The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Fast and Deep Graph Neural Networks

Claudio Gallicchio, Alessio Micheli
Department of Computer Science, University of Pisa
Largo B. Pontecorvo, 3. 56127 Pisa, Italy
{gallicch, micheli} @di.unipi.it

Abstract

We address the efficiency issue for the construction of a deep
graph neural network (GNN). The approach exploits the idea
of representing each input graph as a fixed point of a dynami-
cal system (implemented through a recurrent neural network),
and leverages a deep architectural organization of the recur-
rent units. Efficiency is gained by many aspects, including the
use of small and very sparse networks, where the weights of
the recurrent units are left untrained under the stability condi-
tion introduced in this work. This can be viewed as a way to
study the intrinsic power of the architecture of a deep GNN,
and also to provide insights for the set-up of more complex
fully-trained models. Through experimental results, we show
that even without training of the recurrent connections, the ar-
chitecture of small deep GNN is surprisingly able to achieve
or improve the state-of-the-art performance on a significant
set of tasks in the field of graphs classification.

1 Introduction

Graphs are relevant data structures that provide an useful ab-
straction for many kind of real data, ranging from molecular
data to social and biological networks (just to mention the
most noteworthy cases), and for all the cases characterized
by data with relationships. The direct treatment of this kind
of data allows a Machine Learning (ML) system to consider
the vector patterns, which characterize the standard flat do-
main, and the relationships among them, respecting in such a
way the inherent nature of the underlying structured domain.

It is not surprising, then, that there is a long tradition of
studies for the processing of structured data in ML, start-
ing for the Neural Networks (NN) since the ’90s, up to
current increasing interest in the field of deep learning for
graphs. Among the first NN approaches we can mention the
Recursive Neural Network (RecNN) models for tree struc-
tured data in (Sperduti and Starita 1997; Frasconi, Gori, and
Sperduti 1998), and more recently in (Socher et al. 2011;
2013), which have been progressively extended to directed
acyclic graph (Micheli, Sona, and Sperduti 2004). Such ap-
proaches provided a neural implementation of a state tran-
sition system traversing the input structures in order to

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3898

make the embedding and subsequently the classification
of the input hierarchical data. The main issue in extend-
ing such approaches to general graphs (cyclic/acyclic, di-
rected/undirected) was the processing of cycles due to the
mutual dependencies occurring among the state variables
definitions represented in the neural recursive units. The ear-
liest approaches for graphs were the Graph Neural Network
NN (GNN)(Scarselli et al. 2009) and the Neural Network for
Graphs (NN4G) (Micheli 2009). The GNN model is based
on a state transition system similar to the RecNN that al-
lows cycles in the state computation, whereas the stability
of the recursive encoding process is guaranteed by resorting
to a contractive state dynamics (Banach theorem for fixed
point), which in turn is obtained by imposing constraints to
the loss function (alternating learning and convergence of
the recursive dynamical system). In this approach, the con-
text of each vertex is formed through graph diffusion during
the iteration to the convergence of state dynamics. Theoret-
ical approximation capability and VC dimension of GNN
have been recently studied (Scarselli, Tsoi, and Hagenbuch-
ner 2018).

The NN4G exploits the idea to treat the mutual dependen-
cies among state variables managing them (architecturally)
through different layers. without the use of recursive units
(also providing an automatic divide et impera approach for
the architectural design). Instead of iterating at the same
layer, each vertex can take the context of the other vertices
computed in the previous layers, accessing progressively
to the entire graph context. Such idea for a compositional
embedding of vertices have been successively exploited in
many forms in the area of spatial approaches, or convolu-
tional NN (CNN) for graphs, which all share the process
of traversing the graphs by neural units with weight sharing
(i.e. for CNN the weights are constrained to the neighbor
topology of all graph vertices instead of the 2D matrix), and
the construction through many layers moving to deep archi-
tectures (Micheli 2009; Zhang et al. 2018; Tran, Navarin,
and Sperduti 2018; Atwood and Towsley 2016; Niepert,
Ahmed, and Kutzkov 2016; Xu et al. 2018). There are
many other approaches in the field, including spectral-based
NN approaches (Defferrard, Bresson, and Vandergheynst
2016) and kernel for graphs (Shervashidze et al. 2009; Ya-

