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Abstract

In the last few years we have seen a remarkable progress from
the cultivation of the idea of expressing domain knowledge by
the mathematical notion of constraint. However, the progress
has mostly involved the process of providing consistent solu-
tions with a given set of constraints, whereas learning “new”
constraints, that express new knowledge, is still an open chal-
lenge. In this paper we propose a novel approach to learn-
ing of constraints which is based on information theoretic
principles. The basic idea consists in maximizing the transfer
of information between task functions and a set of learnable
constraints, implemented using neural networks subject to L
regularization. This process leads to the unsupervised devel-
opment of new constraints that are fulfilled in different sub-
portions of the input domain. In addition, we define a sim-
ple procedure that can explain the behaviour of the newly de-
vised constraints in terms of First-Order Logic formulas, thus
extracting novel knowledge on the relationships between the
original tasks. An experimental evaluation is provided to sup-
port the proposed approach, in which we also explore the reg-
ularization effects introduced by the proposed Information-
Based Learning of Constraint (IBLC) algorithm.

1 Introduction

We consider a generic multi-task learning problem in which
the goal is to learn a set of unknown functions, also called
task functions, given some labeled examples and knowledge
about the way the tasks are related. While some of the rela-
tionships among tasks are known proprieties of the consid-
ered environment, new relation patterns, that are not known
in advance, could also exist. This paper presents a learn-
ing framework in which, instead of only focusing on the
development of the task functions accordingly to the avail-
able knowledge, we are also interested in determining new
knowledge. We consider the case in which such knowledge
is represented by a set of logic rules that compactly explain
how the task functions are related in some regions of the
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Figure 1: (a) Input, concept and rule spaces, that are asso-
ciated to input data x, task functions f(x) and constraints
oi(f(x)) = 0,5 = 1,...,¢, and ¥.(f(x)) = 0, z =
1,...,m, respectively. (b) Learning task functions subject
to given constraints ¢;(f(z)) = 0, j = 1,...,c (dotted
connections are identity mappings). (c) Learning task func-
tions subject to given constraints and learning of constraints
Y. (f(z)) =0,z =1,...,m, where m = 4 in this example.

input space (e.g., co-occurrence on some samples, exclu-
sivity, ...). Given a test example, our approach can provide
a logic-based explanation of the discovered relationships in
the space region to which the example belongs. Another in-
novative aspect of the proposed approach is that the learned
knowledge conditions the development of the task functions
themselves. This introduces a regularization effect also im-
proving the overall accuracy of the developed functions.
More formally, in this framework we distinguish among
the problem of learning a set of task functions in the input
space, subject to given constraints that implement the avail-
able knowledge on the problem at hand, and the problem
of learning “new” constraints in the concept space to which
the task functions belong. Constraints belong to what we re-
fer to as the rule space, as sketched in Fig. 1 (a). Learning
new knowledge is the outcome of a developmental process
in which the task functions are progressively learnt in the in-
put space (stage 1) and, afterwards, it is learnt how the task
functions are related in the concept space (stage 2). An alter-
nate optimization scheme is progressively iterated, refining
the task functions subject to given-and-new constraints, and
improving the newly devised constraining functions.



In this paper, we consider the generic framework of learn-
ing from constraints (Gnecco et al. 2015), that nicely gen-
eralizes the most popular learning settings by means of the
unifying notion of “constraint” (see Table 4 in (Gnecco et al.
2015) for a list of examples). Learning is conceived as the
problem of finding those task functions that are subject to a
number of constraints that represent the available knowledge
on the considered problem (Fig. 1 (b)). The optimal solution
is the one that is the most parsimonious (regular, smooth),
making the problem well-posed. A key feature of such a
framework is that symbolic knowledge, unambiguously ex-
pressed by means of First-Order Logic (FOL) formulas, can
be converted into constraints among the task functions and
enforced on a subset of the training set or on all such data
(whether they are supervised or not) (Diligenti, Gori, and
Sacca 2017). Any supervision represents a simple form of
pointwise constraint, i.e. f;(xy) —yn = 0, where (xp, yp,) is
a supervised pair and f; is a certain task function.

