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Abstract

Many machine learning tasks such as clustering, classification,
and dataset search benefit from embedding data points in a
space where distances reflect notions of relative similarity as
perceived by humans. A common way to construct such an
embedding is to request triplet similarity queries to an ora-
cle, comparing two objects with respect to a reference. This
work generalizes triplet queries to tuple queries of arbitrary
size that ask an oracle to rank multiple objects against a refer-
ence, and introduces an efficient and robust adaptive selection
method called InfoTuple that uses a novel approach to mutual
information maximization. We show that the performance of
InfoTuple at various tuple sizes exceeds that of the state-of-
the-art adaptive triplet selection method on synthetic tests and
new human response datasets, and empirically demonstrate the
significant gains in efficiency and query consistency achieved
by querying larger tuples instead of triplets.

Introduction

Similarity learning is the process of assigning point coor-
dinates to objects in a dataset such that distances between
objects in the learned space are consistent with notions of
similarity as perceived by humans. While these objects usu-
ally exist in some high-dimensional space (e.g., images, au-
dio), very often the semantic information humans attribute
to these objects lies in a low-dimensional space (e.g., items,
words). Once this low-dimensional embedding is learned,
existing intelligent algorithms (Jamieson and Nowak 2011a;
Canal et al. 2019) can be used to search the dataset with
query complexity scaling in the embedding dimension, al-
lowing large datasets to be searched quickly in applications
such as task selection for robot learning from demonstration
(Argall et al. 2009), object recognition (Ferrari, Tuytelaars,
and Van Gool 2004), or image retrieval (Yang et al. 2010).

To construct such an embedding for a given set of objects,
queries that capture the similarity statistics between the ob-
jects in question must be made to human experts. While there
exist several types of similarity queries that can be made
(e.g., relative attributes between objects (Parikh and Grau-
man 2011)), we focus on relative similarity queries posed to
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Figure 1: In 1(a) it is ambiguous which item should be chosen
as more similar to the head object, since both comparison
items are similar in distinct ways. In 1(b), adding one more
comparison item can add context to disambiguate this choice.

an oracle comparing objects with respect to a “head” (i.e., ref-
erence) object. Relative similarity queries are useful because
they gather object similarity information using only object
identifiers rather than predetermined features or attributes,
allowing similarity learning methods to be applied to any
collection of uniquely identifiable objects. In contrast, if a
head object were not specified, an oracle would need to use a
feature-based criterion for ranking the object set, which is not
viable in many applications of interest (e.g., learning human
preferences).

Such relative similarity queries typically come in the form
of triplet comparisons (i.e., “is object a more similar to object
b or c?”) (Tamuz et al. 2011; Van Der Maaten and Weinberger
2012; Hoffer and Ailon 2015). In our first main contribution,
we extend these queries to larger rank orderings of tuples of
k objects to gather more information at once for similarity
learning. This query type takes the form “rank objects b1
through bk−1 according to their similarity to object a.” To
the best of our knowledge, this study is the first attempt to
leverage this generalized query type in similarity learning.
The use of this query type is motivated by the fact that com-
paring multiple objects simultaneously provides increased
context for a human expert (Fernando et al. 2015), which can
increase labeling consistency without a significant increase
in human effort per query (Liang and Grauman 2014) and
has demonstrated benefits in settings such as rank learning
(Cao et al. 2007). In technical terms, tuplewise queries cap-
ture joint dependence between objects that isn’t captured in
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triplet comparisons (which are often incorrectly modeled as
independent queries). To illustrate this point, consider the dif-
ference between the triplet query and tuple query presented
in Figure 1. In the triplet query, multiple attributes could be
used to rank a given query, increasing the ambiguity about
which item should be chosen as more similar to the reference.
Adding an item to the tuple can provide additional context
about the entire dataset to the oracle, clarify which criterion
should be used to rank the tuple and thereby making the query
less ambiguous.

While tuple queries are appealing, their use presents two
major challenges. First, in a dataset of N objects queried with
tuples of size k there are N

(
N−1
k−1

)
possible tuples. Labeling

these individual tuples is prohibitively time consuming for
large datasets. Even if uniformly random query selection is
used to downsample this set, there is evidence that such a
strategy is still punitively expensive (Jamieson and Nowak
2011b). Requesting an exhaustive number of queries is also
inefficient from an information standpoint, since there is
redundancy in the set of all tuple rankings. Second, in many
settings of interest, the oracle answering such queries may
be stochastic. For example, crowd oracles may aggregate
responses from experts with differing similarity judgements
(Tamuz et al. 2011), and individual oracles can be unreliable
over time (especially for queries regarding similar objects).

