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Abstract

Prior normalization methods rely on affine transformations
to produce arbitrary image style transfers, of which the pa-
rameters are computed in a pre-defined way. Such manually-
defined nature eventually results in the high-cost and shared
encoders for both style and content encoding, making style
transfer systems cumbersome to be deployed in resource-
constrained environments like on the mobile-terminal side. In
this paper, we propose a new and generalized normalization
module, termed as Dynamic Instance Normalization (DIN),
that allows for flexible and more efficient arbitrary style trans-
fers. Comprising an instance normalization and a dynamic
convolution, DIN encodes a style image into learnable con-
volution parameters, upon which the content image is styl-
ized. Unlike conventional methods that use shared complex
encoders to encode content and style, the proposed DIN intro-
duces a sophisticated style encoder, yet comes with a compact
and lightweight content encoder for fast inference. Experi-
mental results demonstrate that the proposed approach yields
very encouraging results on challenging style patterns and,
to our best knowledge, for the first time enables an arbitrary
style transfer using MobileNet-based lightweight architec-
ture, leading to a reduction factor of more than twenty in com-
putational cost as compared to existing approaches. Further-
more, the proposed DIN provides flexible support for state-
of-the-art convolutional operations, and thus triggers novel
functionalities, such as uniform-stroke placement for non-
natural images and automatic spatial-stroke control.

Introduction

Image stylization has been a long-standing research topic.
It has been studied in the domain of computer graphics, or
more specifically, the area of Non-Photorealistic Render-
ing (NPR) (Gooch and Gooch 2001; Rosin and Collomosse
2012). In the field of computer vision, image stylization is
studied as a generalized problem of texture synthesis (Efros
and Leung 1999). Built upon the recent progress in visual
texture modelling (Gatys, Ecker, and Bethge 2015) and im-
age reconstruction (Mahendran and Vedaldi 2015), Gatys et
al. (Gatys, Ecker, and Bethge 2016) propose to exploit Con-
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(a) Content (b) Chen et al. (c) Huang et al. (d) Ours (VGG)

(e) Style (f) Li et al. (g) Sheng et al. (h) Ours (MobileNet)

Figure 1: Existing ASPM methods either barely transfer
style to the target (Chen et al., Huang et al.), or produce
distorted style patterns (Li et al., Sheng et al.) while rely-
ing on high-cost encoders. By contrast, the proposed DIN
achieves superior performance using the same architecture
(Ours (VGG)), and for the first time endows a much smaller
lightweight network to transfer arbitrary styles (Ours (Mo-
bileNet)).

volutional Neural Networks (CNNs) to render a content im-
age in different styles, pioneering a new field called Neural
Style Transfer (NST) (Jing et al. 2019).

The inspiring work of Gatys et al. is, however, built upon
an iterative image optimization in the pixel space, which
turns out to be computationally expensive due to the on-
line optimization. To address this efficiency issue, model-
optimization-based NST algorithms are proposed, which
optimize feed-forward models in an offline training man-
ner. The earliest model-optimization-based NST algorithms,
namely Per-Style-Per-Model (PSPM), train separate style-
specific models for each particular style, and are there-
fore burdensome to be adopted for real-world applications.
(Johnson, Alahi, and Fei-Fei 2016; Ulyanov et al. 2016;
Li and Wand 2016). To address this issue, Multiple-Style-
Per-Model (MSPM) algorithms are proposed by incorporat-
ing multiple styles into one single model (Zhang and Dana
2017; Chen et al. 2017; Li et al. 2017b; Dumoulin, Shlens,
and Kudlur 2017). Unfortunately, MSPM also suffers from

4369



the inflexible binding between specific styles and a single
model.