While it is pretty common to search for solutions that are
consistent with a given set of constraints, learning new con-
straints to adapt to the environment is still an open challenge.
In this paper we propose a novel approach to learning of
constraints in the concept space, which is rooted on informa-
tion theoretic principles. The basic idea consists in maximiz-
ing the transfer of information between the task functions
and another set of learnable functions. While it is known that
maximizing the Mutual Information from the input space to
the task functions leads to an unsupervised process that is in-
herently related to data clustering (Melacci and Gori 2012),
here we consider the case in which we maximize the infor-
mation transfer from the concept space to the rule space,
where the aforementioned learnable functions are neural net-
works (Fig. 1 (c)). This process yields the unsupervised dis-
covering of new constraints among the tasks, that are ful-
filled in almost-disjoint sub-portions of the concept space.
Such newly devised knowledge is not immediately explain-
able using formal descriptions and, for this reason, we pro-
vide a simple procedure that can explain the learned con-
straints in terms of FOL formulas, thus extracting symbolic
knowledge on the relationships between the original tasks.
This procedure is based on the idea of reducing the number
of paths in the networks that implement the new constraints,
exploiting L regularization. This choice allows us to pro-
duce compact FOL formulas and it is mostly motivated by
simplicity. An experimental evaluation is provided to sup-
port the proposed approach, where we also explore the reg-
ularization effects introduced by the proposed Information-
Based Learning of Constraint (IBLC) algorithm.

Related Work

There exists a number of works sharing the idea of learning
constraints. They are usually intended to satisfy the available
ground truth (supervisions) on a given dataset (De Raedt,
Passerini, and Teso 2018). The learned constraints have to be
expressed in some (mathematical) language and a common
choice falls on logic formulas (Valiant 1984; Bessiere et al.
2017; Pawlak and Krawiec 2017; Kolb et al. 2018), such as
in the case of FOL in Inductive Logic Programming (Mug-
gleton 1991; De Raedt et al. 2016). The case of learning
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hard-constraints is generally plagued by large algorithmic
complexity, thus several approximations were proposed. Ap-
proaches that are about learning soft-constraints usually aim
at discovering the weights of a large set of clauses (Richard-
son and Domingos 2006; Bach et al. 2015), or both clauses
(structure) and weights (Campigotto, Battiti, and Passerini
2015; Yang, Yang, and Cohen 2017). Differently, in our
framework any constraint is implemented as a neural net-
work and the learning setting can be carried out as any tradi-
tional learning of neural network parameters. Only at the end
of the learning stage we provide a symbolic interpretation of
the networks.

Symbolic interpretation of neural networks (rule extrac-
tion) has been the subject of many researches by several
authors, especially in the nineties. Some approaches are
about Fuzzy Logic (Kasabov 1996; Huang and Xing 2002;
Castro and Trillas 1998; Di Nola, Gerla, and Leustean 2013),
but are generally less straightforward in terms of explain-
ability than the ones based on Boolean Logic (Fu 1991;
Towell and Shavlik 1993; Tsukimoto 2000; Sato and Tsuki-
moto 2001). In the latter case, it is pretty common to rely on
a discretization of the input and output values of the neurons,
pruning the network to keep it simple. The interpretation we
propose in this paper follows this approach, mostly in the
spirit of (Zilke, Mencia, and Janssen 2016) where Boolean
interpretation is applied neuron-by-neuron to a deep neu-
ral network that is trained to solve a specific task, decom-
posing the interpretation of the whole network to its sub-
constituents. However, we follow a different paradigm, both
developing a set of task functions and another network that,
in turn, learns how the tasks are related (constrained).

This paper is organized as follows. Section 2 introduces
the learning framework, including the Information-Based
Learning of Constraint (IBLC) algorithm, whose outcome
is explained using the strategies of Section 3. Section 4 col-
lects the experimental results and Section 5 concludes the

paper.

2 Formulation of Learning

We consider a multi-task learning environment composed of
n task functions, fi,..., f,, compactly represented by the
vectorial function f = [f1,..., fa], where f : X C R? —
Y C R™. The perceptual information x € X is processed
and it is mapped to the concept space by f(x) (Fig 1 (b)).
For example, in a multi-class classification problem, n is the
number of classes, and f; is the classifier associated to the i-
th class. We assume that we are given a discrete collection of
data X = {z1,...,zy : x € X}, of task-specific knowl-
edge (for example, supervisions on some of the available
data), and of other knowledge that is about the environment
in which the system operates, such as relationships among
the task functions.

