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Abstract

Deep generative networks have been widely used for learn-
ing mappings from a low-dimensional latent space to a high-
dimensional data space. In many cases, data transformations
are defined by linear paths in this latent space. However, the
Euclidean structure of the latent space may be a poor match
for the underlying latent structure in the data. In this work,
we incorporate a generative manifold model into the latent
space of an autoencoder in order to learn the low-dimensional
manifold structure from the data and adapt the latent space to
accommodate this structure. In particular, we focus on ap-
plications in which the data has closed transformation paths
which extend from a starting point and return to nearly the
same point. Through experiments on data with natural closed
transformation paths, we show that this model introduces the
ability to learn the latent dynamics of complex systems, gen-
erate transformation paths, and classify samples that belong
on the same transformation path.

1 Introduction

In many applications of interest, intelligent algorithms must
classify, generate, or understand natural, high-dimensional
data. The manifold hypothesis states that high-dimensional
data can be modeled as lying on a low-dimensional, nonlin-
ear manifold (Fefferman, Mitter, and Narayanan 2016). A
variety of techniques have been introduced in the machine
learning literature to discover various aspects of manifold
structure from data, often estimating the low-dimensional
nonlinear structure of high-dimensional data using neigh-
boring points to define local geometric structure (Tenen-
baum, De Silva, and Langford 2000; Roweis and Saul 2000;
Dollár, Rabaud, and Belongie 2007; Bengio and Monper-
rus 2005; Rao and Ruderman 1999; Miao and Rao 2007;
Culpepper and Olshausen 2009).

Recently, deep generative models have been used to
learn generator functions f : Z → X that map points
from a low-dimensional latent space, Z ⊆ R

d, to a high-
dimensional data space, X ⊆ R

D. These generative models,
which include variational autoencoders (VAEs) (Kingma
and Welling 2013) and generative adversarial networks
(GANs) (Goodfellow et al. 2014), can generate high-fidelity
output samples that resemble real-world data. Generative
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networks encourage the latent space to fit a prior distribu-
tion, like a Gaussian, and often the latent space is described
as a data manifold in which natural data transformations are
defined by linear paths (Radford, Metz, and Chintala 2015).
The assumption that transformations are represented by lin-
ear paths severely limits the complexity of transformation
paths that can be continuously represented by the model.

An example scenario where existing methods are insuffi-
cient is an application in which the data has closed transfor-
mation paths that extend from a starting point, z0, and return
to nearly the same point zN ≈ z0 after N steps. There are
many examples of applications that fit this setting includ-
ing 3D rotating objects, temporal action sequences, and nat-
ural systems governed by underlying dynamical processes.
These transformations cannot be represented by linear paths
in the neural network latent space but instead require a more
complex representational model for latent data variations.
There are two general approaches that can incorporate natu-
ral data structure into latent spaces of generative networks to
represent more complex transformations. The first approach
encourages geometric priors in the latent space that may
better accommodate natural data variations. The second ap-
proach defines transformations using geodesic paths in the
latent space rather than linear paths.

We combine both of these approaches by explicitly incor-
porating a learned generative manifold model into the latent
space of an autoencoder. This manifold model will allow us
to both learn structure associated with natural variations in
the data and define nonlinear paths necessary for represent-
ing closed transformation paths. In this work, we consider
data with closed transformations paths and propose an ap-
proach to learn and represent this natural manifold structure
in a neural network, with the following specific contribu-
tions:

• We develop a model for learning generative, nonlinear
manifold operators between pairs of points in the latent
space that represent natural transformations in the data.
We show that this model can interpolate paths between
points and extrapolate closed paths from a single starting
point.

• We create a network architecture that incorporates the
manifold transformation operators into an autoencoder la-
tent space. This enables us to define a latent space struc-
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Figure 1: (a) Ground truth latent embedding. (b) Circle points embedded in the autoencoder latent space. (c) Circle points
embedded in the VAE latent space. (d) Circle points embedding in the hyperspherical VAE latent space (e) Circle points
embedded in the manifold autoencoder latent space

ture that adheres to the structure in the data itself. We
show that incorporating a learned, nonlinear manifold
structure in the latent space greatly improves our ability
to generate full loops of closed transformation paths.

• We define a distance metric that determines the likelihood
that two points, z0 and z1, lie on the same manifold given
the learned manifold transformation operators. We show
that this distance can be used to find new samples that ex-
ist on the same closed transformation path as a reference
point.