These issues can be ameliorated in part by leveraging tools
from active learning, the goal of which is to minimize the
total labeling cost including the number of expert interac-
tions (usually corresponding to monetary cost), aggregate
response time, and computational cost needed to dynamically
select queries. This is achieved through adaptive approaches
that increase learning efficiency by using previous query
responses to determine which information about a model
is still “missing” as well as model the oracle’s stochastic-
ity. In this framework, unlabeled data points that optimize a
measure of informativeness are selected for expert labeling.
One such metric, mutual information, is a popular way to
assess the reduction in uncertainty a query provides about
unknown learning parameters (Settles 2012; Lindley 1956;
MacKay 1992). In active similarity learning, the state-of-the-
art is a strategy called “Crowd Kernel Learning” (CKL) that
selects triplets that maximize the mutual information between
a query response and the embedding coordinates of the head
object (Tamuz et al. 2011). However, CKL does not apply to
ordinal queries of general tuples sizes (k > 3), and its formu-
lation of mutual information only measures the information a
query provides about the embedding coordinates of the head
object, disregarding information about the locations of the
other objects in the query.

In our second main contribution, we address these defi-
ciencies and the lack of an active similarity learning strategy
for our new query type by introducing a novel method for
efficient and robust adaptive selection of tuplewise queries
of arbitrary size. Our method, called InfoTuple, maximizes
the mutual information a query response provides about the
entire embedding, which is a direct measure of query informa-
tiveness that leverages the high degree of coupling between
all of the objects in a query. InfoTuple relies on a novel set of

simplifying yet reasonable assumptions for tractable mutual
information estimation from a single batch of Monte Carlo
samples. Our approach accounts for all objects in a query,
while avoiding the need to decompose mutual information
into a prohibitive number of terms. We demonstrate the per-
formance of this method across datasets, oracle models, and
tuple sizes, using both synthetic tests and newly collected
large-scale human response datasets. In particular, we em-
pirically show that InfoTuple’s performance exceeds that of
CKL and random queries, and furthermore that it benefits
significantly from using larger tuples even after normalizing
for tuple size. We also demonstrate the utility of our novel
query type by showing an increase in query consistency for
larger tuples over triplets, and show that these advantages can
be gained without excessive labeling-time increases.

Related Work
Similarity learning from triplets is increasingly commonplace
in modern AI, and popular deep learning architectures have
been developed to leverage triplet labels (Hoffer and Ailon
2015). Frameworks such as that of (Liu et al. 2012) or t-STE
(Van Der Maaten and Weinberger 2012) are relatively ubiqui-
tous in the visualization community, and attempt to directly
capture a notion of visual similarity close to that observed
in psychometrics literature (e.g. (Chater and Brown 1999)).
However, for large datasets it is often punitively expensive
to collect such exhaustive relationship data from labelers, so
the development of approximate methods of learning such
embeddings is a matter of interest to the AI community.

The bulk of the existing literature on active selection of
ordinal queries for constructing these embeddings focuses on
the case where distance relationships between objects can be
determined with absolute certainty. This deterministic case is
well studied, and lower bounds exist on the sample complex-
ity needed to learn high-quality embeddings (Jamieson and
Nowak 2011b). In reality, responses are often not determinis-
tic for a number of practical reasons and probabilistic MDS
methods have been proposed to model such cases (Tamuz et
al. 2011). Analytic results do exist characterizing bounds on
prediction error in this setting (Jain, Jamieson, and Nowak
2016), but determining optimal strategies for query selection
in the stochastic setting remains largely an open problem.

Specifically, to the best of our knowledge there have been
no previous attempts to adaptively select relative comparisons
with respect to a head object for general tuple sizes (k ≥ 3) in
the context of similarity learning. Prior work (Liang and Grau-
man 2014; Yu 2005) develops an active strategy for sampling
tuples, but the query task is relative attribute ranking within
the tuple according to some pre-specified attribute as opposed
to comparison against a head object. Other work (Qian et
al. 2013) actively samples the same query type as our study,
but in the context of classification via label propagation. Re-
search exists that is similar to our learning scenario since they
actively sample tuples for relative similarity comparisons to a
head for the sake of learning and searching an embedding of
objects (Cao and Ai 2015), but these comparisons are ternary
‘similar’, ‘dissimilar’, or ‘neither’ labels and their methodol-
ogy differs from the mutual information approach presented
here. Similarly, other work (Patterson et al. 2015) actively
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samples tuplewise queries with binary ‘similar’ or ‘dissimilar’
label responses with respect to a head, but in the context of
classification. Finally, the prior work (Wilber, Kwak, and Be-
longie 2014) also employs such tuplewise binary queries for
similarity learning, but with randomly selected queries. While
no previous study addresses the similarity learning problem
that we explore here, the existing literature demonstrates the
effectiveness, efficiency, and feasibility of queries involving
multiple objects and provides support for the practical use of
our proposed query type.

