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Abstract

Given a stream of graph edges from a dynamic graph, how
can we assign anomaly scores to edges in an online manner,
for the purpose of detecting unusual behavior, using constant
time and memory? Existing approaches aim to detect indi-
vidually surprising edges. In this work, we propose MIDAS,
which focuses on detecting microcluster anomalies, or sud-
denly arriving groups of suspiciously similar edges, such as
lockstep behavior, including denial of service attacks in net-
work traffic data. MIDAS has the following properties: (a)
it detects microcluster anomalies while providing theoretical
guarantees about its false positive probability; (b) it is online,
thus processing each edge in constant time and constant mem-
ory, and also processes the data 108 − 505 times faster than
state-of-the-art approaches; (c) it provides 46%-52% higher
accuracy (in terms of AUC) than state-of-the-art approaches.

Introduction

Anomaly detection in graphs is a critical problem for find-
ing suspicious behavior in innumerable systems, such as in-
trusion detection, fake ratings, and financial fraud. This has
been a well-researched problem with majority of the pro-
posed approaches (Akoglu, McGlohon, and Faloutsos 2010;
Chakrabarti 2004; Hooi et al. 2017; Jiang et al. 2016;
Kleinberg 1999; Shin, Eliassi-Rad, and Faloutsos 2018) fo-
cusing on static graphs. However, many real-world graphs
are dynamic in nature, and methods based on static connec-
tions may miss temporal characteristics of the graphs and
anomalies.

Among the methods focusing on dynamic graphs, most of
them have edges aggregated into graph snapshots (Eswaran
et al. 2018; Sun, Tao, and Faloutsos 2006; Sun et al. 2007;
Koutra, Vogelstein, and Faloutsos 2013; Sricharan and Das
2014; Gupta et al. 2012). However, to minimize the effect of
malicious activities and start recovery as soon as possible,
we need to detect anomalies in real-time or near real-time
i.e. to identify whether an incoming edge is anomalous or
not, as soon as we receive it. In addition, since the number
of vertices can increase as we process the stream of edges,
we need an algorithm which uses constant memory in graph
size.
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Moreover, fraudulent or anomalous events in many appli-
cations occur in microclusters or suddenly arriving groups
of suspiciously similar edges e.g. denial of service attacks in
network traffic data and lockstep behavior. However, exist-
ing methods which process edge streams in an online man-
ner, including (Eswaran and Faloutsos 2018; Ranshous et al.
2016), aim to detect individually surprising edges, not mi-
croclusters, and can thus miss large amounts of suspicious
activity.

In this work, we propose MIDAS, which detects micro-
cluster anomalies, or suddenly arriving groups of suspi-
ciously similar edges, in edge streams, using constant time
and memory. In addition, by using a principled hypothesis
testing framework, MIDAS provides theoretical bounds on
the false positive probability, which these methods do not
provide.

Our main contributions are as follows:

1. Streaming Microcluster Detection: We propose a novel
streaming approach for detecting microcluster anomalies,
requiring constant time and memory.

2. Theoretical Guarantees: In Theorem 1, we show guaran-
tees on the false positive probability of MIDAS.

3. Effectiveness: Our experimental results show that MIDAS
outperforms baseline approaches by 46%-52% accuracy
(in terms of AUC), and processes the data 108−505 times
faster than baseline approaches.

Reproducibility: Our code and datasets are publicly avail-
able at https://github.com/bhatiasiddharth/MIDAS.

Related Work

In this section, we review previous approaches to detect
anomalous signs on static and dynamic graphs. See (Akoglu,
Tong, and Koutra 2015) for an extensive survey on graph-
based anomaly detection.
Anomaly detection in static graphs can be classified by
which anomalous entities (nodes, edges, subgraph, etc.) are
spotted.

• Anomalous node detection: (Akoglu, McGlohon, and
Faloutsos 2010) extracts egonet-based features and finds
empirical patterns with respect to the features. Then, it
identifies nodes whose egonets deviate from the patterns,
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including the count of triangles, total weight, and princi-
pal eigenvalues. (Jiang et al. 2016) computes node fea-
tures, including degree and authoritativeness (Kleinberg
1999), then spots nodes whose neighbors are notably
close in the feature space.