nardag and Vishwanathan 2015; Vishwanathan et al. 2010;
Neumann et al. 2016; Shervashidze et al. 2011).
Summarizing, and following the general trend, learning
in structured domains has progressively moved from flat to
more structured forms of data (sequences, trees and up to
general graphs), while NN models have been extended from
shallow to deep architectures, allowing a multi-level abstrac-
tion of the input representation. Unfortunately, both aspects
imply a high computational cost, highlighting the need to
move toward deep and efficient approaches for graphs.
For the case of sequences and trees, the Reservoir Comput-
ing (RC) paradigm provides an approach for the efficient
modeling of recurrent/recursive models based on the use of
fixed (randomized) values of the recurrent weights under sta-
bility conditions of the dynamical system (Echo State Prop-
erty - ESP) (Jaeger and Haas 2004; Gallicchio and Micheli
2013). Advantages for a deep construction of RC models
in the sequential domain have been analyzed under differ-
ent points of view, including the richness of internal repre-
sentations, the occurrence of multiple time-scales (following
the architectural hierarchy) and the competitive empirical re-
sults, see, e.g., (Gallicchio, Micheli, and Pedrelli 2018). Ex-
tension of the RC to graphs (Gallicchio and Micheli 2010)
follows the line of GNN, whereas the stability condition
is inherited by the contractivity of the reservoir dynamics
(ESP). However, the extension of such approaches to multi-
layer architectures is still unexplored for general graphs.
Following all these lines, the aim of this work is to provide
an approach to graph classification, called Fast and Deep
Graph Neural Network (FDGNN), which combines: (i) the
capability of stable dynamic systems (in the class of GNN
models) for the graphs embedding, (ii) the potentiality of a
deep organization of the GNN architecture (providing hier-
archical abstraction of the input structures through the ar-
chitectural layers), and (iii) the extreme efficiency of a ran-
domized neural network, i.e. a model without training of the
recurrent units.
The central idea is to exploit the fixed point of the recur-
sive/dynamical system to represent (or embed) the input
graphs. In particular, once the states have been computed for
all graph vertices, iterating the state transition function un-
til convergence, such information is exploited for the graph
embedding and then projected to the model output, which is
implemented as a standard layer of trained neural units.
The efficiency issue will be addressed also in terms of sparse
connections and a relative small number of units compared
to the typical setting of RC models or compared to the
number of free-parameters of fully-trained approaches. It
is worth to note that, since that free-parameters of the em-
bedding part do not undergo a training process, the model
also provides a tool to investigate the inherent (i.e. indepen-
dent from learning) architectural effect of layering in GNN.
Hence, such investigation can also provide insights for the
set-up of more complex fully-trained models.
The paper also includes a theoretical analysis of the con-
dition for the stability of the neural graph embedding in
deep GNN architectures. The experimental analysis includes
a significant set of well-known benchmarks in the field of
graph classification, hence enabling a thorough comparison

3899

with recent approaches at the state-of-the-art.

2 Proposed Method

Preliminaries on graphs. In this paper we deal with graph
classification problems. A graph G is represented as a tuple
G = (Vg, Eq), where Vg is the set of vertices (or nodes)
and £ C Vi x Vi is the set of edges. The number of ver-
tices in GG is denoted by Ng. The connectivity among the
vertices in a given graph G is represented by the adjacency
matrix Ag € RNo*Ne where Ag(i,j) = 1 if there is
an edge between vertex ¢ and vertex j, and Ag(i,5) = 0
otherwise. Although the proposed FDGNN approach can be
used to process both directed and undirected graphs, in what
follows we assume undirected graph structures, i.e., graphs
for which the adjacency matrix is a symmetric matrix. The
set of vertices adjacent to v € V(is the neighborhood of
v, e, Nv) = {v' € Vg : (v,v') € Eg}. We use k to
indicate the degree of a set of graphs under consideration,
i.e. the maximum among the sizes of the neighborhoods of
the vertices. Each vertex v is featured by a label, denoted
by 1(v), and which we consider to lie in a real vector space.
When considering input graphs, we use I to denote the size
of vertex labels, i.e., 1(v) € R’. In what follows, when the
reference to the graph in question is unambiguous, we drop
the subscript G to ease the notation.

The neural encoding process. The proposed FDGNN
model is based on constructing progressively more abstract
neural representation of input graphs by stacking successive
layers of GNNs. Crucially, and differently from the origi-
nal formulation by the proponents of GNN (Scarselli et al.
2009), in FDGNN the parameters of each layers (i.e., the
weights pertaining to the hidden units) are left untrained af-
ter initialization under stability constraints.

We use L to denote the number of layers in the architec-
ture. Then, for each layer¢ = 1, ..., L, the developed neural
embedding (or state) for vertex v is indicated by x(*)(v).
This is computed by the state transition function in layer
1, which is implemented by neurons featured by hyperbolic
tangent non-linearity, as follows:

x@ (v) = tanh (W;l)u(i)(v) + Z Wg)x(i)(v’)),
v'eN (v)

()
where, in relation to the given layer 4, u() (v) € RV s
the input, ng) € REVXUY g the input weight matrix that
modulates the influence of the input on the representation,
and Wg) e REYH i the recursive weight matrix that
determines the influence of the neighbors representations in
the embedding computed for v. Here, we use U (1) and H®,
respectively, to denote the dimension of the input and em-
bedding representations. Moreover, here, and in the rest of
the paper, references to bias terms are dropped in the equa-
tions for the ease of notation. For all vertices v, the embed-
dings x(¥) (v) are inizialized to zero values for all 7. Follow-
ing the layered construction, for every vertex v in the input
graph, the input information for the first layer is given by
the label attached to v, i.e., u® (v) = 1(v) (and UM =).
For successive layers 7 > 1, the role of input information

for vertex v is played by the embedding developed for v
by the previous layer in the stack, i.e., u (v) = x¢=1 ()
(and U® = HG-1) From the perspective of the analy-
sis recently introduced in (Xu et al. 2018), FDGNN uses a
neighborhood aggregation scheme that corresponds to a sum
operator with untrained weights (summation term in eq. 1).
Figure 1 shows the deep encoding process focused on a ver-
tex v of the input graph.

input graph @

@@ @ @ @ | i-thhiddenlayer

i xOw)

N, ; w(i)
wo / WS)I \,
(e0000] (00000].. (000o00]
embedding x(=1) @) %0 () X(i)(vk)
in previous layer : embedding of neighbors
xD(v)

© © © ® ® | 1sthidden layer

W/] SN

@ (000o00]---(00000]
1v) x®Py) xB(vy)
vertex label embedding of neighbors

Figure 1: Deep encoding process implemented by FDGNN.