Methods

The problem of adaptively selecting a tuplewise query can be
formulated as follows: for a dataset X of N objects, assume
that there exists a d-dimensional vector of embedding coor-
dinates for each object which are concatenated as columns
in matrix M ∈ R

d×N . The similarity matrix corresponding
to M is given by K = MTM , which implies an N × N
matrix D of distances between the objects in X . Specifi-
cally, the squared distance between the ith and jth objects in
the dataset is given by D2

i,j = Ki,i − 2Ki,j +Kj,j . These
distances are assumed to be consistent in expectation with
similarity comparisons from an oracle (e.g., human expert or
crowd) such that similar objects are closer and dissimilar ob-
jects are farther apart. Since relative similarity comparisons
between tuples of objects inform their relative embedding
distances rather than their absolute coordinates, our objective
is to learn similarity matrix K rather than M , which can
be recovered from K up to a change in basis (Tamuz et al.
2011).

A tuplewise oracle query at time step n is composed of
a “body” of objects Bn = {bn1 , bn2 , . . . bnk−1} which the or-
acle ranks by similarity with respect to some “head” ob-
ject an. Letting Qn = {an} ∪ Bn denote the nth posed
tuple, we denote the oracle’s ranking response as R(Qn) =
{R1(Qn), R2(Qn), . . . Rk−1(Qn)} which is a permutation
of Bn such that R1(Qn) ≺ R2(Qn) · · · ≺ Rk−1(Qn) where
bi ≺ bj indicates that the oracle ranks object bi as more sim-
ilar to an than object bj . Since the oracle is assumed to be
stochastic, R(Qn) is a random permutation of Bn governed
by a distribution that is assumed to depend on K. This as-
sumed dependence is natural because oracle consistency is
likely coupled with notions of object similarity, and therefore
with distances between the objects in M . The actual recorded
oracle ranking is a random variate of R(Qn) denoted as
r(Qn). Letting rn = {r(Q1), r(Q2), . . . r(Qn)}, define K̂n

as an estimate of K learned from previous rankings rn, with
corresponding distance matrix D̂n.

Suppose that tuples Q1, Q2, . . . Qn−1 have been posed
as queries to the oracle with corresponding ranking re-
sponses rn−1, and consider a Bayes optimal approach where
after the nth query we estimate the similarity matrix as
the maximum a-posteriori (MAP) estimator over a simi-
larity matrix posterior distribution given by f(K|rn), i.e.
K̂n = argmaxK f(K|rn) . To choose the query Qn, a rea-
sonable objective is to select a query that maximizes the
achieved posterior value of the resulting MAP estimator (or
equivalently one that maximizes the achieved logarithm of

the posterior), corresponding to a higher level of confidence
in the estimate. However, because the oracle response r(Qn)
is unknown before a query is issued, the resulting maximized
posterior value is unknown. Instead, a more reasonable ob-
jective is to select a query that maximizes the expected value
over the posterior of R(Qn). This can be stated as

argmax
Qn

E
R(Qn)

[
max
K

log f(K|R(Qn), r
n−1) | rn−1

]
.

In practice, this optimization is infeasible since each expec-
tation involves the calculation of several MAP estimates.
Noting that maximization is lower bounded by expectation,
this optimization can be relaxed by replacing the maximiza-
tion over K with an expectation over its posterior distribution
given R(Qn) and rn−1, resulting in a feasible maximization
of a lower bound given by

argmax
Qn

−h(K | R(Qn), r
n−1), (1)

where h(K | R(Qn), r
n−1) denotes conditional differential

entropy (Cover and Thomas 2012). Let the mutual informa-
tion between K and R(Qn) given rn−1 be defined by

I(K;R(Qn) | rn−1) = h(K | rn−1)−h(K |R(Qn), r
n−1),

and note that the second term is equal to (1) while the first
term does not depend on the choice of Qn. Thus, maximiz-
ing (1) over Qn is equivalent to maximizing I(K,R(Qn) |
rn−1). Hence, we can adaptively select tuples that maximize
mutual information as a means of greedily maximizing a
lower bound on the log-posterior achieved by a MAP estima-
tor, corresponding to a high estimator confidence.

However, calculating (1) for a candidate tuple is an ex-
pensive procedure that involves estimating the differential
entropy of a combinatorially large number of posterior dis-
tributions, since the expectation with respect to R(Qn) is
taken over (k− 1)! possible rankings. Instead, in the spirit of
(Houlsby et al. 2012) we leverage the symmetry of mutual
information to write the equivalent objective

argmax
Qn

H(R(Qn) | rn−1)−H(R(Qn) | K, rn−1) (2)

where H(· | ·) denotes conditional entropy of a discrete
random variable. Estimating (2) for a candidate tuple only
involves averaging ranking entropy over a single posterior
f(K | rn−1), regardless of the value of k. This insight, along
with suitable probability models discussed in the next sec-
tions, allows us to efficiently estimate mutual information for
a candidate tuple over a single batch of Monte Carlo samples,
rather than having to sample from (k − 1)! posteriors.