• Anomalous subgraph detection: (Hooi et al. 2017) and
(Shin, Eliassi-Rad, and Faloutsos 2018) measure the
anomalousness of nodes and edges, detecting a dense sub-
graph consisting of many anomalous nodes and edges.

• Anomalous edge detection: (Chakrabarti 2004) encodes
an input graph based on similar connectivity among
nodes, then spots edges whose removal reduces the total
encoding cost significantly. (Tong and Lin 2011) factorize
the adjacency matrix and flag edges with high reconstruc-
tion error as outliers.

Anomaly detection in graph streams use as input a series
of graph snapshots over time. We categorize them similarly
according to the type of anomaly detected:
• Anomalous node detection: (Sun, Tao, and Faloutsos

2006) approximates the adjacency matrix of the current
snapshot based on incremental matrix factorization, then
spots nodes corresponding to rows with high reconstruc-
tion error.

• Anomalous subgraph detection: Given a graph with
timestamps on edges, (Beutel et al. 2013) spots near-
bipartite cores where each node is connected to others
in the same core densly within a short time. (Jiang et al.
2016) detects groups of nodes who form dense subgraphs
in a temporally synchronized manner.

• Anomalous event detection: (Eswaran et al. 2018) detects
sudden appearance of many unexpected edges, and (Yoon
et al. 2019) spots sudden changes in 1st and 2nd deriva-
tives of PageRank.

Anomaly detection in edge streams use as input a stream
of edges over time. Categorizing them according to the type
of anomaly detected:
• Anomalous node detection: Given an edge stream, (Yu et

al. 2013) detects nodes whose egonets suddenly and sig-
nificantly change.

• Anomalous subgraph detection: Given an edge stream,
(Shin et al. 2017) identifies dense subtensors created
within a short time.

• Anomalous edge detection: (Ranshous et al. 2016) fo-
cuses on sparsely-connected parts of a graph, while
(Eswaran and Faloutsos 2018) identifies edge anomalies
based on edge occurrence, preferential attachment, and
mutual neighbors.

Only the 2 methods in the last category are applicable to our
task, as they operate on edge streams and output a score per
edge. However, as shown in Table 1, neither method aims to
detect microclusters, or provides guarantees on false positive
probability.

Problem
Let E = {e1, e2, · · · } be a stream of edges from a time-
evolving graph G. Each arriving edge is a tuple ei =

Table 1: Comparison of relevant edge stream anomaly de-
tection approaches.
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(ui, vi, ti) consisting of a source node ui ∈ V , a destina-
tion node vi ∈ V , and a time of occurrence ti, which is the
time at which the edge was added to the graph. For example,
in a network traffic stream, an edge ei could represent a con-
nection made from a source IP address ui to a destination
IP address vi at time ti. We do not assume that the set of
vertices V is known a priori: for example, new IP addresses
or user IDs may be created over the course of the stream.

We model G as a directed graph. Undirected graphs can
simply be handled by treating an incoming undirected ei =
(ui, vi, ti) as two simultaneous directed edges, one in either
direction.

We also allow G to be a multigraph: edges can be created
multiple times between the same pair of nodes. Edges are
allowed to arrive simultaneously: i.e. ti+1 ≥ ti, since in
many applications ti are given in the form of discrete time
ticks.

The desired properties of our algorithm are as follows:

• Microcluster Detection: It should detect suddenly ap-
pearing bursts of activity which share many repeated
nodes or edges, which we refer to as microclusters.

• Guarantees on False Positive Probability: Given any
user-specified probability level ε (e.g. 1%), the algorithm
should be adjustable so as to provide false positive prob-
ability of at most ε (e.g. by adjusting a threshold that de-
pends on ε). Moreover, while guarantees on the false pos-
itive probability rely on assumptions about the data distri-
bution, we aim to make our assumptions as weak as pos-
sible.

