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Abstract

In this paper, we aim to enhance self-attention (SA) mecha-
nism for deep metric learning in visual perception, by cap-
turing richer contextual dependencies in visual data. To this
end, we propose a novel module, named compressed self-
attention (CSA), which significantly reduces the computa-
tion and memory cost with a neglectable decrease in accu-
racy with respect to the original SA mechanism, thanks to the
following two characteristics: i) it only needs to compute a
small number of base attention maps for a small number of
base feature vectors; and ii) the output at each spatial loca-
tion can be simply obtained by an adaptive weighted aver-
age of the outputs calculated from the base attention maps.
The high computational efficiency of CSA enables the ap-
plication to high-resolution shallow layers in convolutional
neural networks with little additional cost. In addition, CSA
makes it practical to further partition the feature maps into
groups along the channel dimension and compute attention
maps for features in each group separately, thus increasing the
diversity of long-range dependencies and accordingly boost-
ing the accuracy. We evaluate the performance of CSA via
extensive experiments on two metric learning tasks: person
re-identification and local descriptor learning. Qualitative and
quantitative comparisons with latest methods demonstrate the
significance of CSA in this topic.

Introduction

Metric learning aims at finding appropriate similarity mea-
sures between pairs of data samples that preserve desired
distance structures, which is of great importance for vi-
sual recognition. With the remarkable success of convo-
lutional neural networks (Krizhevsky, Sutskever, and Hin-
ton 2012), recent works have demonstrated promising re-
sults on learning semantic feature embeddings where sim-
ilar examples are close to each other and dissimilar ex-
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amples are far apart. In visual recognition, deep metric
learning have been successfully applied to various tasks,
such as person re-identification (Sun et al. 2018; Wang et
al. 2018a), face recognition (Deng et al. 2019; Liu et al.
2018), and local descriptor learning (Mishchuk et al. 2017;
Xu et al. 2019).

However, because of the local nature of convolution oper-
ators, the features in the shallow layers of CNNs are not able
to capture long-range dependencies. While long-range de-
pendencies can be captured in deep layers, optimization al-
gorithms may have trouble in discovering appropriate values
for the parameters that carefully coordinate multiple layers
to capture those dependencies (Zhang et al. 2018). Increas-
ing the convolutional kernel size can partially address this
issue, but at the same time it introduces more parameters as
well and necessitates more training data.

In this paper, we aim to enhance the self-attention (SA)
mechanism for modeling rich long-range contextual depen-
dencies in deep metric learning. Originally proposed in the
field of natural language processing (NLP) (Vaswani et al.
2017), SA has shown promising results in vision tasks such
as video analysis (Wang et al. 2018b), image segmentation
(Fu et al. 2019), and image generation (Zhang et al. 2018;
Gong et al. 2019). Because SA calculates response at a posi-
tion as a weighted sum of the features at all positions, where
the calculation of the weights only requires a small num-
ber of parameters, it can capture long-range contextual in-
teractions with high statistical efficiency. However, SA re-
quires computation of pairwise similarities among all the
spatial positions, which leads to high computation and mem-
ory costs, and thus limits its usage to small inputs.

To address this problem, we propose a new SA mod-
ule, called compressed self-attention (CSA), which is able
to boost metric learning accuracy with little additional com-
putation or memory cost. Instead of computing an atten-
tion map for each spatial location, our CSA only requires
computation of a small number of base attention maps for
a small number of base feature vectors. The original input
is then processed by these base attention maps to produce
elementary outputs. Finally, the output at each location can
be simply obtained by an adaptive weighted average of the
elementary outputs. Due to the inherent redundancy of at-
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tention maps of all locations, our CSA method only incurs
a slight decrease in accuracy compared to the original SA
mechanism.