For any given layer i € {1, ..., L}, the same state transi-
tion function in eq. 1 is applied in correspondence of every
vertex v of an input graph. The resulting operation can be
conveniently and more compactly represented by resorting
to a collective notation for the input and the embedding in-
formation, i.e., using U ¢ RUVXN and X() ¢ RHY XN
to column-wise collect respectively the input vectors u(?) (v)
and the embeddings x(*) (v), for every v € V. In this way,
the operation of the ¢-th hidden layer in the FDGNN ar-
chitecture can be described by means of a function F(*) :

RUWVXN o RHOXN _y pH® *N defined as follows:
X® = FOWUH XD = tanh(WHUD 4+ WX DAY,
@)
In case of mutual dependencies among the vertices in the
input graph (e.g., in the presence of cyclic substructures
or of undirected connections) the application of eq. 2 (or,
equivalently of eq. 1 in a vertex-wise fashion), might not
admit a unique solution, i.e, a valid graph embedding rep-
resentation. It is then useful to study eq. 2 as the iterated
map that rules a discrete-time non-linear dynamical system,
where X () plays the role of state information, and U acts
as the driving input. To ensure the uniqueness of the devel-
oped neural representations, it is important that the system
described by eq. 2 is asymptotically stable, i.e., it converges
to a unique fixed point upon repeated iteration. Notice that
such fixed point depends on both the input labels (i.e., U®)

3900

and the topology (i.e., the adjacency matrix A) of each input
graph. The system dynamics are parametrized by the weight

values in WY) and W%), which play a fundamental role in
characterizing the resulting dynamical behavior. In the stan-
dard GNN formulation, the neural network alternates phases

of state relaxation and learning of ng) and ngl) subject to
contractive constraint employed through a penalizer term in
the loss function for gradient descent (Scarselli et al. 2009).
In this paper, instead of employing a costly (and possibly
long) constrained training process, we study stability condi-
tions for the parameters in eq. 2, and initialize them accord-
ingly. After initialization, the weights in Wy) and W(P}) are
left untrained, resulting in a graph encoding process that is
extremely faster than that of classical GNNs, and is able to
develop rich neural embeddings in a hierarchical fashion.
The stability conditions for FDGNN initialization are de-
scribed in depth in Section 2.1. As a further characterizing
aspect of our approach, we make use of a sparse design for

both matrices Wg) and Wgz). In particular, for every neu-
ron in each hidden layer, we have only a constant number
C of connections from the previous layer (or from the input,
for the first hidden layer), and of recurrent connections from
the same layer. Note that the topology of the hidden layer
architecture, i.e. the pattern of connectivity among the neu-
rons, does not need to be related to the topology of the input
graph. In particular, each neuron takes inputs from all the
neighbour vertices embeddings (up to the degree k) from a
number of neurons depending on C' (that controls the spar-
sity of connectivity in the NN layer). The topology of the
input graph is hence preserved by the embedding process.

Based on the above described formulation, for any given
input graph, the FDGNN encoding process proceeds as fol-
lows. The state transition that rules the first hidden layer,
ie., D isiterated until convergence to its fixed point, i.e.,
X@) driven by the vertices labels information as external
input. Then, the same operation is repeated for the second
layer, whose dynamics are ruled by F(?) and driven by X(1),
which now plays the role of input. This process goes on un-
til the last layer L is reached, and its state transition function
F(L) converges to its fixed point X(I). At each layer, the
convergence to the fixed point is stopped whenever the dis-
tance between the states in successive iterations is below a
threshold €, or a maximum number of iterations v is reached.
Output computation. For a given graph, the output of
FDGNN is computed by means of a simple readout layer
that combines the neural representations developed by the
last hidden layer of the architecture, as follows:

y = Wy tanh (Ww Z X(L)(U)),
veV

3)

where the argument of the hyperbolic tangent non-linearity
expresses a combination of the embeddings computed in
the last hidden layer for all the vertices in the graph, mod-
ulated by a projection matrix W, € RF*H “. Finally,
Wy € RY*P is the output weight matrix, where RY is
the output space. In this work, elements in W, are ran-
domly initialized from a uniform distribution and then are

re-scaled and controlled to have unitary Lo-norm. The el-
ements in Wy are the only free parameters of the model
that undergo a training process, and are adjusted based on
the training set. In the vein of RC approaches, training of
the output weights is performed (non-iteratively) in closed
form, exploiting the resulting convexity of the learning prob-
lem. This is performed by using Tikhonov regularization as
described in (LukoSeviCius and Jaeger 2009). The readout
operation implemented by eq. 3 can be seen as the applica-
tion of a sum-pooling (or aggregation) operation, followed
by a randomized non-linear basis expansion, and finally by
a layer of trained linear neurons.

2.1 Stability Conditions for Graph Embedding

We study dynamical stability of the system implemented by
each hidden layer of a GNN, as reported in eq. 2. Here we
focus our analysis on a generic layer ¢ of the architecture,
and drop the (¢) superscript in the mathematical objects for
the ease of notation. Accordingly, the dynamics under con-
sideration are governed by the non-linear map F' that, given
the input for the layer U, and an initial state X (set to zero
values), is iterated until convergence to the fixed-point solu-
tion, i.e. to the attractor of the dynamics.