More recently, Arbitrary-Style-Per-Model (ASPM) algo-
rithms are proposed to solve the aforementioned dilemma
by exploiting one single model to transfer arbitrary new
styles (Chen and Schmidt 2016; Huang and Belongie 2017;
Sheng et al. 2018; Li et al. 2017c). Despite the great
progress, ASPM algorithms still have limitations in han-
dling complex style patterns and producing fine strokes.
Moreover, they rely on high-cost and shared encoders for
both style and content encoding, thus making the network
cumbersome to be deployed on the mobile-terminal side.
In this paper, we propose a novel module, termed as Dy-
namic Instance Normalization (DIN), that allows for flexi-
ble and more efficient arbitrary style transfers. Unlike ex-
isting approaches that require a pre-defined way to compute
parameters for their affine transformations for arbitrary style
transfer, the proposed DIN introduces a generalized dynamic
convolutional transformation, of which the parameters are
learned adaptively for arbitrary stylization. In this way, DIN
makes it possible to exploit a sophisticated style encoder to
express complex and rich style patterns, and meanwhile pre-
serves a compact and lightweight content encoder for fast
inference. With the proposed DIN layer, we are able to con-
duct arbitrary style transfer, to our best knowledge, for the
first time on a compact MobileNet-based architecture, re-
sulting in plausible results with much lighter computational
costs as compared to the state-of-the-art approaches. Fur-
thermore, DIN supports various convolutional operations,
and therefore enables novel transfer functionalities including
automatic spatial-stroke control and uniform-stroke place-
ment for non-natural images.

The proposed approach delivers gratifying visual results,
especially for finer strokes and sharper details. An example
that compares the visualizations of our approach and those
of other ASPM methods is shown in Fig. 1, where the goal
is to transfer the artistic style of a painting into a photo of
an owl. In the stylized results of Chen et al. and Huang et
al. (Fig. 1(b) and (c)), the target style (Fig. 1(e)) is not well
reflected, since few style patterns are transferred. The results
of Li et al. and Sheng et al. (Fig. 1(f) and (g)), on the other
hand, are prone to distorted patterns and lack sharp details
and fine strokes. By contrast, the proposed method is able
to parse the challenging style patterns, like the wall brick
patterns in Fig. 1(e), using the same architecture (Fig. 1(d)),
and further for the first time enables arbitrary style transfers
using lightweight MobileNet-based architecture (Fig. 1(h)).
In sum, our contribution is an innovative dynamic instance
normalization (DIN) layer that allows for more efficient and
flexible arbitrary style transfers with favorable visual qual-
ity in generating challenging style patterns. This is achieved
via a dynamic convolutional transformation with an elabo-
rate style encoder and a lightweight content encoder. Exper-
imental results demonstrate that the proposed method yields
results superior to the state of the art both quantitatively and
qualitatively, and meanwhile leads to a significant reduction
of computation cost, at a factor of twenty.

Related Work

The goal of ASPM style transfer algorithms is to exploit one
single trained model to migrate arbitrary artistic styles to a
given photo with only one forward pass. There are two cat-
egories of ASPM algorithms in the literature, namely Non-
Parametric ASPM with Markov Random Fields and Para-
metric ASPM with Summary Statistics.

The idea of non-parametric ASPM is to transfer artis-
tic styles based on local patches. The first non-parametric
ASPM, proposed in (Chen and Schmidt 2016), divides the
content and style activations in the VGG feature space into
a set of activation patches, and the target features are then
obtained by mapping and swapping each content activation
patch with the most similar style patch. By feeding the tar-
get features into the trained decoder, the stylized result can
be produced. Another non-parametric ASPM in (Gu et al.
2018) further adds a constraint upon the algorithm of Chen
et al., i.e., each patch is required to be mapped only once
as possible as it can. In this way, their algorithm preserves
better global style appearance as compared to (Chen and
Schmidt 2016). Non-parametric ASPM enjoys favorable vi-
sual quality but suffers from the heavy computation burden
brought by the mapping and swapping procedure.

Parametric ASPM improves the efficiency of non-
parametric methods via global summary statistics matching.
Specifically, (Huang and Belongie 2017) designs a novel
Adaptive Instance Normalization (AdaIN) layer to explicitly
transfer the channel-wise mean and variance statistics be-
tween style and content feature activations. Following their
work, (Sheng et al. 2018) further extends AdaIN to multi-
scale stylization for better visual quality.

Another line of parametric ASPM is based on Whitening
Instance Normalization (WIN) proposed by (Li et al. 2017c).
They find that whitening normalization in the VGG feature
space can remove the style-related information and mean-
while preserve content structures of input images. Therefore,
they first use whitening instance normalization to filter the
style out of the content image, and then apply the coloring
transforms to transfer the desired style patterns. Their pro-
posed WIN-based approach successfully transfers arbitrary
styles in a learning free manner. However, their whitening
and coloring transforms is realized by matrix computations,
which are computationally expensive. To address this issue,
(Li et al. 2019) proposes to learn feed-forward networks to
replace the matrix computations in (Li et al. 2017c).