The computation and memory efficiency of CSA enables
more flexible use of the SA mechanism. First, we can par-
tition the feature maps into groups along the channel di-
mension and compute attention maps for each group inde-
pendently. By doing so, CSA is able to select the features
that optimally describe the images’ specific meaning in any
given context, which increases the diversity of long-range
interactions. Second, it is more affordable to apply CSA to
high-resolution shallow CNN layers, which can benefit more
from modeling long-range dependencies. To demonstrate
the effectiveness of our CSA module, we conduct exten-
sive experiments on two well-known metric learning tasks
in computer vision, namely person re-identification and lo-
cal descriptor learning. Experimental results on the two tasks
demonstrate the effectiveness and efficiency of the proposed
CSA module.

Related Work

Deep Metric Learning

With the powerful feature representation capability of
CNNs, deep metric learning has achieved great success. Cur-
rently, there are two ways to improve the performance of
deep metric learning: one is to design a more effective loss
function, and the other is to design a more reasonable net-
work structure. For the former, Deng et al. (2019) proposed
an additive angular margin loss to obtain highly discrimina-
tive features for face recognition. Xu et al. (2019) proposed
a robust angular loss to tackle the incorrect correspondences
for local descriptor learning. For the latter, Sun et al. (2018)
proposed a part-based convolutional baseline (PCB) and a
refined part pooling method (RPP) to obtain refined part-
level features for person re-identification. In this paper, we
focus on improving the network architecture by efficiently
incorporating self-attention mechanism.

Self-Attention Mechanism

To the best of our knowledge, the work (Vaswani et al.
2017) was the first to propose the self-attention mechanism
and applied it in the task of machine translation. Then self-
attention has been increasingly applied in the computer vi-
sion field. Zhang et al. (2018) and Gong et al. (2019) ap-
plied self-attention to efficiently find global dependencies
within internal representations for better image generation.
Fu et al. (2019) proposed a dual self-attention mechanism
for semantic segmentation, which includes a position atten-
tion module and a channel attention module to adaptively
integrate local features with their global dependencies. Ra-
machandran et al. (2019) proposed a local self-attention
mechanism to replace the convolution operation without a
sharp increase in computation and memory cost. However,
the locality makes it difficult to make full use of the global
information. To the best of our knowledge, our work is
the first to compress self-attention modules without loss of
global context modeling.

Compression of CNNs

There are also plenty of works on compressing CNNs with
low-rank approximation or sparse decomposition, which are
most related to our compression of self-attention mecha-
nism. Yu et al. (2017) proposed a unified framework inte-
grating the low-rank and sparse decomposition of weight
matrices with the feature map reconstructions to signifi-
cantly reduce the parameters. Lin et al. (2018) proposed
a holistic CNN compression framework (LRDKT) which
includes a low-rank decomposition (LRD) scheme and a
knowledge transfer (KT) based training scheme, to pur-
sue a joint compression of convolutional layers and fully-
connected layers. Different from these methods, we take ad-
vantage of the redundancy of the feature vectors in a feature
map to compress attention maps, and the combination coef-
ficients in our CSA are functions of the feature inputs in the
corresponding location rather than fixed parameters.

Compressed Self-Attention (CSA) Module

In this section, we first briefly review the self-attention
mechanism for the purpose of completeness. Then, we in-
troduce the proposed CSA module in detail, including its
mathematical formulation and implementation. Finally, we
present the way to perform CSA for individual groups of
feature maps together with the application in deep metric
learning.

Review of Self-Attention

As shown in Figure 1, let us consider the input as a feature
map I ∈ R

C×H×W in a 2D CNN layer, where C, H and W
represent the channels, height, and width of the input feature
map, respectively. Self-attention generates an output O ∈
R

C×H×W that has the same size as the input. The feature
vector at the i-th output position Oi ∈ R

C is calculated as

Oi =

HW∑

j=1

f(Ii, Ij)g(Ij), (1)

where Ii ∈ R
C denotes the feature vector at the i-th input

position (same for Ij), g(·) is a feature extraction function,
and f(·, ·) computes a scalar representing the pairwise re-
lationship between the feature vectors at i-th and j-th input
locations, and generates attention maps A ∈ R

