combined in the same manner as Equation 1 with convo-
lutions instead of matrix multiplications.

BN(s)

Comb

BN(t)

ReLU

Conv(s) Conv(t)

BN(s) BN(t)

Comb

ReLU

Conv(s) Conv(t)

Comb

Add

BN(s)

ReLU
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Figure 2: Combination of source and target pre-activation
residual units (He et al. 2016b). “Comb” represents a com-
bination layer. Two paths are combined by a combination
layer before every nonlinearity. Learnable layers are shown
in red. In the inference phase, the combined network (c),
which is equivalent to (b) and has the same network size as
(a1) and (a2), is used.

The case of convolutional layers with BN (Ioffe and
Szegedy 2015) must also be considered since BN is widely
used in modern CNNs (Zagoruyko and Komodakis 2016;
Huang et al. 2017; Chollet 2017). A BN layer is quite tricky,
as it has two different functions depending on its phase of
training and inference. BN normalizes an input with the
statistics of the current minibatch in the training phase,
whereas the population statistics, which are not learned by
gradient descent, are used for inference. If training and test
data originate from the same task, it is not a significant issue
because the two statistics would be very similar. However,
it is problematic in continual learning since we are dealing
with multiple different tasks whose distributions are not the
same in general.

Our method can be applied with BN layers in a natural
way. We do not need to worry about changes in the distri-
bution, as each subnetwork has its own BN layer for its own
task. Specifically, the original BN layer (BN(s) in Fig. 2)
should use its population statistics of the source task dur-
ing both the additional training and test phases. Otherwise,
some of the source knowledge is lost, as the combined net-
work cannot see and make use of the original statistics dur-
ing additional training. The two BN and two convolutional
layers with the combination layer can also be merged into
one equivalent convolutional layer after training since a BN
layer is a deterministic linear layer in the inference phase
and convolution is also a linear operation.

Experiment

Maximum Achievable Average Accuracy

We evaluate our method for sequential learning of image
classification tasks and compare it with other methods, in-
cluding fine-tuning, LwF, and Mean-IMM, that do not re-
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Table 1: Maximum achievable average accuracies[%] for each method. Means and standard deviations of four runs. The optimal
trade-off hyperparameters are in parentheses.

Task (Hyperparam.) CIFAR-10→ CIFAR-100 CIFAR-100→ CIFAR-10 CIFAR-10→ SVHN
Joint Training − 80.02± 0.28 79.63± 0.06 93.72± 0.10
Last-layer Fine-tuning − 61.09± 0.34 69.71± 0.33 66.46± 0.53
Fine-tuning − 62.37± 1.06 49.90± 0.37 54.23± 0.40
LwF (Li and Hoiem 2018) λ 77.67± 0.10(20) 76.18± 0.16(21) 68.90± 0.89(20)
Mean-IMM (Lee et al. 2017) α1/α2 73.98± 0.30(2−9) 76.41± 0.19(2−10) 79.91± 1.47(20)
ResCL (Ours) λ/10−4 78.80± 0.17(20) 77.13± 0.12(2−4) 89.49± 0.32(25)

Table 2: Source and target accuracies[%] for each method.

Task CIFAR-10→ CIFAR-100 CIFAR-100→ CIFAR-10 CIFAR-10→ SVHN
source target source target source target

Joint Training 91.70± 0.19 68.34± 0.40 68.75± 0.03 90.51± 0.12 91.93± 0.17 95.51± 0.11
Last-layer Fine-tuning 91.80± 0.14 30.39± 0.62 66.98± 0.25 72.43± 0.48 91.89± 0.14 41.11± 1.06
Fine-tuning 56.01± 2.41 68.74± 0.46 07.14± 0.62 92.67± 0.19 12.49± 0.84 95.96± 0.05
LwF (Li and Hoiem 2018) 87.81± 0.26 67.53± 0.21 63.91± 0.14 88.45± 0.19 43.12± 1.87 94.68± 0.14
Mean-IMM (Lee et al. 2017) 91.24± 0.18 56.72± 0.57 67.42± 0.17 85.41± 0.26 81.29± 2.03 78.53± 1.53
ResCL (Ours) 89.48± 0.04 68.13± 0.32 66.84± 0.39 87.41± 0.32 88.66± 0.56 90.32± 0.23