Furthermore, by interpreting entropy of discrete random
variables as a measure of uncertainty, this form of mutual
information maximization has a satisfying qualitative inter-
pretation. The first entropy term in (2) prefers tuples whose
rankings are uncertain, preventing queries from being wasted
on predictable or redundant responses. Meanwhile, the sec-
ond term discourages tuples that have high expected uncer-
tainty when conditioned on K; this prevents the selection
of tuples that, even if K were somehow revealed, would
still have uncertain rankings. Such queries are inherently
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ambiguous, and therefore uninformative to the embedding.
Thus, maximizing mutual information optimizes the balance
between these two measures of uncertainty and therefore
prefers queries that are unknown to the learner but that can
still be answered consistently by the oracle.

Estimating Mutual Information

To tractably estimate the entropy terms in (2) for a candidate
tuple, we employ several simplifying assumptions concerning
the joint statistics of the query sequence and the embedding
that allow for efficient Monte Carlo sampling:

(A1) As is common in active learning settings, we assume
that each query response R(Qn) is statistically indepen-
dent of previous responses rn−1, when conditioned on
K.

(A2) The distribution of R(Qn) conditioned on K is only
dependent on the distances between an and the objects in
Bn, notated as set DQn

:= {Dan,b : b ∈ B}. This direct
dependence of tuple ranking probabilities on inter-object
distances is rooted in the fact that the distance relationships
in the embedding are assumed to capture oracle response
behavior, and is a common assumption in ordinal embed-
ding literature (Van Der Maaten and Weinberger 2012;
Tamuz et al. 2011). Furthermore, this conditional indepen-
dence of R(Qn) from objects x �∈ Qn is prevalent in prob-
abilistic ranking literature (Stern 1990). In the next section,
we describe a reasonable ranking probability model that
satisfies this assumption.

(A3) D is conditionally independent of rn−1, given D̂n−1.
This assumption is reasonable because embedding meth-
ods used to estimate K̂n−1 (and subsequently D̂n−1) are
designed such that distances in the estimated embedding
preserve the response history contained in rn−1. In prac-
tice, it is more convenient to model an embedding posterior
distribution by conditioning on D̂n−1, learned from the
previous responses rn−1, rather than by conditioning on
rn−1 itself. This is in the same spirit of CKL, where the
current embedding estimate is used to approximate a pos-
terior distribution over points.

(A4) Conditioned on D̂n−1, the posterior distribution of
DQn

is normally distributed about the corresponding val-
ues in D̂n−1

Qn
, i.e. Dn−1

an,b
∼ N (D̂n−1

an,b
, σ2

n−1) ∀b ∈ B,
where σ2

n−1 is a variance parameter. Imposing Gaussian
distributions on inter-object distances is a recent approach
to modeling uncertainty in ordinal embeddings (Lohaus,
Hennig, and von Luxburg 2019) that allows us to approxi-
mate the distance posterior with a fixed batch of samples
from a simple distribution. Furthermore, the combination
of this model with (A2) means that we only need to sample
from the normal distributions corresponding to the objects
in Qn. We choose σ2

n−1 to be the sample variance of all en-
tries in D̂n−1, which is a heuristic that introduces a source
of variation that preserves the scale of the embedding.

Combining these assumptions, with a slight abuse of notation
by writing H(X) = H(p(X)) for a random variable X

with probability mass function p(X), andNn−1
Qn

to represent
normal distribution N (D̂n−1

Qn
, σ2

n−1), we have

H(R(Qn) | rn−1) = H
(
E
K

[
p(R(Qn) |K, rn−1) | rn−1

])
= H

(
E
K

[
p(R(Qn) | K) | rn−1

])
(A1)

= H

(
E

DQn

[
p(R(Qn) | DQn

) | rn−1
])

(A2)

= H

(
E

DQn

[
p(R(Qn) | DQn) | D̂n−1

])
(A3)

= H

(
E

DQn∼Nn−1
Qn

[p(R(Qn) | DQn
)]

)
(A4)

Similarly, we have

H(R(Qn) |K, rn−1) = E
DQn∼Nn−1

Qn

[H (p(R(Qn) |DQn
))]

This formulation allows a fixed-sized batch of samples to be
drawn and evaluated over, the size of which can be tuned
based on real-time performance specifications. This enables
us to separate our computational budget and mutual informa-
tion estimation accuracy from the size of the tuple query.