HW×H×W .
A commonly used pairwise function is

f(Ii, Ij) =
eI

ᵀ
i Wᵀ

θ WφIj

∑HW
j′=1 e

Iᵀ
i Wᵀ

θ WφIj′
, (2)

where Wθ ∈ R
C′×C and Wφ ∈ R

C′×C map the orig-
inal input I to the feature embeddings Q ∈ R

C′×H×W

and K ∈ R
C′×H×W . For simplicity, we only consider g in

the form of a linear transformation: g(Ii) = WgIi, where
Wg ∈ R

C×C is a learnable weight matrix which maps the
original input I to a new feature map V ∈ R

C×H×W . The
feature embeddings Q and K and the feature map V can be
implemented as 1 × 1 convolutions in space, as shown in
Figure 1.
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Figure 1: The illustration of self-attention.

As opposed to convolutions that only operate in local re-
gions, self-attention can model long-range dependencies by
calculating response at a position as a weighted sum of the
features at all positions based on pairwise relationship. Its
connections to the non-local filtering operations in image
processing have been analyzed in (Wang et al. 2018b). Com-
pared to fully-connected layers, the parameterization is re-
markably efficient: the number of parameters does not grow
with spatial resolution of the input. However, an apparent
disadvantage of self-attention is that the computation and
memory cost grows quickly with the input size. As shown in
Figure 1, SA requires H×W attention maps, each of which
is of size H ×W , limiting SA to small inputs. To apply SA
to shallow CNN layers, which lack long-range dependen-
cies, we propose the compressed self-attention module.

Compressed Self-Attention (CSA)

We aim to compress the attention maps to obtain both com-
putational and memory efficiency. The motivation of our
method is based on the observation that the feature vectors in
a feature map have significant redundancy and usually form
a small number of clusters. This property was extensively
studied for image segmentation and grouping (Achanta et
al. 2012). We can use a small number of learnable weight
vectors v1, . . . ,vD to learn these clusters, and use them as
bridges to establish the relationship between any two feature
vectors in the feature map instead of pairwise measurement.
We call these weight vectors base feature vectors. Thus, in-
stead of computing an attention map for each Ii, we first
compute attention maps for a small number of base feature
vectors v1, . . . ,vD by

fb(vk, Ij) =
ev

ᵀ
kIj

∑HW
j′=1 e

vᵀ
kIj′

, (3)

where fb(vk, Ij) represents the value at the j-th location of
the k-th attention map Bk corresponding to vk, as shown in
Figure 2 (a).

After obtaining the base attention maps B, the i-th atten-
tion map Ai for Ii can be reconstructed from B according
to the relationship between Ii and the base feature vectors
v1, . . . ,vD as follows:

fa(Ii, Ij) =

D∑

k=1

fb(vk, Ij)w(vk, Ii), (4)

Figure 2: The illustration of compressed self-attention.

where w(vk, Ii) = ev
ᵀ
k
Ii

∑D
k′=1

e
v
ᵀ
k′ Ii

is an adaptive weight rep-

resenting the relationship between Ii and vk.
As shown in Figure 2 (a), the base attention maps B ∈

R
D×H×W and the adaptive weights W ∈ R

D×H×W can
be efficiently computed by first applying 1× 1 convolutions
to the original input I and then performing softmax oper-
ations on the spatial and channel dimensions respectively.
The original attention maps A can be easily reconstructed by
performing matrix multiplication between B and W. Then
we can obtain the final output O by performing matrix mul-
tiplication between the attention maps A and the new feature
map V.