Here we use F; to denote the t¢-th iterate of F,
and X; to indicate the state after ¢ iterations, i.e.,
Xy F(U,X;-1) = F(UF(U,X;2)) = ...
F(U,F(U,F(...(F(U,Xp))...))). In the following, we
assume that input and state spaces are compact sets, more-
over we use || - || to indicate Lo-norm, and p(-) to indicate the
spectral radius'. In order to develop a valid neural represen-
tation of input graphs, we require the system ruled by F' to
be globally asymptotically stable, according to the following
definition of Graph Embedding Stability (GES).

Definition 1 (Graph Embedding Stability (GES)). For ev-
ery input U to the current layer, and for every Xy, Z initial
states for the neural embeddings in the current layer, it re-
sults that:

|1F: (U, Xo) — Fy(U,Zp)|| =0 as t —o00. (4)

GES in Definition 1 essentially says that irrespective of
the initial conditions, the developed neural encoding for the
same input graph should be unique. Perturbations should
vanish as the convergence process proceeds, and the result-
ing graph encoding is robust. The property expressed by the
GES can be also seen as a generalization of the ESP com-
monly imposed in the context of RC (Jaeger and Haas 2004).
In the same vein as studies in RC, here we provide two con-
ditions for the GES of the hidden layers in deep GNN, one
sufficient, expressed by Theorem 1, and one necessary, ex-
pressed by Theorem 2.

Theorem 1 (Sufficient condition for GES). For every input
U to the current layer, if |W || k < 1 then F has dynamics
that satisfy the GES.

Theorem 2 (Necessary condition for GES). Assume that a
k-regular graph with null vertices labels is an admissible
input for the system. If F' has dynamics that satisfy the GES
then p(Wg) k < 1.

'The largest abs value of the eigenvalues of its matrix argument.

3901

The proofs of both Theorems 1 and 2 are reported in the
Supplementary Material (Gallicchio and Micheli 2019).

Theorems 1 and 2 provide a grounded way for stable ini-
tialization of hidden layers’ in FDGNN. In particular, the
sufficient condition corresponds to a contractive setting of
the neural dynamics for every possible input, and hence
could be too restrictive in practical applications. Accord-
ingly, we adopt the condition implied by Theorem 2 to ini-
tialize the weights in the hidden layers of the FDGNN, gen-
eralizing a common practice in the RC field (Jaeger and Haas
2004). As such, for every layer ¢ = 1,..., L, weight values

in Wg) are first randomly chosen from a uniform distribu-
tion in [—1, 1] and then re-scaled to have an effective spec-
tral radius p(* = p(W%)) k, such that p(*) < 1. As pertains

to the input matrices WY), their values are randomly sam-

pled from a uniform distribution in [—w(*, w®]. The value
of w(® acts as input scaling for i = 1, and as inter-layer scal-
ing for i > 1. We treat p() and w(*) as hyper-parameters.

2.2 Computational Cost

For any given input graph, the cost of the graph embedding
process at layer ¢ is that of the iterated application of eq. 2.
Assuming H hidden neurons, and exploiting the sparse con-
nectivity in the hidden layer matrices, each iteration requires
O((C + k) H N). As such, the entire process of graph em-
bedding for the whole architecture has a cost that is given by
O(Lv (C + k) H N), which scales linearly with the num-
ber of neurons, with the number of layers, with the degree,
and with the number of vertices (i.e., the size of the input
graph). Strikingly, the cost of the encoding is the same for
both training and test, as the internal weights do not undergo
a training process and hence no additional cost for training
is required. This leads to a clear advantage in comparison to
fully trained NN models for graphs. Besides, the efficiency
of the proposed approach is comparable to the Weisfeiler-
Lehman graph kernel (Shervashidze et al. 2011), one of the
most known and fastest kernels for graphs, whose cost scales
linearly with the number of vertices and edges.

The efficiency of FDGNN emerges also in the process of
output computation, which is performed by a simple read-
out tool. This can be trained efficiently using direct meth-
ods, and generally is less expensive than training alternative
readout implementations requiring gradient descent learning
possibly through multiple layers (e.g., as in NNs for graphs),
or support vector machines (e.g., as in kernel for graphs).

3 Experiments

We experimentally assess the proposed FDGNN model on
several benchmark datasets for graph classification, in com-
parison to state-of-the-art approaches from literature.

Datasets. We consider 9 graph classification benchmarks
from the areas of cheminformatics and social network anal-
ysis. All the used datasets are publicly available online (Ker-
sting et al. 2016). In the case of cheminformatics datasets,
input graphs are used to represent chemical compounds,
where vertices stand for atoms and are labeled by the atom
type (represented by one-hot encoding), while edges be-