Learning from Constraints. Several ad-hoc solutions
can be considered to inject the available knowledge into the
learning process that yield the f;’s. The framework of learn-
ing from constraints (Gnecco et al. 2015) offers a generic
environment in which the unifying notion of “constraint”
is exploited to model the available knowledge and to en-
force it into the learning process. Such knowledge is imple-



mented using a number of constraints that involve (a sub-
set of) the task functions f, and they are represented with
¢j(f(x)) = 0’ ] = 13"'76’1 where (rb = [¢1;"'a¢c}’
¢:Y CR" = Z C R being c the number of constraints.
It is pretty common to embed each ¢; into a non-negative

penalty function, indicated with g?)j, that is evaluated over
a subset of the input space and that expresses the cost for
not respecting the equality constraint ¢, (f(z)) = 0 (notice
that sometimes the introduction of a penalty function could
also not be needed, for example when ¢; is already non-

negative, and then we have ¢3j = ¢;). It Xy, C X are the
data points belonging to such subset, then we aim at mini-
mizing the penalties together with a regularization term that
enforces the smoothness. Formally?,

= argm}nU(f)

—argrmn Z Z qﬁj

Jj=1 a:kEqu

ey
)+ 1A

where the generic regularization term based on the norm
of f is weighted by v > 0, and we assumed that cus-
tomizable scaling factors are embedded into the penalty
terms. For example, consider the classic supervision con-
straint ¢;(f(z)) = f(z) — y(z) 0, and suppose we
want to enforce it on a single data point x,. Then, we
could embed it into a quadratic penalty function ¢; (f(z)) =
|| f(x) —y(x)||?, and the second summation of Eq. 1 will in-
volve x;, belonging to Xy, = {z,} . However, the role of
¢; in the considered learning framework is more general,
since ¢; could implement different types of knowledge, for
example the one expressed by means of a FOL formula. For
further details we recommend (Gnecco et al. 2015).

In this paper we consider the case in which f is modeled
by a feed-forward neural network with n output neurons,
each of them associated to a component of f (Fig. 1 (b)).

Learning of Constraints. Enforcing the given constraints
¢i(f(x)) =0,7=1,...,c, results in enforcing regularities
in the concept space that are dictated by ¢. Learning new
constraints ¢, (f(x)) = 0, z = 1,...,m corresponds with
discovering regularities in the concept space, modeled by the
vectorial function ¥ = [¢)1,...,%,], with ¢ : Y C R" —
Z C R", where m is the number of learnable constraints.

We propose to implement v using a feed-forward neu-
ral network with m output neurons, each of them associ-
ated to a component of v (Fig. 1 (c)). Such network is
not the only element that the system is expected to learn,
since also the subsets of data on which each constraint is
enforced are unknown and must be estimated. We indicate
with X, C X the subset associated to 7)., and X, =

{Xy., z2=1,...,m}.

'Inequality constraints could be available as well, but to sim-
plify the descriptions we focus on equality constraints (inequality
constraints ¢;(f(z)) < 0 can be converted into an equality by
max (0, ¢;(f(x)) = 0).

*In order to simplify the notation, here and in the rest of the pa-
per we will not make explicit the dependence of objective functions
on the data X, and of eventually available supervisions.
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We can define a problem similar to the one of Eq. 1, where
the variables to be optimized are ) and X, that is

*, Xy* = arg min D(¢, Xy, f)
waXﬂ/

—argmm Z Z wz

¥ Xy z=lxreXy,

)+l

2)

where v, > 0 and z/AJZ denotes a penalty term associated
to each v),. This problem is clearly ill-posed, being solved
by 1) constantly equal to 0 or by m equivalent constraints.
Moreover, we are posing no conditions on X, that is now
a variable of the learning problem, and on the portion of X
covered by UL, X, _, so that several not-useful solutions
are possible.

Information-Based Learning of Constraints

In order to devise a valid formulation of Eq. 2, we follow
the intuition that ?) should maximize the information trans-
fer from the concept space to the rule space, to capture the
regularities of the concept space itself. In particular, max-
imizing the Mutual Information (MI) under a smoothness
condition is a feasible way to learn membership functions
associated to clusters (Melacci and Gori 2012).