In fact, we can exchange the execution orders of the last
two matrix multiplications to implement CSA efficiently,
which is shown in Figure 2 (b). In detail, we can plug (4)
into (1) and obtain the final output of CSA as follows:

Oi =

HW∑

j=1

fa(Ii, Ij)g(Ij)

=
HW∑

j=1

D∑

k=1

fb(vk, Ij)w(vk, Ii)g(Ij)

=
D∑

k=1

w(vk, Ii)Ek, (5)

where Ek =
∑HW

j=1 fb(vk, Ij)g(Ij) is the k-th elementary
output that is obtained by applying the k-th base attention
map Bk to the new feature map V. Then the final output O
can be obtained by a weighted average of the D elementary
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outputs.
As shown in Figure 2 (b), we can first apply the base at-

tention maps B to the new feature map V to obtain the ele-
mentary outputs E ∈ R

C×D, which selects the most relevant
spatial feature vectors for each cluster. Then we can obtain
the final output O by applying the adaptive weights W to the
elementary outputs E, which selects the most relevant clus-
ter for each spatial feature vector. The calculations and the
size of the base attention maps B both become D

HW of the
original, which greatly reduces the computation and mem-
ory costs.

Figure 3: The concrete implementation of CSA module.

Implementation of CSA module The implementation of
CSA module is shown in Figure 3, where the algorith-
mic scheme is detailed as follows. Given the input I ∈
R

C×H×W : (i) it is fed into two 1 × 1 convolution layers
to generate two new feature maps M ∈ R

D×H×W and
V ∈ R

C×H×W , respectively; (ii) two softmax operations
are performed on the spatial and channel dimensions of M
to generate the base attention maps B ∈ R

D×H×W and the
adaptive weights W ∈ R

D×H×W , respectively; (iii) B is re-
shaped and transposed to R

HW×D, V and W are reshaped
to R

C×HW and R
D×HW , respectively; (iv) a matrix multi-

plication is performed between V and B to produce the ele-
mentary outputs E ∈ R

C×D as follows:

Ek =
HW∑

j=1

Vj · eMkj

∑HW
j′=1 e

Mkj′
; (6)

(v) a matrix multiplication is performed between E and W to
produce the feature map Y ∈ R

C×HW ; (vi) Y is reshaped to
R

C×H×W , which is then multiplied by a learnable or fixed
parameter α; (vii) an element-wise summation operation is
performed between the result obtained in the previous step
and the input I to obtain the final output O ∈ R

C×H×W as
follows:

Oi = α

D∑

k=1

Ek · eMki

∑D
k′=1 e

Mk′i
+ Ii, (7)

In order to further boost the performance of the pro-
posed CSA module, we partition the feature maps into sev-
eral groups along the channel dimension and perform CSA
within each group independently. By doing so, CSA is able
to select the features that optimally describe specific mean-
ing of an image in any given context, which increases the di-
versity of long-range interactions. The grouped CSA is very

similar to the original CSA, except the channel grouping,
and we will not elaborate on this in more detail.

Figure 4: The general framework of applying our CSA mod-
ule in deep metric learning.

Application in Deep Metric Learning Our CSA module
can be easily combined with existing methods to make use
of the attention mechanism, and we propose a general frame-
work to apply our CSA module in deep metric learning. As
shown in Figure 4, the framework includes a backbone net-
work, CSA modules, a main branch, and deep supervision
branches. We add the CSA modules to the representative al-
gorithms in specific metric learning tasks to boost the orig-
inal performance, without changing the backbone networks
and the main branches of the original algorithms.

We insert the CSA module between the two adjacent
stages of the backbone to utilize both the local detailed in-
formation in the shallow feature maps and the rich semantic
information in the deep feature maps. In order to learn more
meaningful base feature vectors and base attention maps, we
apply deep supervision to each CSA module. The deep su-
pervision branch includes a global average pooling layer and
fully connected layers. The final loss function is as follows:

Ltotal = Lmain + λ
N∑

i=1

Lauxi
(8)

where Lmain represents the main loss of the main branch,
and Lauxi represents the ith auxiliary loss in the ith deep
supervision branch. The main loss Lmain is the same as the
original method. The auxiliary loss Laux can be the cross
entropy loss. λ is a balance factor between Lmain and Laux.
N is the number of CSA modules applied to the backbone.