tween vertices represent bonds between the corresponding
atoms. In particular, MUTAG (Debnath et al. 1991) is a col-
lection of nitroaromatic compounds and the goal is to pre-
dict their mutagenicity on Salmonella typhimurium, PTC
(Helma et al. 2001) is a set of chemical compounds that
are classified as carcinogenic or non-carcinogenic for male
rats, COX2 (Sutherland, O’brien, and Weaver 2003) con-
tains a set of cyclooxygenase-2 inhibitor molecules that
are labeled as active or inactive, PROTEINS (Borgwardt et
al. 2005) is a dataset of proteins that are classified as en-
zymes or non-enzymes, NCI1 (Wale, Watson, and Karypis
2008) contains anti-cancer screens for cell lung cancer.
As regards the social network domain, we use IMDB-
BINARY (IMDB-b), IMDB-MULTI (IMDB-m), REDDIT
(binary) and COLLAB, proposed in (Yanardag and Vish-
wanathan 2015). IMDB-b and IMDB-m are movie collabo-
ration datasets containing actor/actress ego-networks where
the target class represent the movie genre, with 2 possible
classes for IMDB-b (i.e., action or romance), and 3 classes
for IMDB-m (i.e., comedy, romance, and sci-fi). REDDIT
is a collection of graphs corresponding to online discussion
threads, classified in 2 classes (i.e., question/answer or dis-
cussion community). Finally, COLLAB is a set of scien-
tific collaborations, containing ego-networks of researchers
classified based on the area of research (i.e., high energy,
condensed matter or astro physics). Differently from the
case of cheminformatics benchmarks, for the social network
datasets no label is attached to the vertices in the graph. In
this cases, we use a fixed (uni-dimensional) input label equal
to 1 for all the vertices. For binary classification tasks, a
target value in {—1,1} is considered. For multi-class clas-
sification tasks, the target label for each graph is a vector
representing a binary —1/ + 1 one-hot encoding of the cor-
responding class. A summary of datasets information is in
the Supplementary Material (Gallicchio and Micheli 2019).
Experimental settings. We adopted a simple general set-
ting, where all the hidden layers of the architecture in the
graph embedding component shared the same values of the
hyper-parameters, i.e., for ¢ > 1 we set: number of neu-
rons HY) = H and effective spectral radius p(¥) = p; for
i > 1 we set the inter-layer scaling w(® = w. In particu-
lar, we set the number of neurons in each hidden layer to
H = 50 for all datasets except for NCI1 and COLLAB,
for which we used H = 500. We implemented very sparse
weight matrices with C' = 1, i.e. every hidden layer neuron
receives only 1 incoming connection from the previous layer
(i.e., the input layer for neurons in the first hidden layer),
and 1 incoming recurrent connection from a neuron in the
same hidden layer. Values of p, w(*) and w were explored
in the same range (0,1). The above hyper-parameters of
the graph embedding component were explored by random
search, i.e., by randomly generating a number of 100 config-
urations within the reported ranges. For every configuration,
the value of the Tikhonov regularizer for training the read-
out was searched in a log-scale grid in the range 10~8 — 103.
To account for randomization, for every configuration we in-
stantiated 20 networks guesses, averaging the error on such
guesses. For the graph embedding convergence process in

3902

each layer we used a threshold of € = 102, and maximum
number of iterations ¥ = 50. The projection dimension for
the readout was set to twice the number of neurons in the last
hidden layer, i.e., P = 2 H. Accordingly, the total number
of free parameters, i.e., the number of trainable weights for
the learner, is as small as 1001 for NCI1 and COLLAB, and
101 for all the other datasets (note that there is an additional
weight for the output bias). For all the datasets, we used the
average value of k in the dataset for network initialization.

For binary classification tasks, the output class for each
graph was computed using the readout equation in eq. 3,
followed by the sign function for —1/ + 1 discretization. In
multi-class classification tasks, to each graph was assigned
an output class in correspondence of the readout unit with
the highest activation. The performance on the graph classi-
fication tasks was assessed in terms of accuracy, and it was
evaluated through a process of stratified 10-fold cross vali-
dation. For each fold, the FDGNN hyper-parameter configu-
ration was chosen by model selection, by means of a nested
level of stratified 10-fold cross validation applied on the cor-
responding training samples.

3.1 Results

The results achieved by FDGNN are reported in Table 1,
where we show the test accuracy averaged over the outer
10 folds of the cross-validation (std are reported on the
folds). We also give the performance achieved by FDGNN
settings constrained to a single hidden layer (L 1).
For comparison, in the same table we report the accuracy
obtained by literature ML models for graphs. These in-
cludes a variety of NN for graphs, i.e., GNN (Scarselli et
al. 2009), Relational Neural Networks (ReINN) (Blockeel
and Bruynooghe 2003), Deep Graph Convolutional Neural
Network (DGCNN) (Zhang et al. 2018), Parametric Graph
Convolution DGCNN (PGC-DGCNN) (Tran, Navarin, and
Sperduti 2018), Diffusion-Convolutional Neural Networks
(DCNN) (Atwood and Towsley 2016), PATCHY-SAN
(PSCN) (Niepert, Ahmed, and Kutzkov 2016). We also
consider a number of relevant models from state-of-the-
art graph kernels: Graphlet Kernel (GK) (Shervashidze et
al. 2009), Deep GK (DGK) (Yanardag and Vishwanathan
2015), Random-walk Kernel (RW) (Vishwanathan et al.
2010), Propagation Kernel (PK) (Neumann et al. 2016), and
Weisfeiler-Lehman Kernel (WL) (Shervashidze et al. 2011).
Moreover, we consider two further recently introduced mod-
els: a recent hybrid CNN-kernel approach named Kernel
Graph CNN (KGCNN) (Nikolentzos et al. 2018), and Con-
textual Graph Markov Model (CGMM) (Bacciu, Errica, and
Micheli 2018), which merges generative models and NN for
graphs. The performance in Table 1 for the above mentioned
approaches is quoted from the indicated reference (where
the experimental setting for model selection was as rigorous
as ours), with the exception of PK and WL on COX2, which
are quoted from (Neumann et al. 2016). When more than
one configuration is reported in the literature reference, we
quote the result of the one with the highest accuracy.
Results in Table 1 indicate that FDGNN outperforms the
best literature results on 7 out of 9 benchmarks, achieving
state-of-the-art performance, and showing in many cases a

Table 1: Test accuracy of FDGNN, compared to state-of-the-art results from literature. Performance of single hidden layer
versions of FDGNN (L = 1) are reported as well. Results are averaged (and std are computed) on the outer 10 folds. Best

results are highlighted in bold for every dataset.