For any . we introduce the probability distribution
Py_.|y—f(z) (¥, f(x)), that can be regarded as the prob-
ability that 1, is fulfilled on a concept-space projection
f(z) € Y of the example « € X. The notation ¥ indicates a
discrete random variable associated to the constraints, while
Y is a random variable associated to the data in the con-
cept space, respectively. The MI between the input data, pro-
jected into the concept space, and the rule space is computed

by Iy,w (¢, f), where
IY’\II(w’ f) :H\P(w7f)—H\p‘y(¢,f) ) (3)

being Hy the entropy associated to W, while Hy |y is the
conditional entropy of ¥ given Y. In detail, Hy (¢, f) =

-> ( /y Pa,:z‘y:yw,y)dy) log ( /y qu:z\Y:y)(%?JMZ/)
z=1

and Hyy (¢, f) = —> 00, fy Py—jy—y (¥, y)dy. If we
assume ) to be uniformly distributed and discretized on the
data {f(x) : = € X}, we can easily replace the integrals
with summations on x € X, scaled by %

The MI is maximized when, on average, all the m
constraints are fulfilled in an unbiased way, that is
fy Py_.jy—y (¥, y)dy = %, due to the maximization of the
entropy Hy. Moreover, due to the maximization of the neg-
ative conditional entropy —Hy|r, only one of the m con-
straints is fulfilled on each f(x), i.e., for each f(z) there is
only one Py_.|y—y(,) that is 1 for a certain z, while the
other Py—_p|y—f(s), h # 2, are 0. As a result, maximizing
MI leads to the development of m different constraints that
are fulfilled in a mutually exclusive way on each f(z), and
so on each data sample € X. This allows us to inher-
ently determinate the set X, since, for each z, we have that



Xy, ={z € X : ¢.(f(xz)) = 0}, avoiding the need of
treating X, as a variable of the learning problem (Eq. 2)

If we maximize the MI on the data X (indicated with the
penalty term jy’\p) in a soft way and under a smoothness
assumption, then we end-up in a feasible objective that can
be used to learn the constraining function ¢, that is a valid
formulation of the problem in Eq. 2. In detail,

D, Xy, f) = D, ) = { ~Iv.w (0, £, X) + llll } |
“)
where the set X, is not anymore a variable of the problem.
We are left with the problem of defining how
Py—.jy—f(z) (¥, f(x)) is computed. We must ensure that
> . Po—.jy—f@) = 1 as well as that each Py__|y—f(y) >
0, but we also have to take care that the z-th constraint is
fulfilled whenever Py_.|y—f) = 1, ie., ¥.(f(z)) = 0.
A probabilistic normalization can be built using the softmax
function, inverting the signs of the activations,

o= B:(F(@))
P\IJ:z\Y:f(m) (1/’7 f(LC)) = ZZLZI e Bun(f(@) ° (5)

that, however, yields the same probabilities even if we add
an offset to the activations, thus violating the aforemen-
tioned requirements (5 is a customizable scaling param-
eter). Moreover, whenever e~#¥=(/(*)) numerically domi-
nates e~ #¥»(/(#))’s h £ 2 we will end-up in having prob-
ability ~ 1 even if ¢.(f(z)) = 0 is not fulfilled. We can
easily circumvent these problems by requiring each 1, to
be bounded [0, 1] (e.g., using sigmoidal activation functions
we have n = 1), and forcing conditions on the extremes
of the interval, i.e., Py—.|y—f() (¥, f(x)) = 6 ~ 1 when
Y. (f(x)) = 0and ¥ (f(x)) = n, h # z. This leads to:
B =log(8(m — 1)) —log(1 — ), and we set 6 = 0.99.

Finally, we notice that due to the soft enforcement of the
MI in Eq. 4, the system can actually learn multiple con-
straints that are fulfilled on the same z, thus relaxing the
aforementioned mutual exclusivity. Even if out of the scope
of this paper, we could also include the functions ¢ in the
summations of Eq. 5 and of the entropy terms, thus encour-
aging the system to learn new constraints ¢ that are different
from the given ¢ (a condition that, in general, is not neces-
sarily met).