Experiments

We evaluate the performance of CSA via extensive experi-
ments on two metric learning tasks: person re-identification
and local descriptor learning. We apply the proposed frame-
work with CSA to the representative methods (Sun et al.
2018; Mishchuk et al. 2017; Xu et al. 2019) in the two
tasks to boost their performance. Qualitative and quanti-
tative comparisons demonstrate that the inclusion of CSA
within those methods leads to significant improvement in
performance.
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Models Market-1501 DukeMTMC-reID CUHK03-NP
R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

HA-CNN (Li, Zhu, and Gong 2018) 91.2 — — 75.7 80.5 — — 63.8 41.7 — — 38.6
DuATM (Si et al. 2018) 91.4 97.1 — 76.6 81.8 90.1 — 64.6 — — — —
Mancs (Wang et al. 2018a) 93.1 — — 82.3 84.9 — — 71.8 65.5 — — 60.5
PCB (Sun et al. 2018) 92.3 97.2 98.2 77.4 81.7 89.7 91.9 66.1 59.7 77.7 85.2 53.2
PCB + SA 93.8 97.7 98.5 82.2 85.3 92.7 94.8 73.4 65.9 82.3 88.4 62.7
PCB + CSA 93.7 98.2 98.8 82.3 85.5 92.8 94.5 73.5 67.2 83.9 88.9 63.7
PCB-RPP (Sun et al. 2018) 93.8 97.5 98.5 81.6 83.3 90.5 92.5 69.2 62.8 79.8 86.8 56.7
PCB-RPP + SA 93.3 97.5 98.7 83.2 84.9 92.8 94.7 72.9 66.1 84.0 89.0 64.6
PCB-RPP + CSA 93.9 97.8 98.8 83.5 85.4 93.1 94.5 73.1 67.4 83.6 89.1 65.0

Table 1: Comparison of the models with and without the proposed CSA. SA means the original self-attention.

In the following subsections, we will introduce the
datasets, experimental settings, and results in more detail on
the two tasks. In addition, we perform a set of ablation stud-
ies on the person re-identification task to show the sensitivity
of our CSA module with respect to those key parameters /
settings: the number of base attention maps, the number of
groups, CSA on different stages, and deep supervision.

Person Re-Identification

For person re-identification, we consider two representative
algorithms, PCB (Sun et al. 2018) and PCB-RPP (Sun et
al. 2018), as the base models, and conduct the experiments
on Market-1501 (Zheng et al. 2015), DukeMTMC-reID
(Ristani et al. 2016; Zheng, Zheng, and Yang 2017), and
CUHK03-NP (Zhong et al. 2017; Li et al. 2014) datasets.

Datasets Market-1501 has 12,936 images of 751 identities
for training, and has 3,368 query images and 19,732 gallery
images of 750 other identities for testing. DukeMTMC-
ReID has 16,522 images of 702 identities for training, and
has 2,228 query images and 17,661 gallery images of 702
other identities for testing. CUHK03-NP is re-formulated
from the old CUHK03 dataset (Li et al. 2014) with the new
training/testing protocol proposed in (Zhong et al. 2017).
It contains 7,368 images of 767 identities for training and
5,328 images of 700 other identities for testing. CUHK03-
NP offers both hand-labeled and DPM-detected bounding
boxes, and we use the latter.

The evaluation protocol proposed in (Zheng et al. 2015) is
used for Market-1501 and DukeMTMC-ReID. The new pro-
tocol from (Zhong et al. 2017) is employed for CUHK03-
NP. The Cumulative Matching Characteristic (CMC) for
rank-1, rank-5, rank-10 and the mean average precision
(mAP) are measured. All the following results are evaluated
under the single-query mode. The results are reported with-
out re-ranking (Zhong et al. 2017).