Embedding Technique

In order to maximize the flexibility of our approach and
draw a closer one-to-one comparison to existing methods
for similarity learning, we train our embedding on our ac-
tively selected tuples by first decomposing a tuple ranking
into k − 2 constituent triplets defined by the set {Ri(Qm) ≺
Ri+1(Qm) : 1 ≤ i ≤ k − 2, m ≤ n}, and then learning
an embedding from these triplets with any triplet ordinal
embedding algorithm of choice. Since we compare perfor-
mance against CKL in our experiments, our proposed em-
bedding technique follows directly from the probabilistic
MDS formulation in (Tamuz et al. 2011) so as to evaluate
the effectiveness of our novel query selection strategy in a
controlled setting. We wish to constrain our learned similarity
matrix to the set of symmetric unit-length PSD matrices, so
we consider the set S of such matrices: S = {K 
 0|K11 =
K22 = · · · = KNN = 1}. We denote the closest matrix in S
to K as PS(K) = argminA∈S

∑
ij(Kij − Aij)

2. Project-
ing to the element in S closest to K is a quadratic program,
which we solve by gradient projection descent on K. We
do this by selecting an initial K0 arbitrarily, and for each
iteration computing Kt+1 = PS(K

t − η∇lt(Kt)) with lt
being the empirical log-loss at iteration t i.e. lt = log 1

p , and
p being the probability that the oracle correctly ordered the
constituent triplets of the selected tuples. For the response
probability of an individual triplet, we adopt the model in
(Tamuz et al. 2011) that is reminiscent of Bradley-Terry pair-
wise score models (Bradley and Terry 1952): for parameter
μ > 0, p(b1 ≺ b2) = (D2

a,b2
+ μ)/(D2

a,b1
+D2

a,b2
+ 2μ).

Tuple Response Model

Our proposed technique is compatible with any tuple ranking
model that satisfies (A2). However, since we use the triplet
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response model listed above in the probabilistic MDS formu-
lation, combined with the need for a controlled test against
CKL, we extend their model to the tuplewise case as follows:
we first decompose an oracle’s ranking into its constituent
triplets, and then apply

p(R(Qn) |DQn
) ∝

k−2∏
i=1

D2
a,Ri+1(Qn)

+ μ

D2
a,Ri(Qn)

+D2
a,Ri+1(Qn)

+ 2μ
,

for parameter μ > 0. This model corresponds to oracle be-
havior that ranks objects proportionally to the ratio of their
distances with respect to a, such that closer (resp. farther)
objects are more (resp. less) likely to be deemed similar.
Models of this type are generally held to be similar to the
scale-invariant models present in some human perceptual
systems (Chater and Brown 1999).

Adaptive Algorithm

Combining these concepts, we have the following algorithm
titled InfoTuple, summarized in Algorithm 1: the algorithm
requires that some initial set of randomly selected tuples be
labeled to provide a reasonable initialization of the learned
similarity matrix. Since the focus of this work is on the ef-
fectiveness of various adaptive selection methods, this ini-
tialization is standardized across methods considered in our
results. Specifically, following established practice (Tamuz et
al. 2011), a “burn-in” period is used where T0 random triplets
are posed for each object a in object set X , with a being the
head of each query. Then, for each time step n we learn a sim-
ilarity matrix K̂n−1 on the set of previous responses rn−1 by
using probabilistic MDS. To make a comparison to CKL, we
follow their procedure and subsequently pose a single tuple
for each head a ∈ X . However, it is possible to adaptively
choose a with our method by searching over both head and
body objects for a maximally informative tuple. The body
of each tuple, given some head a, is chosen by uniformly
downsampling the set of possible bodies and selecting the
one that maximizes the mutual information, calculated us-
ing the aforementioned probability model in our estimation
procedure. This highlights the importance of computational
tractability in estimating mutual information, since for a fixed
computing budget per selected query, less expensive mutual
information estimation allows for more candidate bodies to
be considered. For a tuple size of k we denote the run of an
algorithm using that tuple size as InfoTuple-k.

Experiments

Our results on synthetic and human response datasets show
that InfoTuple’s adaptive selection outperforms both random
query selection and that of CKL1. This is true even when
normalizing for changes in tuple size and when normalizing
for labeling effort, showing that the incurred benefit is not
only due to the increased information inherently present in
larger tuples but also due to our improved adaptive selection.
We also show that there are inherent consistency benefits to
the use of larger queries, and that human labelers can respond
to these query types in practice without undue cost.