Stage-based Learning

The problem of learning from — and of — constraints can be
formalized as,

11,97 =agmin {U(f) + D®. )}, (©
where U and D are defined in Eq. 1 and Eq. 4, respectively.
However, if we directly minimize Eq. 6 we actually enforce
the maximization of the MI between the input space (instead
of the concept space) and the rule space, due to the depen-
dence of D by f. We will see in Sec. 4, that this configu-
ration, that we will call Global Optimization, is difficult to
be optimized and leads to unsatisfactory results. Therefore,
we propose a Stage-based Optimization procedure (formal-
ized in Algorithm 1) in which we first learn the task func-
tions subject to the given constraints only (stage 1 — only
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U(f) is involved), and then we learn new constraints in the
concept space, keeping the task functions fixed (stage 2 —
only D(%, f) is involved). Afterwards, we apply an iterative
process that is based on optimizing the whole Eq. 6, alter-
nately keeping fixed either the constraints or the task func-
tions. In other words, we further refine the task functions
by the learned constraints (emphasizing their relationships)
and, in turn, we refine the constraints by means of the up-
dated task functions (in this case, we do not consider the
term U (f), since it is not function of ). This procedure is
repeated 1" — 1 times, and it is guaranteed to converge since
we keep minimizing the same functional.

Algorithm 1 Stage-based Optimization procedure (super-
scripts indicate the iteration number).
1: initialize: (%), (%)
> initialization of the network weights
2: f(D argmin s U(f)
> learning the task functions (stage 1)
3: M) < argmin, D((®), f(1)
> learning of constraints (stage 2)
4: fort =1tot =T —1do
50 )« argming U(f) + D(y»®, f®)
> refinement of the task functions
6: Y« argming D(yp®, fEHD)
> refinement of the learned constraints

f(T), * = dJ(T)

7: end for
8: output: f*

3 Interpretation of the Learned Constraints

The constraint learning procedure described so far leads
to the development of constraints . (f(xz)) = 0, z
1,...,m, that do not provide an explicit symbolic descrip-
tion of the discovered relationships among the involved task
functions f. Neural networks are generally considered as
black boxes and providing an explanation of their decision
mechanism is not straightforward and generally requires
complex techniques. In this paper we focus on possible in-
terpretations of the network 1) from a logical point of view
(as also considered in (Di Nola, Gerla, and Leustean 2013;
Zilke, Mencia, and Janssen 2016)), motivated by the useful-
ness of FOL to represent knowledge. A logical formula can
be seen as a symbolic description of a certain truth-function,
in this case related to the functional behaviour of each 1), .
We propose to exploit a Boolean interpretation of the neu-
ral network that implements ). We consider task functions f
that return values in [0, 1], thus modeling the truth degree of
a set of logic predicates. Similarly, we focus on functions v
that are in [0, 1] too, thus fulfilling the requirements on the
bounds introduced in Section 2. The main idea consists in
approximating the input of each neuron with the vertices of
the Boolean hyper-cube, while the neuron output is approx-
imated with a Boolean value. In detail, the hidden units are
squashed in [0, 1] (we used sigmoids) and, since the func-
tions f are in [0, 1] as well, each neuron of the ¢-network
learns a linear separation surface in the space [0, 1]%¢, being



q; the fan-in of the generic i-th neuron. We select a deci-
sion threshold (we used 0.75), so that the separation surface
yields a {0, 1}-valued function denoting the membership of
any input pattern to the (false) O-class or (true) 1-class. If we
restrict the neuron input space to the vertices of the Boolean
hyper-cube {0, 1}%, then any neuron can be interpreted as a
Boolean function and therefore it can be described according
to its associated truth-table.

The truth-table of each neuron can be easily converted
into its logical representation in Disjunctive Normal Form
(DNF) considering the disjunction (V) of conjunctions (A)
of the literals (v, —v) corresponding to the rows for which
the Boolean function is true. By composing the truth tables
accordingly to the network structure (see Fig. 2), any v, can

be represented by a Boolean formula v, that depends on the
Boolean propositional variables f of the task functions f.
Any formula 1&2 turns out to be true (evaluated to 1) for any
pattern z satisfying the constraint ¢, (f(z)) = 0, i.e., for

the sake of clarity, the truth-function associated to 1, corre-
sponds to 1 — 1),. In Fig. 2 we report an example of a neural
network implementing 1), where each neuron is paired with a
truth table and a logic description by means of a Boolean for-
mula. Finally, in order to get a FOL formula that describes
¥, (f(z)) = 0, quantified with Vo € X,;,_, we replace the

Boolean variables f with the predicates whose truth value is
computed by the task functions f.