With this model, we gain the ability to learn the latent dy-
namics of complex systems, generate transformation paths,
and classify samples that belong on the same transformation
path. We apply this method to three data sets that demon-
strate the importance of representing closed transformation
paths: concentric circles, digit rotation, and gait sequences.

2 Nonlinear Structure in Encoded Network

Latent Space

VAEs and GANs have gained in popularity because they are
able to generate realistic data samples from the latent space
distribution, p(z). Traditionally priors in the latent space are
chosen for their computational simplicity rather than their
compatibility with the latent structure of a given dataset,
leading to the potential for an inaccurate low-dimensional
representation of data variations. While efforts have been
made to increase the complexity of these priors, there remain
significant gaps in methods that incorporate both meaningful
assumptions of geometric structure and the ability to adapt
the detailed prior to the data characteristics. For example,
some techniques encourage latent spaces with more complex
geometric structure (e.g., hyperspheres, tori, and mixtures
of Gaussians) by specifying prior distributions on the latent
vectors during training, but they are non-adaptive and there-
fore may not match the specific data structure (Tomczak and
Welling 2017; Davidson et al. 2018; Makhzani et al. 2015;
Falorsi et al. 2018; Rey, Menkovski, and Portegies 2019).
On the other hand, some techniques train a recurrent neural
network on latent vectors to model sequences of dynamical
systems (Sussillo et al. 2016), but do not incorporate prior
knowledge of geometric structure likely present in the data.

In lieu of implementing a structured geometric prior,
some techniques incorporate natural data structure into a la-
tent space by computing geodesic paths between points us-
ing an estimated Riemannian metric (Arvanitidis, Hansen,

and Hauberg 2017; Chen et al. 2017; Shao, Kumar, and
Thomas Fletcher 2018). Similar to our main aims, these
techniques identify situations in which linear paths are not
effective for representing transformations and aim to es-
timate more accurate nonlinear manifold paths between
points. However, these techniques estimate individual paths
by inferring the shortest distance between two points given
the computed Riemannian metrics. This does not specify a
general structure for the latent space or enable efficient ex-
trapolation of transformation paths.

We develop a manifold autoencoder which incorporates
a generative manifold model into the latent space of an au-
toencoder. Unlike the methods above which encourage the
latent space to model a specified prior, our method learns
the latent structure from the data. Additionally, our mani-
fold model is made up of learned generative operators that
can easily interpolate paths between and extrapolate paths
from arbitrary points in this space.

2.1 Closed Transformation Paths

Fig. 1 provides an example of why it is necessary to ad-
dress closed transformation paths directly and why we are
using an autoencoder model to define our encoded latent
space. The training data for these plots are 20-dimensional
features that are mapped from the two-dimensional, ground
truth latent space in Fig. 1a. The points are embedded onto
two circular manifolds. Fig. 1b shows the embedding from
a learned autoencoder with a two-dimensional latent space.
This autoencoder effectively represents the concentric cir-
cular latent structure of the data. By contrast, the embedding
from the trained VAE mixes the points from the two man-
ifolds because the Gaussian prior encourages all the points
to be centered at the origin (Fig. 1c). This Gaussian prior is
clearly not appropriate for data with closed transformations
paths. To address this manifold mismatch, the hyperspher-
ical VAE implements a hyperspherical prior into the latent
space (Davidson et al. 2018). The hyperspherical structure in
the latent space introduces the possibility of creating closed
paths. However, this technique does not effectively define
individual object manifolds but rather combines the man-
ifolds of all training objects onto the same hyperspherical
space. Fig. 1d shows this effect because points from the two
data manifolds are embedded on the same circle in the two-
dimensional latent space.

To address the issues with manifold mismatch and closed
transformation paths, our manifold autoencoder learns the

3667



structure from the data itself and adapts the latent space of
an autoencoder to fit that learned structure. Fig. 1e shows
the embedding of the points from our manifold autoencoder
which will be described in detail in Section 3.2. The points
are adapted to fit the circular structure of the data while
maintaining two concentric circles.