MUTAG PTC COX2 PROTEINS NCII
FDGNN 88.514377 63.434535 83.3940835 76.77108¢ 77.8141¢62
FDGNN(7_1) 87.3846.55 63.4341535 82414067 T76.774086 T7.114159
GNN (Uwents et al. 2011) 80.4941081 - - - -
ReINN (Uwents et al. 2011) 87771048 - - - -
DGCNN (Zhang et al. 201 8) 858311.66 58.59i2_47 - 75'54i0.94 74~44i0'47
PGC-DGCNN (Tran, Navarin, and Sperduti 2018) 87.2217 435 61.0641.83 - 76.451102 76.1340.73
DCNN (Tran, Navarin, and Sperduti 2018) - - - 61.294160 56.6111.04
PSCN (Tran, Navarin, and Sperduti 2018) - - - 75.001251 76.3411 68
GK (Zhang et al. 2018) 81.39i1_74 55~65i0.46 - 71'39i0A31 62.4910_27
DGK (Yanardag and Vishwanathan 2015) 82.664145 57.324113 - 71.684050 62.4840.95
RW (Zhang et al. 2018) 79171207 55911032 - 59.574+0.09 -
PK (Zhang et al. 2018) 76-00:|:2.69 59-50:|:2.44 81.00i0,20 73-68i0.68 82.54;&),47
WL (Zhang et al. 2018) 84,11i1,91 57~97i2.49 83.20i0,20 74.6810.49 84.46i0,45
KCNN (Nikolentzos et al. 201 8) - 62-9411.69 - 75~76i0.28 77.2110'22
CGMM (Bacciu, Errica, and Micheli 2018) 85.30 - - - -
IMDB-b IMDB-m REDDIT COLLAB
FDGNN 72.364363 50.034195 8948109 74441902
FDGNN(—1) 71.794337 49344170 87.741161 73.8249 39
DGCNN (Zhang et al. 2018) 70«03:|:O.86 47.83:|:0_85 - 73.76:|:(),49
PGC-DGCNN (Tran, Navarin, and Sperduti 2018) 71.621195 47.2511.44 - 75.0040 58
PSCN (Tran, Navarin, and Sperduti 2018) 71.004999 452341284 - 72.6049 15
GK (Yanardag and Vishwanathan 2015) 65.8710.08 43.894038 77.3440.18 72.8440.56
DGK (Yanardag and Vishwanathan 2015) 66.9641056 44.551052 78.041039 73.0940.25
KCNN (Nikolentzos et al. 2018) 71.4540.15 47.4640.01 81.8540.12 74.9340.14

clear improvement with respect to ML models in the area
of NNs, kernel for graphs, and hybrid variants. Moreover,
even in the cases where FDGNN does not achieve the top
performance, its accuracy results to be the highest within
the class of NN for graphs (for NCI1), or it is very close to
the highest one (for COLLAB).

Results reported in Table 1 are surprising, especially con-
sidering that they are obtained by a model in which the graph
embedding process is not subject to training. Relevantly, the
experimental results illustrated here highlight the ability of
layered GNN architectures to construct neural embeddings
for graph data that are rich in an intrinsic way, i.e., even in
the absence (or before) training of the recurrent connections.
Complementarily, our results point out the important role
played by stability of the graph encoding process: as long as
the layers of a deep GNN are able to implement such a pro-
cess in a stable way, the neural representations developed in
the hidden layers are per se useful to effectively solve real-
world problems in the area of graph classification.

The impact of randomization in the FDGNN weight ma-
trices initialization can be quantified by the std on the in-
stances (i.e., the guesses), reported in the following: MU-

3903

TAG (2.39), PTC (4.56), COX2 (2.50), PROTEINS (1.72),
NCI1 (1.59), IMDB-b (1.39), IMDB-m (1.35), REDDIT
(2.33), COLLAB (1.03). These results indicate that the vari-
ance on the instances is in line with - and is generally smaller
than - the variance on the folds (given in Table 1).

Table 1 also indicates the advantage of depth in the ar-
chitectural setup of FDGNN. While the accuracy achieved
by single hidden layer settings (i.e., for L = 1) is already
comparable to literature results, deeper settings of FDGNN
consistently obtain a better performance (with the only ex-
ceptions of PTC and PROTEINS, where 1 hidden layer con-
figurations were selected by model selection). As a further
experimental reference, Table 2 shows the depth of the se-
lected FDGNN configuration for each dataset, averaged on
the 10 folds. In most cases a number of layers of ~ 3 (and
up to 5) is selected, testifying the effectiveness of the multi-
layered construction of the FDGNN architecture.

The use of untrained recurrent connections makes the pro-
posed FDGNN strikingly efficient in applications. As evi-
dence of this, in Table 3 we report the running times for the
training and test of the selected FDGNN configurations, av-
eraged on the 10 folds. The reported times are referred to

Table 2: Depth of FDGNN configurations selected by the
nested cross validation process. Results are averaged (and
std are computed) on the outer 10 folds.