Dealing with Complexity

Unfortunately, the size of such truth-table (and the complex-
ity of its corresponding formula) is exponential in the num-
ber of its input variables and this can generally limit the scal-
ability of this approach. In order to get low-level complex-
ity formulas, we first notice that we can restrict the input
space of each neuron by observing how the neuron behaves
when the network makes predictions in the given training
data. In fact, in the case of the input of the ¢-th neuron, we
can reasonably consider only the subset of configurations of
the Boolean hyper-cube {0, 1}% that are actually triggered
when making inference on the training data. Secondly, we
assume that any neuron has only few edges with a not-null
weight, whose number is defined by the custom parameter
q > 1. In order to implement this assumption, we chose the
Li-norm (||.||1) on the network weights as regularization
term of Eq. 4, that facilitates the sparsity of the connections.

In order to reach the condition in which the fan-in of each
neuron is ¢, for the Stage-based Optimization we propose to
progressively prune the network, fixing eventually generated
inconsistencies due to the possibly disruptive pruning oper-
ation. In detail, after step 3 and step 6 of Algorithm 1, where
the ¢)-network is updated, for each neuron, we prune the in-
put weight with the smallest absolute value. Then, we refine
the pruned network, repeating the i-update step (step 3 or
step 6). At the end of Algorithm 1, in order to ensure that
we preserve exactly ¢ input connections for each neuron, we
keep pruning and refining until all the fan-ins are equal to q.
Regarding the Global Optimization, instead, the whole pro-
cess is performed at the end of the learning epochs. In Fig. 2
we report an example of 1-network with ¢ = 2.
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Figure 2: An example of ¢. Hidden and output neurons
are paired with the truth table (right) and the correspond-
ing logic description (top) devised as described in Section 3.
The truth tables include the real-value neuron outputs (third
column) and the Boolean approximation (last column). The
logic descriptions of 1,15 are the outcome of composing
the descriptions of the hidden neurons.

As a possible drawback of this approach, the choice of
keeping low the fan-in of each neuron could affect the capa-
bility of the neural network to learn global rules, e.g. a dis-
junctive clause among all the possible task functions. How-
ever, networks with stacked layers progressively compose
the computations, allowing us to recover more general for-
mulas involving several task functions still keeping low the
size of the truth-tables. Even if the Boolean interpretation
can be affected by some approximation mistakes (we re-
moved those min-terms that are always false), some promis-
ing experimental results showing the effectiveness of this ap-
proach are reported in Section 4.

4 Experimental Results

Our experimental analysis aims at evaluating the automat-
ically devised FOL-based explanations of the relationships
among the learned task functions. The learned constraints, in
turn, have regularization effects on the task functions, hence,
we also evaluate how their generalization skills are affected.
We compare: the Baseline model where only the task func-
tions are learned (no constraints are learned); the Global
Optimization algorithm, where the constraints v, and the
task functions are jointly learnt by directly optimizing Eq. 6;
the Stage-based Optimization algorithm, where the learn-
ing process consists in multiple repetitions of a task-learning
stage and a constraint-learning stage, as described in Algo-
rithm 1. We considered two challenging settings built on two
popular datasets, MNIST and PASCAL Part?, that we refer
to as MNIST Even/Odd and PASCAL Multi.

In all the experiments, the model parameters have been
cross-validated ranging them in the following grids: learn-
ing rate of the Adam optimizer € {0.01,0.001,0.0001},
v € {le —2,1e — 3,1e — 4}, ¢ le — 6 (we used
the squared norm of the weights to implement || f]|). We

*The datasets can be downloaded at http://yann.lecun.com/
exdb/mnist/ and https://www.cs.stanford.edu/~roozbeh/pascal-
parts/pascal-parts.html



Table 1: Accuracy values (£ standard deviation) and learned rules in MNIST Even/Odd dataset in the case of two configurations
of the ¥ network (a-b, see the main text for details), varying the amount of labeled examples per class.