3 Methods

3.1 Learning Natural Manifold Geometry

To characterize transformations in a latent space, we need
to define a transformation operator, T, that can generate
the transformations between two data points z1 = Tz0.
This transformation belongs to a family of operators T (i.e.,
T ∈ T ) which is endowed with group structure. Specifi-
cally, i) there exists a group operation ◦ to combine trans-
formations; ii) if T0,T1 ∈ T then T0 ◦ T1 ∈ T ; iii) the
operators are associative; iv) there exists an identity opera-
tor; and v) there exists an inverse element for each operator
T ∈ T . This continuous transformation group is termed a
Lie group (Boothby 1986).

A Lie group of transformation operators in the latent
space defines transformations that describe the natural vari-
ations in Z . Thus these operators can be used to compactly
represent the latent manifold surface, M ⊂ Z around a la-
tent vector, z0: M = {z ∈ Z|z = Tz0,T ∈ T }.

Each of these transformation operators represents a con-
tinuous transformation and can be formulated with the in-
finitesimal transformation: T = (I + ΨΔc) where T is
a small offset from the identity matrix. The real number
c ∈ R parameterizes T with a matrix Ψ which is an opera-
tor for the transformation group. Transformed latent vectors
are defined with the infinitesimal transformation as zΔc =
Tz0 = (I+ΨΔc)z0. As Δc → 0, the previous equation be-
comes δz

δc = Ψz. This dynamical system has the well-known
solution zc = expm(Ψc)z0 (Rao and Ruderman 1999;
Miao and Rao 2007).

We assume that the manifold in the latent space is defined
by a finite set of transformation operators {T1,T2, ...TM},
each parameterized by their own coefficient, cm, which
specifies the contribution of the individual operator to the
given transformation. Therefore a transformation T can be
represented by a weighted combination of transformation
dictionary elements, Ψm

T = expm

(
M∑

m=1

Ψmcm

)
. (1)

This defines a generative transformation model that char-
acterizes the manifold M by a set of transformations oper-
ators Ψm. Following previous conventions (Culpepper and
Olshausen 2009), we call the transformation dictionary el-
ements Ψm transport operators. The relationship between
points in the latent space is defined as:

z1 = expm

(
M∑

m=1

Ψmcm

)
z0 + n, (2)

where n represents additive noise.

Using the relationship between points in (2), a proba-
bilistic generative model can be written that allows efficient
inference. This model assumes a Gaussian noise model, a
Gaussian prior on the transport operators Ψ (model selec-
tion), and a sparsity inducing prior on the coefficients c
(model regularization). The resulting negative log posterior
for the model is given by

EΨ =
1

2

∥∥∥∥∥z1 − expm

(
M∑

m=1

Ψmcm

)
z0

∥∥∥∥∥
2

2

+
γ

2

∑
m

‖Ψm‖2F + ζ‖c‖1,
(3)

where ‖ · ‖F is the Frobenius norm. The transport operator
dictionary elements are learned using pairs of neighboring
points in the latent space. The selection process for these
point pairs depends on the application. If the application
involves temporal data, neighboring points are defined as
points that are a few time steps apart. If the data does not
include temporal sequences, there are several other methods
for selecting point pairs during training including finding
points that are close together in an embedding space, points
that share similar attribute labels, points that are identified
as similar through human input, and points that are close in
a neural network feature space.

Using an established unsupervised algorithm (Culpepper
and Olshausen 2009), the transport operator dictionary can
be learned by using pairs of neighboring points to perform
alternating minimization with the objective in (3). Specifi-
cally, for a given batch of point pairs, we alternate between
inferring the coefficients using conjugate gradient descent
given a fixed dictionary of transport operators and taking
a step in the gradient direction of the dictionary elements.
Note that the Frobenius norm term on the dictionary el-
ements aids in identifying the transport operators that are
needed to represent natural transformations. If a dictionary
element is not used to estimate transformations between
point pairs in a training batch, this term reduces the mag-
nitude of that dictionary.

Once the operators are learned, a transformation can be
defined entirely by the set of coefficients, c, used to control
the learned operators, Ψ. To specify a transformation be-
tween two points, the coefficients can be inferred between
those points: c∗ = argminc EΨ and used to characterize an
operator A =

∑M
m=1 Ψmc∗m that can be applied to a start-

ing point, z0: zt = expm(At)z0. This data generation can
be used to interpolate between those points, extrapolate be-
yond those points, or transfer transformations to new points.

3.2 Incorporating Manifold Geometry into
Latent Space

We develop a three phase approach for training the manifold
autoencoder which incorporates transport operators that rep-
resent closed transformation paths into the latent space of an
autoencoder. See Fig. 2 for a visualization of the phases.