fer to any source task information for fair comparisons.
Mode-IMM is not compared in the experiment because it
requires the Fisher information matrix, which cannot be ob-
tained without source data. The source and target tasks are
to classify the CIFAR-10, CIFAR-100 (Krizhevsky 2009), or
SVHN (Netzer et al. 2011) dataset. A pre-activation residual
network of 32 layers without bottlenecks (He et al. 2016b)
is used.

For the CIFAR datasets, data augmentation and hyperpa-
rameter settings are the same as those in (He et al. 2016b).
Training images are horizontally flipped with a probabil-
ity of 0.5 and randomly cropped to 32 × 32 from 40 × 40
zero-padded images during training. SGD with a momen-
tum of 0.9, a minibatch size of 128, and a weight decay of
λdec = 0.0001 optimizes networks until 64000 iterations.
Note that this ‘usual’ weight decay loss for θt is different
from the special decay loss for the combination parame-
ters α. The learning rate starts from 0.1 and is multiplied
by 0.1 at 32000 and 48000 iterations. The He’s initialization
method (He et al. 2015) is used to initialize source networks.
Combination parameters (αs,αt) in ResCL are initialized
to (−1/2 · �, 1/2 · �) in order to balance the original and
new features at the early stage of training. For the SVHN
dataset, all settings are the same as above, but the training
data are not augmented.

We evaluate each method by the average accuracy, which
is the average of the source and target accuracies, for three
sequential learning scenarios: CIFAR-10 → CIFAR-100,
CIFAR-100→ CIFAR-10, and CIFAR-10→ SVHN. Since
the source and target tasks have different class categories,
each task has its own last task-specific fully connected layer.
In LwF, the last layer of target task is trained first with
the other weights freezed (warm-up step in (Li and Hoiem
2018)), as in the original paper. For a fair comparison, all
other methods also start with this last-layer fine-tuning step.
Mean-IMM matches the moments of the last-layer fine-

tuning model and LwF model, as in (Lee et al. 2017). ResCL
combines two paths before every nonlinearity, as in Fig. 2.
The last layer for the target task is not reparameterized be-
cause there are no layers for the target task in the original
network.

All continual learning methods should control the trade-
off between source and target performance by their own
trade-off hyperparameters. Since each method has different
approaches and different trade-off hyperparameter defini-
tions, it is not a fair comparison to use just one specific trade-
off hyperparameter setting. Here, we propose to use a fair
measure over different continual learning methods, which
does not depend on hyperparameter definitions, maximum
achievable average accuracy, where the average is taken
over all source tasks a model has learned so far and the cur-
rent target task. We search the optimal trade-off hyperparam-
eters over {20, 2±1, ..., 2±10} for each method to obtain the
maximum achievable average accuracies, where the default
hyperparameter is 20, and a larger hyperparameter means
that the source performance is more strongly protected, for
all methods. By this experimental setting, we can obtain the
true capacity of each method. The results are summarized in
Tables 1 and 2. The performance of the joint training method
is provided as an upper bound.

LwF works in a small range of trade-off hyperparameters
since it directly changes the magnitude of a cross-entropy
loss. As the hyperparameter moves away from its default
value, the balance between the source and target losses is
quickly broken. The optimal trade-off hyperparameters are
almost the same as the default value 20 for LwF. Our method
can use a wider range of the hyperparameter than LwF by
changing the multiplier of the decay loss instead of the
cross-entropy loss. It naturally controls how far the repa-
rameterized network is from the original one without any
modification of the source and target losses.