• Constant Memory and Update Time: For scalability in
the streaming setting, the algorithm should run in con-
stant memory and constant update time per newly arriv-
ing edge. Thus, its memory usage and update time should
not grow with the length of the stream, or the number of
nodes in the graph.
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Proposed Algorithm

Overview

Next, we describe our MIDAS and MIDAS-R approaches.
The following provides an overview:

1. Streaming Hypothesis Testing Approach: We describe
our MIDAS algorithm, which uses streaming data struc-
tures within a hypothesis testing-based framework, al-
lowing us to obtain guarantees on false positive proba-
bility.

2. Detection and Guarantees: We describe our decision
procedure for determining whether a point is anomalous,
and our guarantees on false positive probability.

3. Incorporating Relations: We extend our approach to the
MIDAS-R algorithm, which incorporates relationships
between edges temporally and spatially1.

MIDAS: Streaming Hypothesis Testing Approach

Time tick

Occurrences of edge (u, v) 

1 10
0

1000

Figure 1: Time series of a single source-destination pair
(u, v), with a large burst of activity at time tick 10.

Consider the example in Figure 1 of a single source-
destination pair (u, v), which shows a large burst of activity
at time 10. This burst is the simplest example of a micro-
cluster, as it consists of a large group of edges which are
very similar to one another (in fact identical), both spatially
(i.e. in terms of the nodes they connect) and temporally.

Streaming Data Structures In an offline setting, there are
many time-series methods which could detect such bursts of
activity. However, in an online setting, recall that we want
memory usage to be bounded, so we cannot keep track of
even a single such time series. Moreover, there are many
such source-destination pairs, and the set of sources and des-
tinations is not fixed a priori.

To circumvent these problems, we maintain two types
of Count-Min-Sketch (CMS) (Cormode and Muthukrishnan
2005) data structures. Assume we are at a particular fixed
time tick t in the stream; we treat time as a discrete variable
for simplicity. Let suv be the total number of edges from u
to v up to the current time. Then, we use a single CMS data
structure to approximately maintain all such counts suv (for
all edges uv) in constant memory: at any time, we can query
the data structure to obtain an approximate count ˆsuv .

1We use ‘spatially’ in a graph sense, i.e. connecting nearby
nodes, not to refer to any other continuous spatial dimension.

Secondly, let auv be the number of edges from u to v in
the current time tick (but not including past time ticks). We
keep track of auv using a similar CMS data structure, the
only difference being that we reset this CMS data structure
every time we transition to the next time tick. Hence, this
CMS data structure provides approximate counts ˆauv for the
number of edges from u to v in the current time tick t.

Hypothesis Testing Framework Given approximate
counts ˆsuv and ˆauv , how can we detect microclusters? More-
over, how can we do this in a principled framework that al-
lows for theoretical guarantees?

Fix a particular source and destination pair of nodes,
(u, v), as in Figure 1. One approach would be to assume
that the time series in Figure 1 follows a particular genera-
tive model: for example, a Gaussian distribution. We could
then find the mean and standard deviation of this Gaussian
distribution. Then, at time t, we could compute the Gaussian
likelihood of the number of edge occurrences in the current
time tick, and declare an anomaly if this likelihood is below
a specified threshold.

However, this requires a restrictive Gaussian assumption,
which can lead to excessive false positives or negatives if the
data follows a very different distribution. Instead, we use a
weaker assumption: that the mean level (i.e. the average rate
at which edges appear) in the current time tick (e.g. t = 10)
is the same as the mean level before the current time tick
(t < 10). Note that this avoids assuming any particular dis-
tribution for each time tick, and also avoids a strict assump-
tion of stationarity over time.

Hence, we can divide the past edges into two classes: the
current time tick (t = 10) and all past time ticks (t < 10).
Recalling our previous notation, the number of events at
(t = 10) is auv , while the number of edges in past time
ticks (t < 10) is suv − auv .