• Autoencoder Training Phase: Train the autoencoder on
input data.
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Figure 2: Visualization of the three phases of training the manifold autoencoder.

• Transport Operator Training Phase: Fix the autoen-
coder weights and train the transport operators on pairs
of samples from the encoded latent space as described in
Section 3.1

• Fine-tuning Phase: Fine-tune the autoencoder network
weights and transport operators simultaneously.
To incorporate the transport operators into the network ar-

chitecture, we create a new transport operator layer that ap-
plies a transformation defined by the current dictionary of
operators, Ψ, and a set of coefficients, c, to an input latent
vector, zin: zout = expm

(∑M
m=1 Ψmcm

)
zin.

We begin with the autoencoder training phase in which
we train an autoencoder with a reconstruction loss. We then
progress to the transport operator training phase in which we
fix the network weights and train the transport operators as
described in Section 3.1. Prior to the fine-tuning phase, we
identify relevant transport operators and eliminate those not
being used by defining a magnitude threshold and eliminat-
ing the dictionary elements whose magnitudes are below the
threshold. Note that this built-in selection of dictionaries al-
lows us to initially overestimate the number of dictionaries,
M , and rely on the model to identify the number necessary
for representing the transformations.

During the fine-tuning phase, we simultaneously update
the transport operators and the autoencoder weights. The
dictionary elements are updated with the same objective
function as in Eq 3. The network weight, φ, updates are su-
pervised by both reconstruction losses and a transport oper-
ator loss:

Eφ = ‖x0 − x̂0‖22 + ‖x1 − x̂1‖22 + λEΨ. (4)

As with transport operator training, fine-tuning the network
weights and dictionary elements involves alternating be-
tween inferring transformation coefficients between samples
and taking gradient steps on the dictionaries and network
weights. Algorithm 1 shows the pseudo-code for the train-
ing procedure during the fine-tuning phase.

To visualize the transport operators learned in the latent
space, we revisit the dataset used in Fig. 1 and train an au-

Data: Training samples x ∈ X , pretrained dictionaries
Ψ, pretrained network weights φ

Result: Fine-tuned operator dictionary elements Ψ and
network weights φ

for i = 0, ...., N do
Select a batch of point pairs x0 and x1;
Encode point pairs to get z0 and z1;
for j = 0, ...., num pairs do

Initialize c as cm ∼ Unif[0, 1];
Fix c to c∗ = argminc EΨ;
Ψ = Ψ− η δEΨ

δΨ ;
φ = φ− ζ

δEφ

δφ ;
end

end

Algorithm 1: Fine-tuning of network weights and trans-
port operators

toencoder with a two-dimensional latent space on 2D cir-
cular points that are mapped into a 20-dimensional space.
Fig. 1b shows these points encoded in the latent space after
the autoencoder training phase. Point pairs for transport op-
erator training are created by randomly selecting z0 from the
training set and selecting a z1 that is one of the 20 nearest
neighbors of z0. Fig. 3a shows the orbits of the four transport
operators after the transport operator training phase. These
plots are generated by applying a single learned operator as
it evolves over time to a starting point in the latent space, z0:
zt = exp(Ψmt)z0, t = 0, ...., T . The number of transport
operators started at M = 4 but the Frobenius norm term in
(3) reduced the magnitude of the unused dictionary elements
to nearly 0, resulting in only the rotational operator (trans-
port operator 1). Finally, the fine-tuning phase adjusts both
the transport operators and the latent space to accommodate
one another. Fig. 1e shows the embedded points after fine-
tuning. These points have a more clearly circular structure
than the initial embedding points in Fig. 1b.
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Figure 3: (a) Orbits of transport operators learned in the neural network latent space. (b) Heat map of the manifold offset
distance from the red reference point to every point on the grid. The manifold offset distance is small on the 1D circular
manifold on which the reference point resides. (c) AUC curve for classification of points on the same or different circles during
fine-tuning process. As fine-tuning progresses, the manifold offset distance becomes better able to separate samples from the
inner and outer circles.