1Code available at https://github.com/siplab-gt/infotuple

Algorithm 1 InfoTuple-k

Require: object set X , rate ω, sample size Nf , horizon T
r0 ← ∅ initialize set of oracle responses
K̂0 ← initialize embedding
for n = 1 to T do
D̂n−1 ← calculate pairwise distances from K̂n−1

σ2
n−1 ← 1

N2

∑
d∈ ̂Dn−1

(
d− 1

N2

∑
d∈ ̂Dn−1 d

)2
for all a ∈ X do
β ← downsampled k−1 sized bodies at rate ω
for all B ∈ β do
Q← {a} ∪B

Ds ∼ N (D̂n−1
Q , σ2

n−1), drawn Nf times

IB←H

( ∑
D∈Ds

p(R(Q)|D)
Nf

)
− ∑

D∈Ds

H(p(R(Q)|D))
Nf

end for
B ← argmaxB∈β IB
r ← oracle ranks objects in B relative to a
rn ← rn−1 ∪ r

end for
K̂n ← probabilisticMDS(rn)

end for
Ensure: K̂T

Datasets

To evaluate algorithm performance in a controlled setting,
we constructed a synthetic evaluation dataset by generating a
point cloud drawn from a d-dimensional multivariate normal
distribution. To simulate oracle responses for this dataset,
we use the popular Plackett-Luce permutation model to sam-
ple a ranking for a given head and body (Cao et al. 2007;
Guiver and Snelson 2009). In this response model, each ob-
ject in a tuple body is assigned a score according to a scoring
function, which in our case is based on the distance in the
underlying space between each object and the head. For a
given subset of body objects, the probability of an object be-
ing ranked as most similar to the head is its score divided by
the scores of all objects in that subset, and we generate each
simulated oracle response by sequentially sampling objects
without replacement from a tuple according to this model.
We chose this tested response model to differ from the one
we use to estimate mutual information in order to demon-
strate the robustness of our method to mismatched noise
models, and evaluate an additional Gaussian noise model in
the appendix. This dataset was used to compare InfoTuple-3,
InfoTuple-4, InfoTuple-5, CKL, Random-3, and Random-5
across noiseless, Gaussian, and Plackett-Luce oracles.

To demonstrate the broader applicability of our work in
real-world settings and evaluate our proposed technique on
perceptual similarity data, we also collected a large dataset of
human responses to tuplewise queries through Amazon Me-
chanical Turk. Drawing 3000 food images from the Food-10k
dataset (Wilber et al. 2015), we presented over 7000 users
with a total of 192,000 varying-size tuplewise queries chosen
using Infotuple-3, InfoTuple-5, Random-3, and Random-5
as selection strategies across three repeated runs of each al-
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(a) (b) (c)

Figure 2: 2(a) and 2(b) show a comparison of the fidelity of the learned embedding to the ground truth embedding with a
simulated deterministic (left) and a stochastic (right) oracle, plotted with ±1 standard error. Results shown are for a synthetic
dataset of N = 500 points from a two-dimensional dataset. 2(c) shows holdout accuracy on human-subject tests with N = 5000.

gorithm. Users were evaluated with one repeat query out
of 25, and users who responded inconsistently to the repeat
query were discarded. Query bodies were always shuffled
when presented to minimize the impact of any possible order
effect, and it was not found to be the case that there was
any significant order effect in the human responses. Initial
embeddings for each of these methods were trained on 5,000
triplet queries drawn from (Wilber et al. 2015). Although
experimental costs prevented us from extending the experi-
ments in Figure 2(c) to larger tuple sizes, in order to verify
the feasibility of having humans respond to larger tuples in
practice we performed a separate data collection in which we
asked users to rank randomly selected tuples up to a size of
k = 10 and recorded the labeling time for each response.

Evaluation Metrics

In order to directly measure the preservation of object rank-
ings between the ground truth object coordinates and the
embedding learned from oracle responses, we use Kendall’s
Tau rank correlation coefficient (Kendall 1938). To get an
aggregate measure of quality when comparing an estimated
embedding to a ground-truth embedding, we take the mean
of Kendall’s Tau across the total rankings obtained by setting
each object as the head and sorting all objects by embedding
distance to the head. In our experiments with human respon-
dents it is not possible to use this measure, as the “ground
truth” embedding that corresponds to human preferences is
not known. In these cases we instead measure the accuracy
with respect to a held-out set of queries drawn from the Food-
10k dataset (Wilber et al. 2015), which is a common embed-
ding quality metric (Van Der Maaten and Weinberger 2012;
Wilber et al. 2015). The holdout accuracy is the fraction of
a held out set of triplet comparisons that agrees with dis-
tances in the final learned embedding. To capture a notion
of the internal coherence between a set of oracle responses
and an embedding that is learned from them, we measure the
mean rank correlation between each response in this set and
the ranking over the same objects imputed from the learned
embedding–we refer to this as the coherence of a set of tuples.