Under the chi-squared goodness-of-fit test, the chi-
squared statistic is defined as the sum over categories of
(observed−expected)2

expected . In this case, our categories are t = 10

and t < 10. Under our mean level assumption, since we
have suv total edges (for this source-destination pair), the
expected number at t = 10 is suv

t , and the expected num-
ber for t < 10 is the remaining, i.e. t−1

t suv . Thus the chi-
squared statistic is:

X2 =
(observed(t=10) − expected(t=10))

2

expected(t=10)

+
(observed(t<10) − expected(t<10))

2

expected(t<10)

=
(auv − suv

t )2

suv

t

+
((suv − auv)− t−1

t suv)
2

t−1
t suv

=
(auv − suv

t )2

suv

t

+
(auv − suv

t )2

t−1
t suv

= (auv − suv
t

)2
t2

suv(t− 1)
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Note that both auv and suv can be estimated by our CMS
data structures, obtaining approximations ˆauv and ˆsuv re-
spectively. This leads to our following anomaly score, using
which we can evaluate a newly arriving edge with source-
destination pair (u, v):
Definition 1 (Anomaly Score). Given a newly arriving edge
(u, v, t), our anomaly score is computed as:

score((u, v, t)) = ( ˆauv − ˆsuv
t

)2
t2

ˆsuv(t− 1)
(1)

Algorithm 1 summarizes our MIDAS algorithm.

Algorithm 1: MIDAS: Streaming Anomaly Scoring
Input: Stream of graph edges over time
Output: Anomaly scores per edge

1 � Initialize CMS data structures:
2 Initialize CMS for total count suv and current count auv
3 while new edge e = (u, v, t) is received: do
4 � Update Counts:
5 Update CMS data structures for the new edge uv
6 � Query Counts:
7 Retrieve updated counts ˆsuv and ˆauv
8 � Anomaly Score:

9 output score((u, v, t)) = ( ˆauv − ˆsuv

t )2 t2

ˆsuv(t−1)

Detection and Guarantees

While Algorithm 1 computes an anomaly score for each
edge, it does not provide a binary decision for whether an
edge is anomalous or not. We want a decision procedure
that provides binary decisions and a guarantee on the false
positive probability: i.e. given a user-defined threshold ε, the
probability of a false positive should be at most ε. Intuitively,
the key idea is to combine the approximation guarantees of
CMS data structures with properties of a chi-squared ran-
dom variable.

The key property of CMS data structures we use is that
given any ε and ν, for appropriately chosen CMS data struc-
ture sizes, with probability at least 1 − ε

2 , the estimates ˆauv
satisfy:

ˆauv ≤ auv + ν ·Nt (2)

where Nt is the total number of edges at time t. Since CMS
data structures can only overestimate the true counts, we ad-
ditionally have

suv ≤ ˆsuv (3)

Define an adjusted version of our earlier score:

˜auv = ˆauv − νNt (4)

To obtain its probabilistic guarantee, our decision procedure
computes ˜auv , and uses it to compute an adjusted version of
our earlier statistic:

X̃2 = ( ˜auv − ˆsuv
t

)2
t2

ˆsuv(t− 1)
(5)

Then our main guarantee is as follows:

Theorem 1 (False Positive Probability Bound). Let
χ2
1−ε/2(1) be the 1 − ε/2 quantile of a chi-squared random

variable with 1 degree of freedom. Then:

P (X̃2 > χ2
1−ε/2(1)) < ε (6)

In other words, using X̃2 as our test statistic and threshold
χ2
1−ε/2(1) results in a false positive probability of at most ε.

Proof. Recall that

X2 = (auv − suv
t

)2
t2

suv(t− 1)
(7)

was defined so that it has a chi-squared distribution. Thus:

P (X2 ≤ χ2
1−ε/2(1)) ≥ 1− ε/2 (8)

At the same time, by the CMS guarantees we have:

P ( ˆauv ≤ auv + ν ·Nt) ≤ 1− ε/2 (9)

By union bound, with probability at least 1− ε, both these
events (8) and (9) hold, in which case:

X̃2 = ( ˜auv − ˆsuv
t

)2
t2

ˆsuv(t− 1)

= ( ˆauv − ν ·Nt − ˆsuv
t

)2
t2

ˆsuv(t− 1)

≤ (auv − suv
t

)2
t2

suv(t− 1)

= X2 ≤ χ2
1−ε/2(1)

Finally, we conclude that

P (X̃2 > χ2
1−ε/2(1)) < ε. (10)

Incorporating Relations

In this section, we describe our MIDAS-R approach, which
considers edges in a relational manner: that is, it aims to
group together edges which are nearby, either temporally or
spatially.