These state-of-the-art ASPM algorithms still suffer from
one major flaw: they all require high-cost VGG encoders.
The one exception is the algorithm in (Shen, Yan, and Zeng
2018), which generates a whole 14-layer style-specific styl-
ization network for every style, but leading to expensive
cost of extra memory. Unlike these existing methods, our
approach gets rid of the high-cost encoders and expensive
memory, yet with superior quality in challenging styles.

Proposed Method

Revisiting Normalization Methods in NST

The development of NST is very related to the emergence of
several novel normalization methods. Here, we revisit and
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analyze existing normalization methods in the field of NST,
which motivate the inspiration of the proposed approach.

Normalization for PSPM. The first emerged normaliza-
tion method in NST, namely instance normalization (IN)
or contrast normalization (Ulyanov, Vedaldi, and Lempit-
sky 2016), can be defined as follows:

IN(Fc) =
Fc − μ(Fc)

σ(Fc)
, (1)

where Fc denotes the feature activation given the con-
tent image Ic as input. IN is first and primarily adopted
in PSPM algorithms. It has been demonstrated that com-
pared with batch normalization, IN is capable of better vi-
sual performance (Ulyanov, Vedaldi, and Lempitsky 2016;
2017) and can also achieve faster and better convergence
(Huang and Belongie 2017).

Normalization for MSPM. Built upon the idea of IN, Du-
moulin et al. further propose conditional instance normal-
ization (CIN) (Dumoulin, Shlens, and Kudlur 2017), which
is to scale and shift the activations in IN layer:

CIN(Fc,Fs) = γFs × IN(Fc) + βFs , (2)

where Fs represents the feature activations of the style im-
age Is, and γFs

and βFs
are affine parameters corresponding

to different styles. Dumoulin et al. find that by only chang-
ing learned γ and β in CIN layers with different style im-
ages, a single network can transfer multiple styles. Their
proposed CIN is the earliest MSPM algorithm, and mean-
while achieves state-of-the-art performance even now.

Normalization for ASPM. Inspired by the success of CIN,
Huang et al. propose to use adaptive affine parameters for
arbitrary style transfer, through a novel adaptive instance
normalization (AdaIN) layer (Huang and Belongie 2017).
However, their “adaptive” affine parameters are computed in
a manually defined manner, i.e., simply using the channel-
wise mean μ and variance σ of style features, the most basic
statistics, as the affine parameters in AdaIN layer. Their pro-
posed AdaIN can be formulated as follows:

AdaIN(Fc,Fs) = σ(Fs)× IN(Fc) + μ(Fs). (3)

The intuition behind AdaIN is that the mean of VGG fea-
ture activations could encode different types of brushstrokes
in a certain style, while the variance of the same feature acti-
vations could encode the amount of subtle style information,
as explained in (Huang and Belongie 2017). Their algorithm
achieves a reasonable performance in arbitrary image styl-
ization. However, we believe that it is suboptimal to com-
pute these “adaptive” affine parameters in such a manually
defined way, thus leaving room for improvement.

More importantly, we find two implicit requirements for
the favorable performance of AdaIN in arbitrary stylization:
1) The content and style encoders for producing Fc and Fs

in Eq. 3 should be kept the same;
2) The network architecture of the encoders should be com-
plex enough to extract high-level encoded features, like the
VGG network.

Content & Style Shared VGG Enc Different VGG Enc Shared Smaller Enc

Figure 2: Stylization results of using shared VGG encoders
(2nd column), different VGG encoders (3rd column) and
shared but much smaller encoders (4th column) for produc-
ing separate content and style features in AdaIN layer. Enc
represents encoders.