Implementation Details For PCB and PCB-RPP, we fol-
low the training settings in (Sun et al. 2018). The input im-
ages are resized to 384 × 128 and augmented with random
horizontal flipping. We use ResNet50 with the pre-trained
weights from ImageNet as the backbone. Optimization is
done by SGD with momentum of 0.9 and weight decay of
0.0001. The batch size is set to 64. We train the model for
100 epochs. The base learning rate is initialized at 0.1 and

multiplied by 0.1 after every 40 epochs. The learning rate for
the backbone is set to 0.1 times the base learning rate. For
PCB-RPP, we apply first 40 epochs for training PCB, and
append another 60 epochs when employing RPP for boost-
ing.

When applying the proposed CSA for further boosting,
we insert the CSA module between the two adjacent stages
of ResNet50 and apply deep supervision to each CSA mod-
ule. Thus, the number of CSA modules N is 3. For the
hyper-parameters of CSA, we set the number of base atten-
tion maps in each group to 32 and the number of groups to
2. The main loss Lmain is the same as the original method,
and Laux is the cross entropy loss. The balance factor λ is
set to 1.0. When comparing SA with CSA, we just replace
CSA with SA in the framework of Figure 4 without chang-
ing other settings, such as the deep supervision branches and
the forms of Lmain and Laux. The channel grouping is not
included in SA, which is too expansive for SA.

Main Results As shown in Table 1, the inclusion of CSA
leads to performance improvement for all those original
models on Market-1501, DukeMTMC-ReID and CUHK03-
NP regarding both rank-1 accuracy and mAP. For the basic
model of PCB, it shows an improvement of 1.4% for R-1 and
4.9% for mAP on Market-1501, 3.8% for R-1 and 7.4% for
mAP on DukeMTMC-ReID, 7.5% for R-1 and 10.5% for
mAP on CUHK03-NP. This indicates that CSA can model
rich long-range contextual dependencies and increase the
discriminative ability of the features.

We also compare the proposed CSA with the original SA.
As shown in Table 1, the performance of CSA is slightly
better than that of SA, despite of the compression of atten-
tion maps. This is because the channel grouping helps to
diversify the long-range dependencies, the positive affect of
which is higher than the performance degradation caused by
compression. In addition, it is worth noting that SA con-
sumes a large amount of time and memory, especially for
the shallow feature maps, due to which it is difficult to apply
channel grouping strategy to SA.

Influence of the Number of Base Attention Maps We
study the influence of the number of base attention maps in
each group on the performance when fixing the number of
groups to 2. As shown in Table 2, when we increase the num-
ber of base attention maps from 8 to 32, the performance is
improved. This is because the more base attention maps, the
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Figure 5: Visualization of the base attention maps and the reconstructed attention maps.

less compression of the original attention maps, and CSA
has a finer description of the images’ specific meaning in
the given context. However, when we further increase the
number of base attention maps from 32 to 64, the perfor-
mance slightly decreases, which is very likely to be caused
by overfitting.

Models Map Num Market-1501 DukeMTMC-reID
R-1 mAP R-1 mAP

PCB + CSA 8 93.6 82.1 85.0 73.2
PCB + CSA 16 93.6 82.2 85.5 73.4
PCB + CSA 32 93.7 82.3 85.5 73.5
PCB + CSA 64 93.9 82.2 85.3 73.3

Table 2: Comparison of the models with different numbers
of base attention maps in each group of CSA.

Influence of the Number of Groups We study the in-
fluence of the number of groups on the performance when
fixing the number of base attention maps in each group to
32. As shown in Table 3, when we increase the number of
groups from 1 to 2, the performance is improved. This sug-
gests that the channel grouping helps to increases the diver-
sity of long-range interactions and makes the features more
discriminative. However, the performance slightly decreases
when further increasing the number of groups from 4 to 8,
very possibly due to the fact that the number of channels in
each group is not adequate enough to express specific se-
mantics in the datasets.