One issue that naturally arises when comparing results

from strategies that select tuples of different size is normal-
ization, as larger tuples will naturally be more informative. In
human-response studies normalization is relatively straight-
forward, as we can simply normalize with respect to the total
time spent labeling queries in order to reflect the total la-
beling cost. While other more comprehensive measures of
labeler effort exist, labeling time is a first-order approxima-
tion for the cognitive load of a labeling task and is the most
salient metric for determining the cost of a large-scale data
collection. In the case of synthetic data, we instead compute
a normalized query count corresponding to the number of
constituent triplet comparisons defining the relation of each
body point to the head in the tuple. This is justified since in
practice we decompose tuples in this way when feeding them
into the embedding algorithm, and corresponds to the size
of a tuple’s transitive reduction (a common representation in
learning-to-rank literature (Kingston and Egerstedt 2009)).
Additional experimental details such as hyperparameter se-
lection are available in the appendix.

Experimental Results

Using simulated data, we show a direct comparison of em-
bedding quality from using InfoTuple, CKL, and Random
queries under a simulated deterministic oracle (Figure 2(a))
and two simulated stochastic oracles (Figure 2(b)), and note
that InfoTuple consistently outperformed the other methods.
We note two important observations from these results: first,
regardless of the oracle used, larger tuple sizes for InfoTuple
tended to perform better and converge faster than did smaller
tuple sizes even after normalizing for the tuple size, show-
ing the benefit of larger tuples beyond just providing more
constituent triplets. Recalling that the Plackett-Luce oracle
was not directly modeled in our estimate of mutual informa-
tion, this lends support to the robustness of our technique to
various oracle distributions. Second, results on Random-3,
Random-4 and Random-5 are comparable, implying both that
the improvements seen in InfoTuple are not solely due to the
difference in tuple sizes and that our choice of normalization
is appropriate. Note that since random query performance did
not change with tuple size, Figure 2(b) only shows Random-3
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Figure 3: This violin plot shows the distribution of timing
responses for random queries from size k = 3 to k = 10, for
the purpose of measuring labeler effort. The response time
for k ≤ 7 shows only modest increases in cost, although
responses above these sizes require significantly more effort.

for the sake of visual clarity.
Using the Mechanical Turk dataset described previously,

we also show that these basic results extend to real data sit-
uations when the stochastic response model is not exactly
known, and allows us to examine the complexity of acquiring
data with increasing tuple sizes. While larger tuples sizes pro-
duce more informative queries, it is possible that the informa-
tion gained incurs a hidden cost in the complexity or labeler
effort involved in acquiring the larger query. Specifically, it
can be the case that maximizing query informativeness can
produce queries that are more difficult to answer (Baldridge
and Palmer 2009). Fortunately, the results on tuplewise com-
parisons collected for our Mechanical Turk dataset indicate
that this is not an issue for our proposed use case. In particu-
lar, Figure 2(c) shows the accuracy results when predicting
the labels from a held out set of 1200 triplet queries. These
results show an increase in the effectiveness of InfoTuple
adaptive selection as well as increasing tuples sizes when
plotted against the aggregate query response time. In other
words, any increase in query complexity (measured by re-
sponse time) is more than compensated for by the increased
information acquired by the query and the increase in the
resulting quality of the learned embedding.

Figure 3 explores this issue further by examining the re-
sponse times for our additional timing dataset as a function
of query size. There are only modest increases in the ranking
time cost with increasing tuple size, leading to the significant
gains observed in normalized information efficiency in this
range of tuple sizes. While it is true that complexity cost will
continue to increase for larger tuple sizes and the gains in
information efficiency are not guaranteed to increase indefi-
nitely and there may also be additional factors in the choice
of optimal tuple size for a given problem, we show that up to
a modest tuple size it is strictly more useful to ask tuplewise
queries than triplet queries.

One possible reason for why tuples outperform triplets
is that asking a query that contains more objects provides
additional context for the oracle about the contents of the

Figure 4: Measuring the aggregate coherence for all tuples
of size 3 and size 5 (i.e. over 80,000 tuples at each size) with
respect to an aggregate embedding learned for each tuple
size, we find that there is a significant difference in their
internal coherence as measured by a t-test (p=0.007181). We
hypothesize that the difference is due to an increase in context
available to the oracle. Error bars depict ±1 standard error.

dataset, allowing it to more reliably respond to ambiguous
comparisons than if these were asked as triplet queries. As
a result of this increase in context, oracles tend to respond
to larger queries significantly more coherently than they do
to smaller ones, as shown in Figure 4. We note that this is
not guaranteed to increase indefinitely as larger tuples are
considered, but the effect is noticeable for modest increases
in tuple sizes and is clear when comparing 5-tuples to triplets.