To validate our first point, we show the comparison re-
sults of using shared VGG encoders (Fig. 2, 2nd column)
and using different VGG encoders (Fig. 2, 3rd column) for
producing Fc and Fs. The results of using different VGG
encoders are generated by setting the original style encoder
in (Huang and Belongie 2017) as trainable while the content
VGG encoder remains unchanged. Other experimental set-
tings remain the same. The results with different encoders
(Fig. 2, 3rd column), as can be observed, are inferior in vi-
sual quality with unexpected patterns, primarily because Fc

and Fs are no longer in the same feature space.
Also, in the 4th column of Fig. 2, we try to use a smaller

network architecture (Johnson, Alahi, and Fei-Fei 2016) to
replace the original VGG encoders of AdaIN. In particular,
the content and style encoders are shared, like the 2nd col-
umn in Fig. 2. The visual results of smaller encoders, as can
be observed, are less appealing with many artifacts, which
is consistent with our second point. We believe that the rea-
son is: the way of manually defining the affine parameters as
feature mean and variance in AdaIN needs a more meaning-
ful high-level feature representation, which requires the en-
coder to be deep enough. This point is also partly observed
in (Shen, Yan, and Zeng 2018).

These two implicit requirements reveal another major
flaw of AdaIN: neither of the content and style encoder
can be reduced to a lightweight one, which makes the net-
work cumbersome for deployment in resource-constrained
environments. Whitening Instance Normalization (WIN), an-
other group of ASPM, also has this issue, since whitening
and coloring transforms also need meaningful features, as
explained in related work.

Dynamic Instance Normalization

To address the aforementioned limitations in existing ASPM
algorithms, we propose a new and generalized Dynamic In-
stance Normalization (DIN) layer for arbitrary image styl-
ization. Instead of manually defining the way to compute
the affine parameters so as to align the mean and variance,
the simplest statistics, between content and style features for
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Figure 3: DIN layer consists of an instance normalization
and a dynamic convolutional operation. Here, the convolu-
tion types include but are not limited to standard convolu-
tion, deformable convolution, and groupwise convolution.

arbitrary style transfer, we introduce a more generalized dy-
namic convolutional transformation, of which the parame-
ters are adaptively changed in a learnable manner according
to different styles, leading to a more accurate alignment of
the real complex statistics of style features.

Given a pair of content image Ic and style image Is as
input, the proposed DIN layer can be modelled as:

DIN(Fc,Fs) = f [Fs, IN(Fc)], (4)

where Fc and Fs are the corresponding feature representa-
tions of Ic and Is, and f is a dynamic convolutional opera-
tion (Jia et al. 2016). Unlike standard convolutions of which
the weight and bias are model parameters, in our dynamic
convolution f , the weight and bias are dynamically gener-
ated by encoding different input style images.

Fig. 3 illustrates the basic structure of the proposed DIN,
comprising an instance normalization, like previous CIN
(Eq. 2) and AdaIN (Eq. 3), and a dynamic convolution, of
which the parameters are adaptively changed by forwarding
different input styles to separate weight and bias networks.
In this way, the proposed DIN can be regarded to encode
a given style image into learnable convolutional parameters
via a sophisticated style encoder, and the content image is
then stylized by the dynamic convolutional transformation.
The weight and bias networks consist of two convolutional
and adaptive pooling operations for handling arbitrary input
sizes, of which the output size is set according to the type
and hyperparameters of the dynamic convolution.

Compared with prior normalization methods, first, the
proposed DIN model in Eq. 4 is much more generalized, in-
cluding all the aforementioned existing normalization meth-
ods as special cases. Specifically, IN in Eq. 1 can be treated
as a special case of our model in Eq. 4 where the weight
and bias of f are set to 0 and 1, respectively. CIN in Eq. 1
corresponds to the case where both of the weight and bias
in f are scalars. AdaIN in Eq. 3 is also a special case of the
proposed DIN when the channel-wise variance and mean of
style features are manually set as the weight and bias of f .
The proposed DIN therefore can be treated as a generalized

framework to normalization, under which existing normal-
ization methods are taken as specific realizations, allowing
for a larger search space for better optimized solutions and
convergence.

Second, and more importantly, the proposed DIN does not
have the aforementioned requirement of complex and shared
encoders in previous ASPM methods, since we do not need
to align the mean and variance of meaningful feature activa-
tions between content and style for stylization, thanks to our
dynamic convolutional transformation. By contrast, the pro-
posed approach enables a more sophisticated style encoder
with dynamic convolution, so as to encode rich and complex
style patterns adequately, yet using a more lightweight con-
tent encoder for faster inference, since the style-specific pa-
rameters for known styles can be stored in advance. As a re-
sult, the proposed DIN yields superior results in transferring
challenging style patterns and fine strokes, and meanwhile
conduct arbitrary stylizations with an over 20× reduction in
computation costs, as compared with the state of the art.