# Labeled Examples |  Baseline | Stage-based Optimization \ Global Optimization

1 31.7£2.1% 46.5+ 1.4 % 38.7 £ 3.7%

10 68.6 £ 0.4 % 71.54+ 0.9% 71.6 = 1.7%

100 84.5+0.4 % 86.7+ 0.3 % 86.0£ 0.1%
Learned Rules \ Samples from X

(a) Vz € Xy,, OddV Even
Vo € Xy,, Nine N ~Even

Vo € Xy,, Eight V Zero
Vo € Xy,, Siz A —0dd

IIEX% EEXl/,Q
eXw3 B - Xy,

(b) Yz € Xy,, Odd A —Even A [(One V Five V Seven V Nine) V

(=One A ~Five A ~Seven A ~Nine)]

Vz € Xy,, Even A ~Odd A =One A —=Five A =Nine A (Eight V = Eight)

L/]3]15]7] 9 SN
NEAAE- x,

also considered different scaling factors € {0.5, 1,2} of the
penalty term associated to the MI (Eq. 4), and a convex com-
bination of the two entropy terms, modulated by a coeffi-
cient € {0.25,0.5,0.75}. All experiments are based on 1000
epochs. For the stage-based optimization, the task function
learning stage lasts 200 epochs, while the constraint learning
stage lasts 50 epochs. The same holds for the successive re-
finements. All the reported results are averaged over 5 runs.*

MNIST Even/Odd. Let us consider the task of handwrit-
ten digits classification, where the task functions are the
predicates f;, i = 0,...,9, denoting the memberships to
the digit classes, and the predicates feyen, fodd, denoting
whether the input digit is even or odd. The 12 task functions
are implemented as a multilayer perceptron (MLP) with 30
hidden and 12 output units. Here and in the following ex-
periments, we indicate the task functions with more read-
able labels, such that Even for feyen(z) and Zero for fo(x)
(and so on). In this experiment we consider two configura-
tions with (a¢) m = 2 and (b) m = 10 constraints, imple-
mented by single-output neural networks ¢,, without hid-
den layers, and we selected our pruning procedure to end
when the fan-in of each v, is ¢ = 6 and ¢ = 2. Training,
validation and test sets are composed of 20k, 5k, and 10k
digits, respectively, taken from a (class-balanced) subset of
the MNIST data. Only a small portion of the training set is
labeled, and it is converted into cross-entropy-based super-
vision constraints (qASj in Eq. 1).

Table 1 reports both the evaluation of the performances
in terms of accuracy for the task functions and some promi-
nent examples of the extracted rules (in the case of 100 la-
beled examples). Predictions are considered correct only if
they perfectly match the whole ground truth tuple of length
12. It is important to notice that the reported rules in all ex-
periments are extracted from a single run of the stage-based
optimization: the MI, in fact, is better maximized within this
framework, leading to more informative rules. On the right-
side of the table some samples which belong to the support

*All experiments are reproducible by using the code avail-
able at https://github.com/gabrieleciravegna/Information-based-
Constrained-Learning
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X, of the rules are also reported.

The improvements in terms of accuracy respect to the
baseline are evident for both the stage-based and global-
optimization. As expected, we observe stronger improve-
ments with a smaller number of labeled examples per class,
especially in the case of the stage-based optimization (15%
better than the baseline with 1 labeled example). The FOL
formulas in the first configuration of the 1, networks (a),
nicely capture the mutual exclusivity of Even and Odd of
the digits (Eight V Zero) and the negative correlation of
some of the odd (even) digits with the Fven (Odd) class.
The rules extracted from the second configuration (b), in-
stead, gather the digits into two groups (Odd and Even) and
attempt to provide a description of each group. However,
they remark the importance of the fan-in reduction process
(Sec. 3): as the fan-in increases, the readability of the rules
decreases.