As a wide range of trade-off hyperparameters works ef-
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Figure 3: The distribution of the statistical parameters (μ
and σ) of all BN layers in one specific network. The black
line is the distribution of the original network, and the red
line is the distribution after the original network is trained
on the target task with LwF.

fectively in ResCL, we can analyze the meaning of the op-
timal λ in Table 1 with the difficulty of each task. First,
the CIFAR-10→ CIFAR-100 scenario can be thought of as
continual learning from an easier task to a harder task be-
cause the CIFAR-10 data have 10 classes to classify and the
CIFAR-100 data have 100 classes. The optimal trade-off hy-
perparameter is the same as the default value, which means
that the default hyperparameter λ = 10−4 can be used for
such coarse-to-fine scenarios. The second scenario, CIFAR-
100→ CIFAR-10, is the converse of the first scenario. The
source task is relatively more difficult than the target task;
thus, there is much informative knowledge in the LwF loss,
and the original network already has good features for the
target task (a target accuracy of 72.43% with the last-layer
fine-tuning model). Therefore, we can pay less attention to
preventing catastrophic forgetting, and the optimal trade-off
hyperparameter is small (1/16 times the default value).

The CIFAR-10→ SVHN case is more challenging. These
two tasks are very different; CIFAR-10 images consist of vi-
sual objects such as dogs and trucks, whereas the classes of
the SVHN dataset are digits. Thus, this scenario is vulner-
able to catastrophic forgetting, and other methods perform
poorly for the source task. However, ResCL still remark-
ably maintains the source knowledge well; therefore, it sig-
nificantly outperforms other methods. The optimal trade-off
hyperparameter is large (32 times the default value), as the
additional training on the target task can easily degrade the
source performance.

The statistical parameter (μ and σ) distribution of all BN
layers in one specific network is shown in Fig. 3 for the LwF
method. The statistics of the two tasks are very different,
even though those tasks are similar. As BN layers contain
statistics of the target task only in LwF, we cannot make use
of the source population statistics even though they are also
an important part of the original network. In contrast, our
method provides BN layers to each task, and further makes
use of the source population statistics during training of a
combined network.

ResCL can also be used for sequential learning of more
than two tasks. In addition to the experiments with the three
scenarios, we evaluate our method for the sequential learn-
ing of the three tasks to demonstrate the scalability of the
proposed method. ResCL still exhibits remarkable perfor-
mance, as indicated in Table 3. In addition, there is no dif-

Table 3: Maximum achievable average accuracies[%] for
each method. The second column represents sequential
learning on three tasks.

Source task CIFAR-10→ CIFAR-100 ImageNet
Target task SVHN CUB
Network architecture preResNet AlexNet VGG
Last-layer Fine-tuning 68.76 50.51 64.78
Fine-tuning 35.30 46.43 64.54
LwF (Li and Hoiem 2018) 58.44 48.47 68.82
Mean-IMM (Lee et al. 2017) − 52.12 67.88
ResCL (Ours) 78.53 53.51 68.95

trade-off hyperparameter

av
er

ag
e 

ac
cu

ra
cy

trade-off hyperparameter

ta
rg

et
 a

cc
ur

ac
y

trade-off hyperparameter

so
ur

ce
 a

cc
ur

ac
y

required
target

accuracy

(a) (b1) (b2)

Figure 4: As each method has different trade-off hyperpa-
rameter definitions, it is not a fair comparison to use just one
specific trade-off hyperparameter setting. (a) One of the fair
measures is the maximum achievable average accuracy (cir-
cled points). (b1) In practice, the trade-off hyperparameter
is adjusted using the target validation set until the required
target accuracy is reached (dotted circled points). (b2) The
models with those hyperparameters are tested once on the
source test set.

ficulty in applying the ResCL method to other CNN mod-
els or large scale datasets. Table 3 summarizes the results
for sequential learning from the ILSVRC2012 dataset (Rus-
sakovsky et al. 2015) to the Caltech-UCSD Birds-200-
2011 dataset (Wah et al. 2011) with AlexNet (Krizhevsky,
Sutskever, and Hinton 2012) and VGG (Simonyan and Zis-
serman 2014) architecture.