MUTAG PTC COX2 PROTEINS NCI1
32410 1.0+00 2.710.8 1.0+0.0 3.840.6
IMDB-b IMDB-m REDDIT COLLAB

32412 4d4ios 3.0+0.0 4.540.8

Table 3: Running times required by FDGNN (in single core
mode, without GPU acceleration). Results are averaged (and
std are computed) on the outer 10 folds. Times are reported
in seconds (") or minutes ().

Task Training Test
%’ITI(J:TAG 8-?2%0.33 8-82;;0.04
COX2 136700 015 e
PROTEINS 2.1 7o 0.2 7o
NCII 000 13360
IMDB-b 7467, 0.837
- “4D43 14 094035
IMDB-m 8.687, ., 0.987,5,
REDDIT 2.47;:,0,01 16.4¢ Lo os
COLLAB 22.86/,, .0 2.54 050

a MATLAB implementation of FDGNN, running on a sys-
tem with Intel Xeon Processor E5-263L v3 with 168 GB of
RAM. Note that, although the FDGNN model is amenable
for parallelization, to provide an unbiased estimation of the
required computation time, the reported running times were
obtained using the system in single-core mode, and with-
out any GPU acceleration. Our code is made available on-
line?. As it can be noticed, training and test times of FDGNN
(even without parallelization) are generally very low, re-
sulting from the combination of a number of factors: the
sparse design of the hidden layers’ matrices, the small num-
ber of neurons in each hidden layer, and the fact the inter-
nal weights are left untrained. Moreover, also the iterative
embedding stabilization process taking place in each hidden
layer is in practice not computationally intensive. Overall
the approach results very fast, requiring a very small num-
ber of trainable weights (up to 1001 in our experiments), es-
pecially in comparison to literature models that entail much
more complex architectural settings with multiple layers of
fully end-to-end trained neurons, and possibly hundreds of
thousands of trainable weights.

Table 4: Comparison of training times required on MUTAG
by FDGNN, GNN, GIN and WL. Results are averaged (and
std are computed) on the outer 10 folds.

FDGNN GNN GIN
0.56" 033 202.287 6657 499.24" o

WL
1.16" +0.03

“https://sites.google.com/site/cgallicch/FDGNN/code

3904

In order to give a more concrete idea on the efficiency
of the proposed approach, in Table 4 we compare the train-
ing times required by FDGNN on MUTAG with those re-
quired by GNN, GIN (Xu et al. 2018), and WL, as represen-
tatives respectively of dynamical NNs, recent convolutional
NNs, and kernels models for graphs. In all cases, we used
the code made available by the proponents, using the hyper-
parameter settings given by the authors, and the same ma-
chine used for experiments on FDGNNs. Results in Table 4
indicate that FGDNN requires the smallest training times,
and results to be more than 300 times faster than GNN,
almost 900 times faster than GIN, and comparable to WL
(but still ~ 2 times faster). Relevantly, the FDGNN train-
ing speedup pairs the accuracy improvement already shown
with respect to GNN and WL in Table 1, where accuracy
of GIN from literature is not reported because obtained as
validation accuracy of a 10-fold cross validation (while we
are uniformly considering a more rigorous nested cross val-
idation with external test set). For completeness, the perfor-
mance of GIN reported in (Xu et al. 2018) ranges from 0.835
to 0.9 (depending on the variant). In similar experimental
conditions, FDGNN achieves a test accuracy of 0.948.

4 Conclusions

We have introduced FDGNN, a novel NN model for fast
learning in graph domains. The proposed approach showed
that it is possible to combine the advantages of a deep ar-
chitectural construction of GNN (in its ability to effectively
process structured data in the form of general graphs), with
the extreme efficiency of randomized NN, and in particular
RC, methodologies. The randomized implementation allows
us to implement untrained - but stable - graph embedding
layers, while through the deep architecture the model is able
to build a progressively more effective representation of the
input graphs. Despite the simplicity of the setup and the fast
computation allowed by the model, the empirical accuracy
of FDGNN results to be very competitive with a large num-
ber of state-of-the-art CNN models and kernel methods for
graphs. Further possible analysis on the expressive power of
FDGNN can be related to the study of Markovian-based or-
ganization of graph embedding spaces.

References

Atwood, J., and Towsley, D. 2016. Diffusion-convolutional
neural networks. In Advances in Neural Information Pro-
cessing Systems, 1993-2001.

Bacciu, D.; Errica, F.; and Micheli, A. 2018. Contextual
graph markov model: A deep and generative approach to
graph processing. In Proceedings of ICML 2018.

Blockeel, H., and Bruynooghe, M. 2003. Aggregation ver-
sus selection bias, and relational neural networks. In IJCAI-
2003 Workshop on Learning Statistical Models from Rela-
tional Data, SRL-2003, Acapulco, Mexico.

Borgwardt, K. M.; Ong, C. S.; Schonauer, S.; Vishwanathan,
S.; Smola, A. J.; and Kriegel, H--P. 2005. Protein

function prediction via graph kernels. Bioinformatics
21(suppl_1):147-i56.

Debnath, A. K.; Lopez de Compadre, R. L.; Debnath, G.;
Shusterman, A. J.; and Hansch, C. 1991. Structure-activity
relationship of mutagenic aromatic and heteroaromatic nitro
compounds. correlation with molecular orbital energies and
hydrophobicity. Journal of medicinal chemistry 34(2):786—
797.

Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Advances in neural information pro-
cessing systems, 3844—-3852.

Frasconi, P.; Gori, M.; and Sperduti, A. 1998. A general
framework for adaptive processing of data structures. /[EEE
Transactions on Neural Networks 9(5):768-786.

Gallicchio, C., and Micheli, A. 2010. Graph echo state net-
works. In The 2010 International Joint Conference on Neu-
ral Networks (IJCNN), 1-8. 1EEE.

Gallicchio, C., and Micheli, A. 2013. Tree echo state net-
works. Neurocomputing 101:319-337.

Gallicchio, C., and Micheli, A. 2019. Fast and Deep Graph
Neural Networks. arXiv preprint arXiv:1911.08941.

Gallicchio, C.; Micheli, A.; and Pedrelli, L. 2018. Design
of deep echo state networks. Neural Networks 108:33-47.

Helma, C.; King, R. D.; Kramer, S.; and Srinivasan, A. 2001.
The predictive toxicology challenge 2000-2001. Bioinfor-
matics 17(1):107-108.

Jaeger, H., and Haas, H. 2004. Harnessing nonlinearity: Pre-
dicting chaotic systems and saving energy in wireless com-
munication. Science 304(5667):78-80.

Kersting, K.; Kriege, N. M.; Morris, C.; Mutzel, P.; and Neu-
mann, M. 2016. Benchmark data sets for graph kernels.

LukoSevicius, M., and Jaeger, H. 2009. Reservoir computing
approaches to recurrent neural network training. Computer
Science Review 3(3):127-149.

Micheli, A.; Sona, D.; and Sperduti, A. 2004. Contextual
processing of structured data by recursive cascade correla-
tion. IEEE Transactions on Neural Networks 15(6):1396—
1410.

Micheli, A. 2009. Neural network for graphs: A contex-
tual constructive approach. IEEE Transactions on Neural
Networks 20(3):498-511.

Neumann, M.; Garnett, R.; Bauckhage, C.; and Kersting,
K. 2016. Propagation kernels: efficient graph kernels from
propagated information. Machine Learning 102(2):209—
245.

Niepert, M.; Ahmed, M.; and Kutzkov, K. 2016. Learning
convolutional neural networks for graphs. In International
conference on machine learning, 2014-2023.

Nikolentzos, G.; Meladianos, P.; Tixier, A. J.-P.; Skianis, K.;
and Vazirgiannis, M. 2018. Kernel graph convolutional neu-
ral networks. In International Conference on Artificial Neu-
ral Networks, 22-32. Springer.

Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2009. The graph neural network model.
IEEE Transactions on Neural Networks 20(1):61-80.

3905

Scarselli, F.; Tsoi, A. C.; and Hagenbuchner, M. 2018. The
vapnik—chervonenkis dimension of graph and recursive neu-
ral networks. Neural Networks 108:248-259.

Shervashidze, N.; Vishwanathan, S.; Petri, T.; Mehlhorn, K.;
and Borgwardt, K. 2009. Efficient graphlet kernels for large
graph comparison. In Artificial Intelligence and Statistics,
488-495.

Shervashidze, N.; Schweitzer, P.; Leeuwen, E. J. v.;
Mehlhorn, K.; and Borgwardt, K. M. 2011. Weisfeiler-
lehman graph kernels. Journal of Machine Learning Re-
search 12(Sep):2539-2561.

Socher, R.; Lin, C. C.; Manning, C.; and Ng, A. Y. 2011.
Parsing natural scenes and natural language with recursive
neural networks. In Proceedings of the 28th international
conference on machine learning (ICML-11), 129-136.
Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning,
C. D.; Ng, A.; and Potts, C. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods
in natural language processing, 1631-1642.

Sperduti, A., and Starita, A. 1997. Supervised neural net-
works for the classification of structures. IEEE Transactions
on Neural Networks 8(3):714-735.

Sutherland, J. J.; O’brien, L. A.; and Weaver, D. FE. 2003.
Spline-fitting with a genetic algorithm: A method for devel-
oping classification structure- activity relationships. Journal

of chemical information and computer sciences 43(6):1906—
1915.

Tran, D. V.; Navarin, N.; and Sperduti, A. 2018. On filter
size in graph convolutional networks. In 2018 IEEE Sym-
posium Series on Computational Intelligence (SSCI), 1534—
1541. IEEE.

Uwents, W.; Monfardini, G.; Blockeel, H.; Gori, M.; and
Scarselli, F. 2011. Neural networks for relational learning:
an experimental comparison. Machine Learning 82(3):315—
349.

Vishwanathan, S. V. N.; Schraudolph, N. N.; Kondor, R.; and
Borgwardt, K. M. 2010. Graph kernels. Journal of Machine
Learning Research 11(Apr):1201-1242.

Wale, N.; Watson, 1. A.; and Karypis, G. 2008. Compar-
ison of descriptor spaces for chemical compound retrieval
and classification. Knowledge and Information Systems
14(3):347-375.

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2018. How
powerful are graph neural networks? In Proceedings of
ICLR 2019.

Yanardag, P., and Vishwanathan, S. 2015. Deep graph ker-
nels. In Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, 1365-1374. ACM.

Zhang, M.; Cui, Z.; Neumann, M.; and Chen, Y. 2018. An
end-to-end deep learning architecture for graph classifica-
tion. In Thirty-Second AAAI Conference on Artificial Intel-
ligence.