3.3 Manifold Offset Distance

The learned transport operators define motion on class man-
ifolds and constrain possible directions of transformations.
We can use the operators to define a distance that indicates
the likelihood that two latent vectors lie on the same mani-
fold path. We call this distance the manifold offset distance
and it indicates the how well a point z1 can be estimated
from a starting point z0 using the learned operators Ψ. The
manifold offset distance is defined as:

doffset =

∥∥∥∥∥z1 − expm

(
M∑

m=1

Ψmc∗m

)
z0

∥∥∥∥∥
2

2

, (5)

with the inferred coefficients c∗ = argminc EΨ.
We use the concentric circle data set and the transport op-

erators shown in Fig. 3a to intuitively understand the use-
fulness of the manifold offset distance. Fig. 3b shows a heat
map of the manifold offset distances from the red reference
point. The manifold offset is very small for the points that
exist on the same 1D circular manifold as the reference point
and much larger for points off of this circular manifold.

We also use the manifold offset distance to perform a sim-
ple classification task to showcase the usefulness of the fine-
tuning phase of training. The classification task is to deter-
mine whether two points are on the same circle in the con-
centric circle data set or different circles (see Fig. 1a). To
perform this classification, we compute the manifold offset
distances between two points and use a binary classifier on
the distances to determine whether two points are from the
same circle or different circles. We quantify the performance
using the area under a receiver operator characteristic (ROC)
curve. The area under the curve (AUC) is a measure of class
separability that spans from 0 to 1 with 1 indicating perfect
separability. Fig. 3c shows the evolution in the AUC during
the fine-tuning phase. We compare the AUC using the man-
ifold offset distance and the Euclidean distance. This plot
shows that the classification is no better than chance when
using the Euclidean distance between points. By contrast,
there is high AUC using the manifold offset distance and an
increase in AUC as fine-tuning progresses. This provides ev-
idence that the fine-tuning is structuring the latent space so

the transport operators more accurately fit the encoded data.

4 Experiments

In this section, we analyze the performance of our transport
operator model on two datasets that contain closed trans-
formation paths: rotated MNIST digits and gait sequences
from the CMU Graphics Lab Motion Capture Database.1 We
demonstrate the usefulness of the manifold autoencoder for
transformation extrapolation and manifold identification.

4.1 Rotated MNIST Digits

We train our autoencoder and transport operators using a
subset of 50,000 images from the MNIST training set (Le-
Cun et al. 1998). In the autoencoder training phase, we train
on batches of rotated MNIST digits. During the transport op-
erator training phase, we generate pairs of rotated training
digits. The first image in the pair is a digit image rotated to
an angle, θ, between 0 and 350◦ degrees and the second im-
age is that same digit image rotated to θ+6◦. The training re-
sults in one operator with a much higher magnitude than the
others. Therefore, during the fine-tuning phase, we only use
the single high-magnitude operator in the transport operator
layer. We compare our technique against a hyperspherical
VAE trained on rotated digit data. This network was trained
using the network architecture and the loss functions in the
code provided by the authors (Davidson et al. 2018). In order
to define paths in the hyperspherical VAE latent space, we
compute geodesic paths on a hypersphere (Bergmann 2017).
See the appendix sections 7.1 and 7.4 for more details of the
network architecture and training process.

Fig. 4 shows a visualization of extrapolated paths in the
latent space. These paths are defined by estimating the trans-
formations between latent representations of pairs of dig-
its with 1◦ of rotation between them and extrapolating the
transformation to estimate the full rotation path. To gener-
ate the visualizations, we i) encode a starting image into
the latent space: z0 = g(x0); ii) apply the transformation
to the the starting point; and iii) decode the image output:

1CMU Graphics Lab Motion Capture Database found here:
http://mocap.cs.cmu.edu/

3670



(a) (b)

Figure 4: Two examples of extrapolated rotations in the autoencoder latent space. Row 1: Extrapolated linear path in latent
space prior to fine-tuning. Row 2: Extrapolated linear path in latent space after fine-tuning. Row 3: Extrapolated hyperspherical
VAE path Row 4: Extrapolated transport operator path prior to fine-tuning. Row 5: Extrapolated transport operator path after
fine-tuning.

x̂t = f(zt). This figure shows that the linear paths pro-
duce a small amount of rotation but quickly transform the
appearance of the digit itself. The path in the hyperspheri-
cal VAE latent space also induces a small rotation, but as the
path extends, the appearance of the original digit transforms.
This is another example of how the single hyperspherical
latent space is not effective for representing large, identity-
preserving transformations.