Temporal Relations Rather than just counting edges in
the same time tick (as we do in MIDAS), we want to allow
for some temporal flexibility: i.e. edges in the recent past
should also count toward the current time tick, but modified
by a reduced weight. A simple and efficient way to do this
using our CMS data structures is as follows: at the end of ev-
ery time tick, rather than resetting our CMS data structures
auv , we reduce all its counts by a fixed fraction α ∈ (0, 1).
This allows past edges to count toward the current time tick,
with a diminishing weight.
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Spatial Relations We would like to catch large groups of
spatially nearby edges: e.g. a single source IP address sud-
denly creating a large number of edges to many destinations,
or a small group of nodes suddenly creating an abnormally
large number of edges between them. A simple intuition we
use is that in either of these two cases, we expect to ob-
serve nodes with a sudden appearance of a large number of
edges. Hence, we can use CMS data structures to keep track
of edge counts like before, except counting all edges adja-
cent to any node u. Specifically, we create CMS counters
âu and ŝu to approximate the current and total edge counts
adjacent to node u. Given each incoming edge (u, v), we
can then compute three anomalousness scores: one for edge
(u, v), as in our previous algorithm; one for node u, and one
for node v. Finally, we combine the three scores by taking
their maximum value. Another possibility of aggregating the
three scores is to take their sum. Algorithm 2 summarizes the
resulting MIDAS-R algorithm.

Algorithm 2: MIDAS-R: Incorporating Relations
Input: Stream of graph edges over time
Output: Anomaly scores per edge

1 � Initialize CMS data structures:
2 Initialize CMS for total count suv and current count auv
3 Initialize CMS for total count su and current count au
4 while new edge e = (u, v, t) is received: do
5 � Update Counts:
6 Update CMS data structures for the new edge uv
7 � Query Counts:
8 Retrieve updated counts ˆsuv and ˆauv
9 Retrieve updated counts ŝu, ŝv, âu, âv

10 � Compute Edge Scores:

11 score(u, v, t) = ( ˆauv − ˆsuv

t )2 t2

ˆsuv(t−1)

12 � Compute Node Scores:

13 score(u, t) = (âu − ŝu
t )

2 t2

ŝu(t−1)

14 score(v, t) = (âv − ŝv
t )

2 t2

ŝv(t−1)

15 � Final Node Scores:
16 outputmax{score(u, v, t), score(u, t), score(v, t)}

Time and Memory Complexity

In terms of memory, both MIDAS and MIDAS-R only need
to maintain the CMS data structures over time, which are
proportional to O(wb), where w and b are the number of
hash functions and the number of buckets in the CMS data
structures; which is bounded with respect to the data size.

For time complexity, the only relevant steps in Algorithm
1 and 2 are those that either update or query the CMS data
structures, which take O(w) (all other operations run in con-
stant time). Thus, time complexity per update step is O(w).

Experiments

In this section, we evaluate the performance of MIDAS and
MIDAS-R compared to SEDANSPOT on dynamic graphs. We
aim to answer the following questions:

Q1. Accuracy: How accurately does MIDAS detect real-
world anomalies compared to baselines, as evaluated
using the ground truth labels?

Q2. Scalability: How does it scale with input stream
length? How does the time needed to process each in-
put compare to baseline approaches?

Q3. Real-World Effectiveness: Does it detect meaningful
anomalies in case studies on Twitter graphs?

Datasets: DARPA (Lippmann et al. 1999) has 4.5M IP-
IP communications between 9.4K source IP and 2.3K des-
tination IP over 87.7K minutes. Each communication is
a directed edge (srcIP, dstIP, timestamp, attack) where the
ground truth attack label indicates whether the communica-
tion is an attack or not (anomalies are 23.8% of total).

TwitterSecurity (Rayana and Akoglu 2015; 2016) has
2.6M tweet samples for four months (May-Aug 2014) con-
taining Department of Homeland Security keywords related
to terrorism or domestic security. Entity-entity co-mention
temporal graphs are built on daily basis (80 time ticks).