Third, the proposed DIN provides flexible support for a
variety of convolutional operations, by simply changing the
type of the dynamic convolution in Fig. 3. In particular,
by incorporating some state-of-the-art convolutional oper-
ations, the proposed DIN is able to create novel function-
alities in stylization. Here, we explain two variants of the
proposed DIN as examples, which are deformable DIN and
spatially-adaptive DIN.
1) Deformable Dynamic Instance Normalization. By us-
ing the deformable convolutional operation (Dai et al. 2017)
for f , our algorithm achieves the first automatic spatial-
stroke control in arbitrary style transfers. In deformable con-
volutions, the receptive fields and sampling locations can
be adaptively adjusted according to the foreground objects’
shape and scale. The deformable dynamic convolutional ker-
nel, therefore, obtains the ability to stylize images in an
attention-aware manner. For foreground and background ob-
jects, the deformable dynamic convolutional kernel would
use different strokes according to the visual attention. As
compared to existing approaches that randomly place differ-
ent strokes across the whole image, the achieved automatic
spatial-stroke control makes AI-created art much closer to
human-created art.
2) Spatially-Adaptive Dynamic Instance Normalization.
Prior ASPM algorithms based on IN suffer from another is-
sue: They cannot generate proper strokes for uniform pixel
areas of the input content image (Huang et al. 2018). The
reason is that the convolutional output of the uniform pixel
areas also has uniform values. After normalizing these uni-
form values through the widely adopted IN layer, the out-
put activation would become all zeros, thereby preventing
the proper stroke generations in the corresponding area. This
limitation is especially serious for hand-crafted non-natural
content images, where the uniform pixel areas are quite com-
mon. The issue can be addressed by setting the kernel size
of f in the proposed DIN as the input feature map size, re-
sulting in a special spatially-adaptive convolution similar to
the operation used in (Park et al. 2019). In this way, the acti-
vation values for uniform pixel areas would not be uniform,
leading to proper stroke generations in corresponding areas.
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Figure 4: Network architecture of the proposed hierarchical lightweight arbitrary style transfer network based on MobileNetV1.
DIN represents the proposed dynamic instance normalization layer as depicted in Fig. 3.

An Application of Dynamic Instance Normalization

We introduce here one major application of the proposed
DIN in lightweight arbitrary style transfers for deployment
in mobile and embedded devices. In particular, with the
proposed DIN layer, we build the first MobileNet-based
lightweight arbitrary stylization network in the literature,
based on depthwise separable convolutions in MobileNetV1
(Howard et al. 2017).

Fig. 4 shows the proposed MobileNet-based network ar-
chitecture, which mainly consists of three modules: image
encoder, dynamic instance normalization layer and image
decoder. The first module, image encoder, comprises one
standard stride-1 convolutional layer, two stride-2 depthwise
separable convolutional blocks and two stride-1 residual lay-
ers, inspired by the network design in (Johnson, Alahi, and
Fei-Fei 2016). The image decoder is symmetric with the en-
coder, but with the pooling layers replaced by bilinear up-
sampling layers. In particular, the intermediate feature maps
of the image decoder receive hierarchical normalized fea-
tures from several separate DIN layers for additions.

The idea of this hierarchical DIN design comes from the
traditional image processing algorithms, where images are
generally decomposed hierarchically and each hierarchical
level contains image information of a specific level. Since
the features from a deep network also have a similar hier-
archical structure, we follow and apply this idea in our net-
work design. By hierarchically normalizing different levels
of feature representations, the proposed DIN layers intro-
duce multi-level style information for arbitrary style trans-
fers. Although the single-level stylization with one single
DIN layer also works in our experiment, the proposed hier-
archical multi-level stylization can generate different scales
of style elements better, and meanwhile preserve more con-
tent structures. More detailed architecture designs of the pro-
posed network can be found in the supplementary material.