The transport operator before fine-tuning extrapolates ro-
tation to about 45◦ before the digit appearance significantly
changes. The transport operators resulting from the fine-
tuning phase can generate full, 360-degree rotations with
only small changes to the digit appearance. This makes it
clear that the fine-tuning phase is needed to adjust the net-
work weights and transport operators to represent the full
closed transformation paths.

The manifold offset distance can be used to identify sam-
ples on the same manifold transformation path. The rotated
paths of individual images represent 1D manifolds in this
setting and our task is to identify points on the same rotated
digit manifolds using the manifold offset distance. This is
shown through nearest-neighbor classification in the latent
space. We define 10 training samples, the latent representa-
tion of one image for each digit class at zero degrees of ro-
tation. The testing samples are latent representations of each
of the training samples rotated to different angles. We clas-
sify each rotated sample using the class label of the nearest
neighbor in the training set. Fig. 5 shows the nearest neigh-
bor classification accuracy at different rotation angles using
the Euclidean distance, the geodesic distance in the hyper-
spherical VAE latent space, and manifold offset distance be-
fore and after fine-tuning for 50 trials. This shows that the
manifold offset distance prior to fine-tuning, the Euclidean
distance, and the geodesic distance in the hyperspherical
VAE are poor measures for nearest neighbor classification
at large rotation angles. However, after fine-tuning, the man-
ifold offset distance is very effective for identifying points
on the same rotational manifold.

These experiments highlight key benefits of our method
which encourages nonlinear manifold structure in the au-
toencoder latent space. First, we show how the learned trans-
port operators can be used to extrapolate full closed trans-

Figure 5: Nearest neighbor classification accuracy of rotated
test digits.

formation paths from arbitrary starting points. Second, we
demonstrate the advantage of incorporating the manifold
model into the training of the network itself to fine-tune the
encoder mapping. Finally, we show the manifold offset dis-
tance can be used to identify pairs of points on the same
transformation manifold.

4.2 Gait Sequences

The CMU Graphics Lab Motion Capture Database includes
human walking sequences that were recorded by a mo-
tion capture system. The motion data is represented through
62-dimensional feature vectors that specify locations and
orientations of joints. We use the preprocessing procedure
discussed in (Chen et al. 2015) which converts the 62-
dimensional features into 50-dimensional features. We train
on walking sequences 1-16 from subject 35. Walking data
from this subject is abundant and this subject has been
widely used for gait analysis (Chen et al. 2017; 2015;
Taylor, Hinton, and Roweis 2007).

We train an autoencoder with a five-dimensional latent
space using features from the gait sequences. The point pairs
used to train the transport operators are composed of fea-
tures from two frames that are separated by a five frame in-
terval. We begin with 10 transport operator dictionary ele-
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Figure 6: (a) The effect of applying a learned operator which generates a full gait sequence. (b) Example of one feature from
the data space as it progresses during an extrapolated gait sequence. (c) The error in between the estimated gait sequences and
the ground truth gait sequences. The estimated sequences are extrapolated from a starting point in the latent space.

ments but we eliminate all but three operators due to their
low magnitudes after the transport operator training phase.
Each of these three operators induces a continuous gait se-
quence with some difference between the mechanics of the
movement. See the appendix sections 7.1 and 7.2 more de-
tails on the training process and an analysis of how the three
highest magnitude operators are jointly used.

Fig. 6a shows an example gait sequence generated using
the learned operator with the highest magnitude. This op-
erator can represent the full loop of a gait transformation.
To quantify our ability to estimate ground truth gait paths,
we begin at a latent vector that encodes a neutral standing
pose and use both a learned manifold transport operator and
a linear path to estimate the ground truth gait sequence. We
estimate the transformation between latent representations
of features that are six frames apart in the gait sequence.
We then use the estimated transformations to extrapolate full
gait sequence paths in the latent space. We test gait estimates
on test sequences 30 -34. Fig. 6b shows the extrapolated
paths of a single feature in a gait sequence that is decoded
from the extrapolated latent paths. We see that the linear path
can effectively estimate the ground truth gait sequence in
the initial frames but it eventually plateaus at a meaning-
less value. In comparison, the transport operator extrapo-
lated path can match the ground truth for several gait se-
quences. Fig. 6c shows the mean squared error between the
ground truth gait sequence and the estimated gait sequences
for five test walking sequences. The error in the transport
operator paths is largely due a mismatch in the speed of the

extrapolated and the ground truth gait sequences.