TwitterWorldCup (Rayana and Akoglu 2015; 2016) has
1.7M tweet samples for the World Cup 2014 season (June
12-July 13). The tweets are filtered by popular/official World
Cup hashtags, such as #worldcup, #fifa, #brazil, etc. Similar
to TwitterSecurity, entity-entity co-mention temporal graphs
are constructed on 5 minute sample rate (8640 time points).

Baseline: As described in our Related Work, only RHSS
and SEDANSPOT operate on edge streams and provide a
score for each edge. SEDANSPOT uses personalised PageR-
ank to detect anomalies in sublinear space and constant time
per edge. However, RHSS was evaluated in (Eswaran and
Faloutsos 2018) on the DARPA dataset and found to have
AUC of 0.17 (lower than chance). Hence, we only compare
with SEDANSPOT.

Evaluation Metrics: All the methods output an anomaly
score per edge (higher is more anomalous). We calculate the
True Positive Rate (TPR) and False Positive Rate (FPR) and
plot the ROC curve (TPR vs FPR). We also report the Area
under the ROC curve (AUC) and Average Precision Score.

Experimental Setup

All experiments are carried out on a 2.7GHz Intel Core i5
processor, 16GB RAM, running OS X 10.14.6. We imple-
ment MIDAS and MIDAS-R in C++. We use 2 hash func-
tions for the CMS data structures, and we set the number of
CMS buckets to 2719 to result in an approximation error of
ν = 0.001. For MIDAS-R, we set the temporal decay fac-
tor α as 0.5. We used an open-sourced implementation of
SEDANSPOT, provided by the authors, following parameter
settings as suggested in the original paper (sample size 500).

Q1. Accuracy

Figure 2 plots the ROC curve for MIDAS-R, MIDAS and
SEDANSPOT. Figure 3(top) plots accuracy (AUC) vs. run-
ning time (log scale, in seconds, excluding I/O). We see that
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MIDAS achieves a much higher accuracy (= 0.94) com-
pared to the baseline (= 0.64), while also running sig-
nificantly faster (0.31s vs. 156s). This is a 46% accuracy
improvement at 505× faster speed. MIDAS-R achieves the
highest accuracy (= 0.977) which is 52% accuracy im-
provement compared to the baseline at 163× faster speed.

Figure 3(bottom) plots the average precision score vs.
running time. We see that MIDAS is more precise (= 0.969)
compared to the baseline (= 0.751). This is a 29% preci-
sion improvement. MIDAS-R achieves the highest average
precision score (= 0.987) which is 31% more precise than
SEDANSPOT.

We see that MIDAS and MIDAS-R greatly outperform
SEDANSPOT on both accuracy and precision metrics.

Figure 2: ROC for DARPA dataset

Q2. Scalability

Figure 4 shows the scalability of MIDAS and MIDAS-R. We
plot the wall-clock time needed to run on the (chronologi-
cally) first 212, 213, 214, ..., 222 edges of the DARPA dataset.
This confirms the linear scalability of MIDAS and MIDAS-
R with respect to the number of edges in the input dynamic
graph due to its constant processing time per edge. Note that
both MIDAS and MIDAS-R process 4M edges within 1 sec-
ond, allowing real-time anomaly detection.

Figure 5 plots the number of edges (in millions) and time
to process each edge for DARPA dataset. MIDAS processes
2.38M edges within 1μs each and 1.77M edges within 2μs
each. MIDAS-R processes 1.04M edges within 1μs each and
2.24M edges within 2μs each.

Table 2 shows the time it takes SEDANSPOT, MIDAS and
MIDAS-R to run on the TwitterWorldCup, TwitterSecurity
and DARPA datasets. For TwitterWorldCup dataset, we see
that MIDAS-R is 108× faster than SEDANSPOT (0.48s vs.
52.17s) and MIDAS is 306× faster than SEDANSPOT(0.17s
vs 52.17s). For TwitterSecurity dataset, we see that MIDAS-
R is 112× faster than SEDANSPOT (0.68s vs. 76.6s) and
MIDAS is 283× faster than SEDANSPOT(0.27s vs 76.6s).
For the DARPA dataset, we see that MIDAS-R is 163× faster

Figure 3: (top) Accuracy (AUC) vs time, (bottom) Average
Precision Score vs time

than SEDANSPOT (0.96s vs. 156s) and MIDAS is 505×
faster than SEDANSPOT(0.31s vs 156s).