Influence of CSA on Different Stages We study the influ-
ence of placing the CSA modules on different stages of the
backbone on the performance. As shown in Table 4, when
we place the CSA modules simultaneously on the 1st, 2nd,
3rd stages of the backbone, the performance is best. The
performance of placing CSA merely on the shallow feature
maps (i.e., the 1st stage) is better than that of placing CSA on

Models Group Num Market-1501 DukeMTMC-reID
R-1 mAP R-1 mAP

PCB + CSA 1 93.6 81.9 85.2 73.1
PCB + CSA 2 93.7 82.3 85.5 73.5
PCB + CSA 4 93.9 82.1 85.6 73.4
PCB + CSA 8 93.8 82.3 85.5 73.3

Table 3: Comparison of the models with different numbers
of groups in CSA.

the deep feature maps (i.e., the 2nd, 3rd stages). This is be-
cause the shallow feature maps contain more local detailed
information and lack long-range dependencies, which bene-
fits more from self-attention mechanism.

Models Attn Stages Market-1501 DukeMTMC-reID
R-1 mAP R-1 mAP

PCB no 92.3 77.4 81.7 66.1
PCB + CSA 1st stage 93.5 81.6 84.6 72.8
PCB + CSA 2nd,3rd stages 93.3 81.2 84.7 72.6
PCB + CSA 1st,2nd,3rd stages 93.7 82.3 85.5 73.5

Table 4: Comparison of the models with CSA on different
stages of the backbone.

Influence of Deep Supervision We study the influence of
deep supervision on the CSA module on the performance.
As shown in Table 5, the performance of the CSA mod-
ule with deep supervision is always better than that without
deep supervision. This is because deep supervision provides
a stronger supervision signal, which helps the CSA module
learn more meaningful base feature vectors and base atten-
tion maps.

Comparison of Speed and Memory Cost We also com-
pare the speed and memory cost of the models with and
without SA or CSA. For CSA, we also consider the impact
of different numbers of groups. As shown in Table 6, the
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Train Notredame Yosemite Liberty Yosemite Liberty Notredame MeanTest Liberty Notredame Yosemite
HardNet (Mishchuk et al. 2017) 1.49 2.51 0.53 0.78 1.96 1.84 1.51
HardNet + SA 1.23 1.98 0.40 0.71 1.37 1.06 1.13
HardNet + CSA 1.23 1.92 0.42 0.73 1.39 1.09 1.13
RALNet (Xu et al. 2019) 1.30 2.39 0.37 0.67 1.52 1.31 1.26
RALNet + SA 1.23 1.84 0.38 0.66 1.40 1.05 1.09
RALNet + CSA 1.16 1.95 0.40 0.71 1.38 1.02 1.10

Table 7: Comparison of the models with and without the proposed CSA on patch correspondence verification performance on
Brown dataset. We report false positive rate at true positive rate equal to 95% (FPR95).

Models DS Market-1501 DukeMTMC-reID
R-1 mAP R-1 mAP

PCB + CSA no 93.5 81.3 85.3 72.8
PCB-RPP + CSA no 93.6 82.7 84.9 72.7
PCB + CSA yes 93.7 82.3 85.5 73.5
PCB-RPP + CSA yes 93.9 83.5 85.4 73.1

Table 5: Comparison of the models with and without deep
supervision.

method with SA has high computation and memory costs.
The memory cost is 242% of the original and FPS is 59%
of the original. The methods with CSA consume less time
and memory. When the number of groups is 1, the increase
of memory is 11% and the decrease of FPS is 5%, which
demonstrates the benefit of CSA. Even when we increase
the number of groups to 8, the increase of memory is 26%
and the decrease of FPS is 17%, which is still tolerable.

Models Group Num Memory (MB/image) FPS
PCB — 125.64 380.24
PCB + SA 1 304.33 224.30
PCB + CSA 1 139.60 360.90
PCB + CSA 2 142.27 350.36
PCB + CSA 4 149.02 335.66
PCB + CSA 8 158.02 314.80

Table 6: Comparison of the speed and memory cost of the
models with and without SA or CSA.