5 Conclusion

We have shown that incorporating a manifold model in the
latent space of an autoencoder network enables us to learn
generative representations of natural data variations that de-
fine closed transformation paths. We developed a model for
learning manifold operators in the latent space, incorporated
these operators into the network architecture of an autoen-
coder, and defined a manifold offset distance. We showed
the power of this approach for extrapolating paths and clas-
sifying samples using a rotated MNIST dataset and gait se-
quences. Future work will extend this concept of learning
natural manifold transformations in a neural network latent
space to datasets with unlabeled natural transformations that
may not represent closed paths. This extension will employ
the same methods presented here but with new techniques
for selecting training point pairs on the same manifold and
new tests for determining how effectively the learned opera-
tors match the natural, unlabeled transformations.
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7 Appendix

7.1 Training Architectures and Parameters

All experiments were run in pytorch. In 2D circle experi-
ment, we used single-layer neural networks with 512 hidden
units and ReLU nonlinearities for both the encoder and de-
coder. Fig. 7a shows the magnitude of transport operators af-
ter the transport operator training phase. We select a thresh-
old that is 70% of the magnitude of the transport operator
with the maximum magnitude. In this setting the threshold
is 0.0492 and only transport operator 1 surpassed the thresh-
old. The training parameters are shown in Table 1.

(a) (b)

(c)

Figure 7: Magnitude of the operators after the transport op-
erator training phase. (a) For 2D circle experiment (b) For
the rotated MNIST dataset (c) For gait sequences.

Autoencoder Transport Operator Fine-tuning
Training Training
batch size: 64 batch size: 10 batch size: 10
steps: 3000 steps: 3000 steps: 100
lrφ : 0.0001 lrφ : - lrφ : 0.0001
lrΨ : - lrΨ : 5 lrΨ : 0.0005
ζ : - ζ : 0.0001 ζ : 0.0
γ : - γ : 0.005 γ : 0.0
λ : - λ : - λ : 1000
M : - M : 4 M : 1

Table 1: Training parameters for 2D circle experiment

For training on MNIST digits we select 50,000 training
digits from the traditional MNIST training set and save the
additional 10,000 images for validation. We use the tradi-
tional MNIST test dataset for testing. We pre-process the
MNIST digits by scaling the pixel values between 0 and
1. During transport operator training, we scale the latent
vectors prior to performing coefficient inference in order to
maintain a maximum value of about 1 for the latent vec-
tors. The network architectures are given in Table 2 and the

Encoder Network Decoder Network
Input ∈ R

28×28 Input ∈ R
2

conv: chan: 64 , kernel: 4, Linear: 3136 Units
stride: 2, pad: 1
ReLU ReLU
conv: chan: 64 , kernel: 4, convTranpose: chan: 64 ,
stride: 2, pad: 1 kernel: 4, stride: 1, pad: 1
ReLU ReLU
conv: chan: 64 , kernel: 4, convTranpose: chann: 64 ,
stride: 2, pad: 0 kernel: 4, stride: 2, pad: 2
ReLU ReLU
Linear: 2 Units convTranpose: chan: 1 ,

kernel: 4, stride: 2, pad: 1
tanh

Table 2: Autoencoder network architecture for rotated
MNIST experiment

Autoencoder Transport Operator Fine-tuning
Training Training
batch size: 64 batch size: 32 batch size: 32
epochs: 25 steps: 2250 steps: 7800
lrφ : 0.0001 lrφ : - lrφ : 0.005
lrΨ : - lrΨ : 0.01 lrΨ : 1
ζ : - ζ : 0.01 ζ : 0.0
γ : - γ : 8e− 5 γ : 0.0
λ : - λ : - λ : 10
M : - M : 10 M : 1

Table 3: Training parameters for rotated MNIST experiment

training parameters are given in Table 3. Fig. 7b shows the
magnitude of transport operators after the transport operator
training phase with the threshold for transport operator se-
lection. In this experiment the threshold is 2.4556 and only
transport operator 1 surpasses this threshold.