Experiments

Implementation Details

By default, the filter size of the proposed DIN layer is set to
1 × 1, considering the computational cost. We use the per-
ceptual loss proposed in (Johnson, Alahi, and Fei-Fei 2016)

as our content loss, and the BN-statistic loss proposed in (Li
et al. 2017a) as our style loss, which are widely adopted in
NST. Similar to prior works (Gatys, Ecker, and Bethge 2016;
Huang and Belongie 2017; Jing et al. 2018), we use a pre-
trained VGG-19 as our loss network. The content loss is
computed at layer {relu4 1}, while the style loss is com-
puted at layer {relu1 1, relu2 1, relu3 1, relu4 1} of the
VGG network. During training, we adopt the Adam opti-
mizer (Kingma and Ba 2015). The learning rates for both
the image encoder and decoder are set to 0.0001. The weight
and bias networks in DIN layers are set to have a 10× learn-
ing rate for faster convergence. The training takes roughly
one day on an NVIDIA Tesla V100 GPU.

Datasets

Our network is trained on 82, 783 content images from Mi-
crosoft COCO dataset (Lin et al. 2014), and 79, 433 style im-
ages from WikiArt (Nichol 2016). For inference, since there
are no standard datasets in the current field of NST, we try
to build here a new public testing dataset that contains diver-
sified content and style images for evaluations. Specifically,
we collect forty content images from flickr.com, containing
roughly equivalent numbers of four categories: still life pho-
tos, portrait photos, animal photos, and landscape photos.
For the style images, we select eight styles from Google Arts
& Culture, including abstract, cubism, impressionism, sur-
realism, futurism, contemporary and expressionism. All the
testing images are not used in training. The proposed testing
dataset can be found in the supplementary material, which
will also be publicly available.

Qualitative Evaluation

Fig. 5 demonstrates the qualitative results of the proposed
DIN and other state-of-the-art ASPM algorithms (Li et al.
2017c; Huang and Belongie 2017; Sheng et al. 2018), which
also use one single model for arbitrary style transfers. The
comparison results are produced by using the official im-
plementations with the default settings provided by the au-
thors. All the testing content and style images are not used
in training. In the last column of Fig. 5, we also produce
the corresponding stylization results by using the popular
PSPM algorithm of (Johnson, Alahi, and Fei-Fei 2016) as
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Style Content Ours (VGG) Ours (MobileNet) Li et al. Huang et al. Sheng et al. Johnson et al.

Figure 5: Qualitative results of our proposed ASPM stylization algorithm and other methods. All the testing content and style
images are not used in training. Addition experimental results can be found in the supplementary material.

Content & Style Standard DIN Deformable DIN

Figure 6: Comparative results of the standard DIN and one
of its variants, deformable DIN.

a gold standard, which trains separate style-specific models
for different styles. In particular, to validate the effective-
ness of the proposed DIN layer, we produce both the results
of using the same VGG encoder as other ASPM algorithms
(Ours (VGG)), and also the results of the proposed hierar-
chical MobileNet-based network (Ours (MobileNet)), which
is about twenty times smaller than the VGG encoder.

The algorithm of Li et al., as shown in Fig. 5, is not
good at generating sharp details and fine strokes, due to its
learning-free manner. Their results generally have distorted
style patterns, e.g., the background clutters in the 5th col-
umn of Fig. 5. By contrast, the algorithm of Huang et al.
generates finer strokes; however, their algorithm is not ef-
fective at handling challenging style patterns, which is espe-

Table 1: Computation complexities (GFLOPs) of different
network architectures with input size of 512× 512.

Methods
Complexity

Encoder Decoder

Johnson et al. 14.16 19.59
Li et al. 203.42 203.10
Huang et al. 63.44 63.36
Sheng et al. 63.44 63.36
Li and Liu et al. 63.44 63.36
Ours (MobileNet) 3.62 3.72

cially obvious in the 1st row, 6th column of Fig. 5, where
very few style patterns are transferred. Also, their results
have some similar repeated texture patterns among different
styles, which might be caused by the suboptimal manually
defined way for calculating parameters in AdaIN layer. The
results of Sheng et al. also suffer from the issue of distorted
patterns and lacking details. By contrast, with the same VGG
encoder, our proposed DIN demonstrates superior perfor-
mance in transferring challenging style patterns and mean-
while producing finer details (Fig. 5, 3rd column). Even if the
encoder is reduced by a factor of twenty in complexity, the
proposed DIN still achieves comparable quality (Fig. 5, 4th

column) to the gold-standard PSPM algorithm of Johnson et
al. (Fig. 5, 8th column).