Visualization of Attention Maps In order to prove the ef-
fectiveness of the CSA module, we select two base attention
maps and six reconstructed attention maps for each image to
display. As shown in Figure 5, for each image, the two base
attention maps focus on the parts with different semantics
and each reconstructed attention map is similar to one of the
base attention maps. This indicates that the total attention
maps are redundant, and we can compress them into a small
number of base attention maps, with a few base feature vec-
tors which can be viewed as the clusters of the feature vec-
tors in a feature map.

Local Descriptor Learning

For local descriptor learning, we consider two representative
algorithms, HardNet (Mishchuk et al. 2017) and RALNet
(Xu et al. 2019), as the basic models, and conduct the exper-

iments on Brown (Brown and Lowe 2007) and Hpatches
(Balntas et al. 2017) datasets.

Datasets Brown dataset (Brown and Lowe 2007) consists
of three subsets: Liberty, Notredame, and Yosemite with
about 400k patches in each subset. For evaluations on Brown
dataset, the models are trained on one subset and tested on
the other two. We follow the standard evaluation protocol
in (Brown and Lowe 2007) which uses the provided 100K
pairs and report the false positive rate at the recall of 95%.

Hpatches dataset (Balntas et al. 2017) consists of 116 se-
quences of 6 images. It includes three evaluation tasks, patch
verification, patch retrieval, and image matching, which are
implemented with three levels of difficulty. Following (Xu
et al. 2019), we report the average performance of all differ-
ent factors. We use the models trained on Liberty subset of
Brown dataset and test their generalization performance on
Hpatches dataset, which is a common practice.

Implementation Details For HardNet and RALNet, we
follow the same implementation details as in (Mishchuk et
al. 2017) and (Xu et al. 2019). The input images are re-
sized to 32 × 32, and per-batch normalized. We apply data
augmentation by random flipping and 90◦ rotation. We use
L2Net (Tian, Fan, and Wu 2017) as the main network. Opti-
mization is done by SGD with momentum of 0.9 and weight
decay of 0.0001. We use the same positive pairs and neg-
ative pairs sampling strategy and extract 5000K pairs. We
train the model for 10 epochs with learning rate initialized
at 10 and linearly decayed to 0. When training the network
with CSA, we place the CSA module on the 3rd layer of
L2Net without deep supervision and channel grouping. The
main loss Lmain is the same as the original method.

Task Verification Matching Retrieval
HardNet (Mishchuk et al. 2017) 87.12 51.37 69.74
HardNet + SA 87.76 53.17 71.45
HardNet + CSA 87.67 52.66 71.14
RALNet (Xu et al. 2019) 87.43 53.16 69.70
RALNet + SA 87.85 52.89 71.75
RALNet + CSA 88.11 52.62 71.72

Table 8: Comparison of the models with and without CSA
on verification, matching and retrieval results on HPatches
dataset. All the descriptors are trained on Liberty subset of
Brown dataset.

Main Results As shown in Table 7 and Table 8, the inclu-
sion of the proposed CSA leads to a large performance im-
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provement for all the models, in the experiments conducted
on both Brown dataset and Hpathces dataset. It is interest-
ing that the improvement of HardNet is larger than that of
RALNet. This is because RALNet has a more reasonable
loss function and thus leads to a better feature representa-
tion. This demonstrates that CSA is still able to greatly im-
prove the feature representation even without an elaborate
loss function. When compared to the original SA, the per-
formance of our CSA decreases slightly in some cases. This
is because the image patch data is relatively simple and can
be represented by feature maps with fewer channels, which
cannot further benefit from channel grouping.

Conclusion
In this paper, we aim to enhance self-attention (SA) mecha-
nism for deep metric learning in visual perception, by cap-
turing richer contextual dependencies in visual data. We pro-
pose a novel mechanism, named compressed self-attention
(CSA), which significantly reduces the computation and
memory cost with a neglectable decrease in accuracy with
respect to the original SA mechanism. Experimental results
demonstrate that the proposed method achieves competitive
results compared to those state-of-the-art methods at signif-
icantly lower computational cost.
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