We use walking sequences from subject 35 in the CMU
Graphics Lab Motion Capture Database in the gait exper-
iment. We use sequences 1-16 for training, sequences 28
and 29 for validation, and sequences 30-34 for testing. Dur-
ing transport operator training, we scale the latent vectors
prior to performing coefficient inference in order to main-
tain a maximum value of about 1 for the latent vectors.
Fig. 7c shows the magnitude of transport operators after the
transport operator training phase with the treshold for trans-
port operator selection. The threshold in this experiment is
15.197 and transport operators 3, 5, and 6 all have magni-
tudes above that threshold. In this case, the transport opera-
tors from the transport operator training phase generate full
gait sequences so we use these operators for our experiments
without undergoing the fine-tuning phase. The network ar-
chitectures are given in Table 4 and the training parameters
are given in Table 5.

7.2 Analysis of Joint Usage of Gait Transport
Operators

The gait experiment is the only experiment that results in
more than one dictionary element above the selection thresh-
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Encoder Network Decoder Network
Input ∈ R

50 Input ∈ R
5

Linear: 512 Units Linear: 512 Units
tanh tanh
Linear: 512 Units Linear: 512 Units
tanh tanh
Linear: 512 Units Linear: 512 Units
tanh tanh
Linear: 5 Units Linear: 50 Units

Table 4: Autoencoder network architecture for walking gait
experiment

Autoencoder Training Transport Operator Training
batch size: 64 batch size: 32
training steps: 15000 training steps: 14500
lrφ : 0.0005 lrφ : -
lrΨ : - lrΨ : 0.005
ζ : - ζ : 0.05
γ : - γ : 0.0001
λ : - λ : -
M : - M : 10

Table 5: Training parameters for walking gait experiment

old. To better understand the usage of the operators, this sec-
tion shows a visualization of the action of each of these op-
erators and how their coefficients are activated jointly dur-
ing gait sequences. Fig 6a shows the gait sequence gener-
ated by transport operator 5. Fig. 8 shows the gait sequences
generated from the two remaining operators above the se-
lection threshold. All three operators induce continuous gait
sequences but they vary in speed and mechanics of the gait.
For instance, transport operator 5, shown in Fig. 6a, gener-
ates a faster gait sequence than the other two and the body
rocks side to side more with that operator. Transport oper-
ator 3 (shown in Fig. 8a) on the other hand results smaller
steps than the other two with the body tilted further forward.

Fig. 9 shows plots of the inferred coefficients for pairs of
each of the three high magnitude transport operators. These
plots show that the transport operators are used jointly and
there are shared patterns of usage between them.

7.3 Additional Examples of Transport Operators

To provide more context to the transport operators shown
in this paper, we show transport operators trained with the
CMU Graphics Lab Motion Capture data in the input space,
rather than in the latent space of an autoencoder. Multiple
operators are learned that encompass different movements.
Fig. 10a shows the effect of an operator that induces a walk-
ing sequence. Fig. 10b shows the effect of an operator that
kicks the left foot backward. Fig. 10c shows the effect of
an operator that causes the body to lean from side-to-side
during the gait sequence.

(a)

(b)

Figure 8: (a) Gait sequence generated from operator 3. (b)
Gait sequence generated from operator 6.

(a) (b)

(c)

Figure 9: Scatter plots of the inferred coefficients for pairs
of transport operators. The coefficients were inferred over
the latent representations of pairs of points in the gait se-
quences. (a) Coefficients for transport operator 3 and trans-
port operator 5. (b) Coefficients for transport operator 3 and
transport operator 6. (c) Coefficients for transport operator 5
and transport operator 6.

7.4 Hyperspherical VAE

Our hyperspherical VAE implementation came from the
Nicola De Cao’s github page.2 For both the concentric cir-
cle dataset and the gait sequences dataset, we trained the
hyperspherical VAE with the same network architectures as
our autoencoder experiments and a mean square error recon-
struction loss. For the rotated MNIST dataset, we used the
network architecture from the mnist example in the hyper-
spherical VAE code and used the binary cross entropy loss
for the reconstruction error on dynamically binarized rotated
digit images.

To estimate paths on the hyperspherical VAE latent space,
we used the Manifold-valued Image Restoration Toolbox3 to

2https://github.com/nicola-decao/s-vae-pytorch/tree/master/
hyperspherical vae

3https://ronnybergmann.net/mvirt/
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(a)

(b)

(c)

(d)

Figure 10: The effect of applying four example transport
operators trained on gait data in the input space.

compute geodesic paths on a 10-dimensional hypersphere.
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