PASCAL Multi. PASCAL Part dataset is composed of
6103 images of objects and object parts which were split
into 5492 training images, 305 validation images and 306
test images. They were rescaled to 128 x 128 pixels, and
we extracted features using the ResNet50 network trained
on ImageNet. Following the approach used in (Donadello,
Serafini, and Garcez 2017), very specific parts (e.g. front-
left-leg) were merged into unique labels (e.g. leg) leading
to 62 classes, out of which 42 are related to parts. In order
to evaluate the regularization effects of the learning of con-
straints when the number of labeled samples changes (the
other training samples are unlabeled), we have repeated the
analysis with 10, 50 labels per class and with the dataset
completely labeled. Task functions have one hidden layer
with 100 units. The ¢)-networks include 50 output units, and
we consider both the case of architectures with no-hidden
layers (a) and with 1 hidden layer (20 hidden units) (b), re-
spectively setting fan-in ¢ = 3 and ¢ = 2. We have tried to
further increase 1, network deepness, but the regularization
effects on the task function and the quality of the extracted
rules did not improve.

Table 2 reports the macro F1 score for the task functions
and examples of the best extracted rules (data samples are



Table 2: Macro F1 scores (fstandard deviation) in PASCAL Multi dataset in the case of two configurations of the 1) network
(a-b, see the main text for details), varying the amount of labeled examples per class.

# Labeled Examples | Baseline | Stage-based Optimization | Global Optimization

10 54.0 £0.3% 56.8 + 0.2% 55.8 £0.7%

50 60.5 £ 0.2% 62.0 + 0.4% 61.3+0.5%

Whole dataset 62.6 + 0.3% 63.8 + 0.2% 63.7 + 0.4%
Learned Rules

(a) Vx € Xy,, ~Beak N Hand N\ Foot Vo € Xy,, ~Foot A Dog

Vo € Xy,, ~Boat AN Handlebar

Vo € Xy,, ~AirplaneBody N\ Cow

by Vx e Xy,, Beak N —FEar N -Nose

Vo € Xy,, TvMonitor A (Screen V Table)

Vo € Xy,, (CatV Dog) A (—Foot V Paw)
Vo € Xy,, Aeroplane A\ (Engine V Stern)

in Fig. 3). As in the previous experiment, they all come out
from the stage-based optimization. We observe an evident
improvement, in terms of F1, obtained by both optimization
methods over the baseline.

Due to its complexity, this benchmark always benefits
from the employment of the proposed approach, regardless
of the number of supervision. If we evaluate the rules of con-
figuration (a) and the first rule of configuration (b), they de-
scribe the incompatibility among certain objects or object
parts in the same image. This type of reasoning is often used
also by human to automatically exclude some classes while
recognizing something. Let us consider the case of the first
rule of (b): one would immediately rule out the possibility
that an animal may have ears or nose, while he already rec-
ognized it has a beak. Rule numbers 2, 3 and 4 of configu-
ration (b), instead, are related to the composition of object
parts with respect to a certain main class, e.g. an aeroplane
with its engines or its stern.

Figure 3: A sample from X,;_ for each rule of Table 2.
First row, configuration (a). Second row, configuration (b).

Results Analysis

In order to further understand the regularization effects of
the proposed approach, we have analysed the performances
of the three configuration, Baseline, Stage-based Optimiza-
tion and Global Optimization, under the same conditions,
i.e. same hyperparameters, labeled data and network initial-
ization. Fig. 4 reports the plots of two opposite scenarios:
the first experiment with one supervised example per class
and the second experiment when the whole training set is
labeled. In both the cases we can observe an improvement
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Figure 4: Performances on MNIST dataset with 1 labeled
example per class (top plot) and on PASCAL Multi dataset
with the training set completely labeled (bottom plot), with
respect to the number of epochs.

of the performances over the baseline. The stage-based per-
formance evolution is particularly interesting to inspect: af-
ter 200 epochs, the learning of constraints stage begins (the
one that involves the MI), and for the following 50 epochs
the accuracy (or F1) does not improve as the task functions
are not modified. Nonetheless, in a few epochs the regular-
ization effects imposed by the MI term in Eq. 6 boost the



performances of the network overcoming those of the other
two networks. This process is repeated every 250 epochs.

5 Conclusions and future work

Given a set of learnable task functions, we proposed a novel
approach to learn constraints on such functions, which is
based on information theoretic principles. Constraints are
implemented by neural networks that, in turn, are trained
to maximize the Mutual Information between the task func-
tions and the rule space. At the end of the training step,
the constraints (neural networks) are interpreted as Boolean
FOL formulas and some promising results are discussed for
different settings. In future work, we propose to analyse the
effect of learning new constraints with respect to the robust-
ness of the task functions, as in case of adversarial attacks.
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