Source Accuracy at Required Target Accuracy

The maximum achievable average accuracy is a good fair
measure that does not depend on trade-off hyperparame-
ter definitions. However, we cannot achieve this maximum
average accuracy in practice since there are no available
source data for searching the optimal trade-off hyperparam-
eter. This ideal measure gives the true capacity of a continual
learning method, but it is not a practical one.

In practical applications, we can set a lower limit of the
target accuracy that a model has to achieve. Then, the trade-
off hyperparameter can still be effectively adjusted using tar-
get validation data only, which are available, until the re-
quired target accuracy is reached. After finding the model
that meets the required target accuracy, the model is tested
once on the source test set (Fig. 4). We set the required tar-
get accuracy to 95% of that of the fine-tuning model since
the fine-tuning model is trained to solve only the target task
well. This evaluation setting gives another fair measure, the
source accuracy at required target accuracy, which can be
determined in practice. The results with this measure are
summarized in Tables 4 and 5.
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Table 4: Source accuracies at required target accuracy[%] of
each method.

Source task CIFAR-10 CIFAR-100 CIFAR-10
Target task CIFAR-100 CIFAR-10 SVHN
Required target accuracy 65.30 88.04 91.17
(w.r.t. fine-tuning model) (95%) (95%) (95%)

LwF (Li and Hoiem 2018) 89.59 63.91 38.08
ResCL (Ours) 90.65 68.13 76.83

Table 5: Source accuracies at required target accuracy[%]
of each method. The second column represents sequential
learning on three tasks.

Source task CIFAR-10→ CIFAR-100 ImageNet
Target task SVHN CUB
Network architecture preResNet AlexNet VGG
Required target accuracy 90.07 50.83 67.04
(w.r.t. fine-tuning model) (95%) (95%) (95%)

LwF (Li and Hoiem 2018) 41.84 40.17 66.55
Mean-IMM (Lee et al. 2017) − 52.33 68.48
ResCL (Ours) 53.24 53.91 69.73

Trade-off Hyperparameter λ and Combination
Parameter α

In this section, we investigate whether the hyperparameter
λ, which is the multiplier of the decay loss for the combi-
nation parameter α, controls the source–target performance
trade-off reasonably. For the CIFAR-10→ SVHN case, the
source, target, and average accuracies with respect to λ
are shown in Fig. 5. As shown in Fig. 5, λ acts as a rea-
sonable trade-off hyperparameter. The source accuracy in-
creases with λ and becomes saturated, whereas the target
accuracy is a decreasing function of λ. As a result, the aver-
age accuracy graph has a concave shape.

By probing the magnitude of α, we can observe how
much the features was changed to solve the target task. Fig. 6
shows the mean absolute value of the elements of combina-
tion parameters with respect to the depth of their layers. For
all scenarios in Fig. 6, the magnitude of the changes tends
to increase with the depth. In deep convolutional neural net-
works, it is known that shallow layers learn basic features
such as colors, edges, and corners, whereas deep layers learn
class-specific features such as dog faces and bird legs (Zeiler
and Fergus 2014). Thus, shallow layers do not need to be
changed much since their features are already common in
both tasks, but deep layers have large deviations from the
original ones since the classes of the target task are different
from those of the source task.

Conclusion

We have proposed a novel continual learning method,
ResCL, which exhibits the state-of-the-art performance for
continual learning of image classification tasks. It prevents
catastrophic forgetting, even if the source and target tasks
are very different. ResCL can be used in practice, as no in-
formation about the source task is required, except the orig-
inal network, and the size of a network does not increase in
the inference phase. Moreover, any general CNN architec-
tures can be adopted since our method is designed to handle

Figure 5: Source, target, and average accuracies with re-
spect to the trade-off hyperparameter λ in the CIFAR-10→
SVHN scenario.

Figure 6: Mean absolute value of the elements of the combi-
nation parameter α with respect to the depth.

convolution and BN layers.
In this study, we limited the scope of the task to sequential

learning of image classification with CNNs. However, the
ResCL method can be naturally extended to support other
types of neural networks, such as recurrent neural networks,
since it simply linearly combines the outputs of two layers.
We leave the application of the ResCL method to other fields
for future work.
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