SEDANSPOT requires several subprocesses (hashing,
random-walking, reordering, sampling, etc), resulting in the
large computation time. MIDAS and MIDAS-R are both both
scalable and fast.
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Figure 4: MIDAS and MIDAS-R scale linearly with the num-
ber of edges in the input dynamic graph.

Table 2: Running time for different datasets in seconds

SEDANSPOT MIDAS MIDAS-R

TwitterWorldCup 52.17s 0.17s 0.48s
TwitterSecurity 76.60s 0.27s 0.68s

DARPA 156.66s 0.31s 0.96s

3247



Fr
eq

ue
nc

y 
(m

illi
on

s 
of

 e
dg

es
)

0

1

2

3

Time (microseconds)
1 2 10 >10

Midas-R Midas

Figure 5: Distribution of processing times for ∼ 4.5M
edges of DARPA dataset.

Q3. Real-World Effectiveness

We measure anomaly scores using MIDAS, MIDAS-R and
SEDANSPOT on the TwitterSecurity dataset. Figure 6 plots
anomaly scores vs. day (during the four months of 2014).
To visualise, we aggregate edges occurring in each day by
taking the max anomalousness score per day, for a total of
90 days. Anomalies correspond to major world news such as
Mpeketoni attack (Event 6) or Soma Mine explosion (Event
1). MIDAS and MIDAS-R show similar trends whereas
SEDANSPOT misses some anomalous events (Events 2, 7),
and outputs many high scores unrelated to any true events.
This is also reflected in the low accuracy and precision of
SEDANSPOT in Figure 3. The anomalies detected by MIDAS
and MIDAS-R coincide with major events in the TwitterSe-
curity timeline as follows:

1. 13-05-2014. Turkey Mine Accident, Hundreds Dead

2. 24-05-2014. Raid.

3. 30-05-2014. Attack/Ambush.
03-06-14. Suicide bombing

4. 09-06-14. Suicide/Truck bombings.

5. 10-06-2014. Iraqi Militants Seized Large Regions.
11-06-2014. Kidnapping

6. 15-06-14. Attack

7. 26-06-14. Suicide Bombing/Shootout/Raid

8. 03-07-14. Israel Conflicts with Hamas in Gaza.

9. 18-07-14. Airplane with 298 Onboard was Shot Down
over Ukraine.

10. 30-07-14. Ebola Virus Outbreak.

This shows the effectiveness of MIDAS and MIDAS-R for
catching real-world anomalies.

Microcluster anomalies: Figure 7 corresponds to Event
7 in the TwitterSecurity dataset. All single edges are equiv-
alent to 444 edges and double edges are equivalent to 888
edges between the nodes. This suddenly arriving (within
1 day) group of suspiciously similar edges is an exam-
ple of a microcluster anomaly which MIDAS-R detects, but
SEDANSPOT misses.

Figure 6: Anomalies detected by MIDAS and MIDAS-R cor-
respond to major security-related events in TwitterSecurity.

444

88
8

Figure 7: Microcluster Anomaly in TwitterSecurity

Conclusion

In this paper, we proposed MIDAS and MIDAS-R for micro-
cluster based detection of anomalies in edge streams. Future
work could consider more general types of data, including
heterogeneous graphs or tensors. Our contributions are as
follows:

1. Streaming Microcluster Detection: We propose a novel
streaming approach for detecting microcluster anomalies,
requiring constant time and memory.

2. Theoretical Guarantees: In Theorem 1, we show guaran-
tees on the false positive probability of MIDAS.
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3. Effectiveness: Our experimental results show that MIDAS
outperforms baseline approaches by 46%-52% accuracy
(in terms of AUC), and processes the data 108−505 times
faster than baseline approaches.
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