Also, we show in Fig. 6 and Fig. 7 the results of the
two aforementioned variants of the proposed DIN, respec-
tively. Compared with standard DIN that uses standard con-
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Content & Style AdaIN Standard DIN Spatially-adaptive DIN

Figure 7: Comparative results of non-natural images pro-
duced by our standard DIN and the proposed spatially-
adaptive DIN.

Figure 8: Comparing the training curves of the proposed
DIN and AdaIN with the lightweight network architecture.

volutions, the proposed deformable DIN achieves automatic
spatial-stroke control according to the visual attention, thus
avoiding random stroke placement for fore- and background
objects (e.g., black and red strokes in the 2nd column of
Fig. 6). The other variant, spatially-adaptive DIN, can gen-
erate proper strokes for uniform pixel areas in non-natural
images, as shown in the last column of Fig. 7.

Quantitative Evaluation

Tab. 1 shows the comparison results among different archi-
tectures in terms of computation complexity, i.e., the number
of floating-point operations. Our proposed MobileNet-based
network architecture outperforms other arbitrary stylization
networks by a large margin in efficiency, even having much
less computational cost than the PSPM network of (Johnson,
Alahi, and Fei-Fei 2016). In particular, the additional weight
and bias generators in our architecture bring little extra cost,
i.e., only 19.97MFLOPs given 512× 512 input.

Also, to demonstrate the proposed DIN can lead to a better
optimization, we show in Fig. 8 the quantitative comparison
results in terms of training curves. Our proposed DIN, as can
be noticed, achieves faster and better convergence under the
same settings.

Ablation Study

To validate the proposed lightweight architecture in Fig. 4,
we perform extensive ablation studies and demonstrate the

(a) Content & Style (b) AdaIN (c) Standard Conv (d) Depthwise Conv

(e) Content & Style (f) AdaIN (g) Single-level DIN (h) Hierarchical DIN

Figure 9: Results obtained using (c) standard convolutions,
(d) depthwise convolutions, (g) single-level DIN, and (h) hi-
erarchical DIN in the network architecture of Fig. 4, respec-
tively.

corresponding results in Fig. 9. The first row of Fig. 9 shows
the stylization results of using standard convolutions and
depthwise separable convolutions in our network architec-
ture. Despite the lower computational complexity, the visual
quality using depthwise separable convolutions is still com-
parable to that using standard convolutions. In the second
row of Fig. 9, we compare the results of using one single
DIN layer and multiple hierarchical DIN layers depicted in
Fig. 4. Our hierarchical design preserves finer structures of
the input image, as can be observed in the human face of
Fig. 9(h). Additional ablation studies including varying ker-
nel sizes can be found in the supplementary material.

Discussions and Conclusions

In this paper, we introduce a novel dynamic instance nor-
malization layer (DIN) for flexible and more efficient arbi-
trary style transfers. The proposed DIN allows for the use of
an elaborate style encoder to encode rich style patterns and a
lightweight content encoder for improved efficiency, thereby
resolving the dilemma of redundant and shared encoders in
previous methods. Experimental results demonstrate that the
proposed approach achieves favorable performance against
the state of the art, especially in transferring challenging
style patterns while preserving a very light computational
cost. In addition, by incorporating state-of-the-art convolu-
tional operations, the proposed DIN is able to create novel
effects in arbitrary style transfers, such as automatic spatial-
stroke control.

In our future work, we would like to explore the use
of DIN in other computer vision tasks beyond style trans-
fer (Huang et al. 2018; Wang, Li, and Tao 2011; Dundar et
al. 2018; Wang et al. 2014; Liu et al. 2019), as the proposed
DIN can readily replace other normalization layers like CIN
and AdaIN. In particular, we would like to introduce DIN to
the context of domain adaption (Dundar et al. 2018), since
style transfer is intrinsically a domain-adaption task (Li et
al. 2017a; 2019).
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