Discussion

In this paper we proposed InfoTuple, an adaptive tuple se-
lection strategy based on maximizing mutual information for
relative tuple queries for similarity learning. We introduce
the tuple query for similarity learning, present a novel set of
assumptions for efficient estimation of mutual information,
and through the collection of new user-response datasets,
provide new insights into the gains acquired by using larger
tuples in learning efficiency and query consistency. After
testing on synthetic and real datasets, InfoTuple was found
to more effectively learn similarity-based object embeddings
than random queries and state-of-the-art triplet queries for
both synthetic data (with a typical oracle model) and in a real
world experiment. The performance gains were especially
evident for larger tuples and even after normalizing for tuple
size, indicating that the proposed selection objective that max-
imizes the mutual information between the query response
and the entire embedding yields information gains that are
not simply due to an increase in tuple size. Taken together,
these results suggest that large tuples selected with InfoTuple
supply richer and more robust embedding information than
their triplet and random counterparts.

In practice, larger tuple sizes can provide more context for
the oracle, increasing the reliability of the responses without
significant increases in labeling effort. In the pathological
extreme, the level of effort almost certainly outweighs the
benefits of larger tuples, as an oracle would have to provide
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a ranking over the entire dataset. Despite this downside in
extreme tuple sizes, our human study results indicate that
performance increases hold up in the real-world for moderate
tuple sizes. This interesting tradeoff between informativeness
per query and real-world oracle behavior merits a more com-
prehensive study on the psychometric aspects of the problem,
in the spirit of (Miller 1956).
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Appendix

Experimental Details

For each of the human-subject experiments, μ was set to 0.1
and d was set to 4 per the hyperparameter search shown in
Figure 5. The validation set for this search was an additional
500 heldout triplets from the Food10k dataset. In the synthetic
experiments provided, μ was set to 0.5 and d was set to 2
to match the dimensionality of the generating distribution.
The stochastic oracle had a high noise level, inverting 33% of
tuple responses. Higher tuple sizes were strongly correlated
with both higher performance and higher robustness to error
(even when normalized by the effective number of pairwise
queries), indicating performance gains for InfoTuple that are
not simply due to increasing tuple sizes. A heuristic was used
to pick a number of samples for the Monte Carlo estimation
of the mutual information, with N

10 samples being used in
practice.

Figure 5: Hyperparameter sweep for Food10k dataset. Exper-
imental values of d = 4 and μ = 0.1 were found to be the
most effective on a held-out validation set of triplets.

Figure 2 in the paper body shows empirical performance
for query selection algorithms on predicting labels from held
out triplet queries in the Mechanical Turk dataset described.
Experimental horizons for human subject experiments were
chosen based on estimates of the initial steps of convergence
and had to be limited due to high experimental costs. Turk
subjects were presented with queries in batches of 25, with

one repeated tuple across the batch as a test for validity. If the
repeat query was not answered the same way by the user both
times it was asked the batch was discarded. Order effects
were controlled for by shuffling queries prior to presenting
them to users for labeling, ensuring that any queries presented
to multiple users would appear in different orders and that
the test queries would also appear differently each time.

Oracle Details

Two different models of oracle noise were used in our syn-
thetic experiments, Plackett-Luce noise and Gaussian noise
(Figure 6). These models were chosen to be different from
the one we use to estimate mutual information in order to
demonstrate the robustness of our method. In the body of the
paper we describe the selection process used by the Plackett-
Luce oracle noise, which works by assigning latent scores
to objects on the basis of their distances in some synthetic
“ground truth” embedding space. The Gaussian noise model,
instead of applying noise directly at the level of the ranking
responses, applies noise at the level of the oracle’s represen-
tation of the “ground truth” embedding by adding Gaussian
noise to the coordinates of each point drawn from the “ground
truth” embedding before imputing a ranking from distances in
the oracle’s noisy interpretation of the space. For the Plackett-
Luce error model results shown in the paper body, 33% of
individual rankings were inverted.

Figure 6: Synthetic experiment results using an oracle with
Gaussian noise. Results were broadly consistent with those
of the Plackett-Luce oracle in spite of the mismatch between
the oracle noise and the embedding.

Computational Complexity

The computational complexity of the embedding calculation
is that of a typical MDS algorithm- for any M ∈ R

d×N

an approximate solution can be found in O(N) for d < N
(Aflalo and Kimmel 2013). Our case has an N far greater
than d while still being of manageable size, allowing for a
fast linear-time approximation.

With respect to the entropy calculation itself, the inner
loop computing the mutual information from a given tuple is
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computable in O(Nfk
2). However, the computational com-

plexity for a given algorithm iteration is dominated by the
O(ω

(
N

k−1

)
) cost of generating and iterating over large pools

of candidate tuples, meaning that the run-time is heavily de-
pendent on the choice of the sampling rate ω and distance
sample size Nf , and the question of how to efficiently esti-
mate similar mutual information quantities without the use
of Monte Carlo methods remains open.
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