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Abstract

Several recent publications have studied the use of Mixed
Integer Programming (MIP) for finding an optimal decision
tree, that is, the best decision tree under formal require-
ments on accuracy, fairness or interpretability of the predic-
tive model. These publications used MIP to deal with the hard
computational challenge of finding such trees. In this paper,
we introduce a new efficient algorithm, DLS8.5, for finding
optimal decision trees, based on the use of itemset mining
techniques. We show that this new approach outperforms ear-
lier approaches with several orders of magnitude, for both nu-
merical and discrete data, and is generic as well. The key idea
underlying this new approach is the use of a cache of itemsets
in combination with branch-and-bound search; this new type
of cache also stores results for parts of the search space that
have been traversed partially.

Introduction

Decision trees are among the most widely used machine
learning models. Their success is due to the fact that they
are simple to interpret and that there are efficient algorithms
for learning trees of acceptable quality.

The most well-known algorithms for learning decision
trees, such as CART (Breiman et al. 1984) and C4.5 (Quin-
lan 1993), are greedy in nature: they grow the decision tree
top-down, iteratively splitting the data into subsets.

While in general these algorithms learn models of good
accuracy, their greedy nature, in combination with the NP-
hardness of the learning problem (Laurent and Rivest 1976),
implies that the trees that are found are not necessarily opti-
mal. As a result, these algorithms do not ensure that:

o the trees found are the most accurate for a given limit on
the depth of the tree; as a result, the paths towards deci-
sions may be longer and harder to interpret than neces-
sary;

e the trees found are the most accurate for a given lower
bound on the number of training examples used to deter-
mine class labels in the leaves of the tree;
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e the trees found are accurate while satisfying additional
constraints such as on the fairness of the trees: in their
predictions, the trees may favor one group of individuals
over another.

With the increasing interest in explainable and fair models
in machine learning, recent years have witnessed a renewed
interest in alternative algorithms for learning decision trees
that can provide such optimality guarantees.

Most attention has been given in recent years and in
prominent venues to approaches based on mixed integer pro-
gramming (Bertsimas and Dunn 2017; Verwer and Zhang
2019; Aghaei, Azizi, and Vayanos 2019). In these ap-
proaches, a limit is imposed on the depth of the trees that
can be learned and a MIP solver is used to find the optimal
tree under well-defined constraints.

However, earlier algorithms for finding optimal decision
trees under constraints have been studied in the literature,
of which we consider the DL8 algorithm of particular inter-
est (Nijssen and Fromont 2007; 2010). The existence of this
earlier work does not appear to have been known to the au-
thors of the more recent MIP-based approaches, and hence,
no comparison with this earlier work was carried out.

DL8 is based on a different set of ideas than the MIP-
based approaches: it treats the paths of a decision tree as
itemsets, and uses ideas from the itemset mining literature
(Agrawal et al. 1996) to search through the space of possible
paths efficiently, performing dynamic programming over the
itemsets to construct an optimal decision tree. Compared to
the MIP-based approaches, which most prominently rely on
a constraint on depth, DLS stresses the use of a minimum
support constraint to limit the size of the search space. It was
shown to support a number of different optimization criteria
and constraints that do not necessarily have to be linear.

In this paper, we present a number of contributions. We
will demonstrate that DL8 can also be applied in settings in
which MIP-based approaches have been used; we will show
that, despite its age, it outperforms the more modern MIP-
based approaches significantly, and is hence an interesting
starting point for future algorithms.

Subsequently, we will present DL8.5, an improved ver-
sion of DL8 that outperforms DL8 by orders of magnitude.
Compared to DL8, DL8.5 adds a number of novel ideas:



e it uses branch-and-bound search to cut large additional
parts of the search space;

e it uses a novel caching approach, in which we store also
store information for itemsets for which the search space
has been cut; this allows us to avoid redundant computa-
tion later on as well;

e we consider a range of different branching heuristics to
find good trees more rapidly;

e the algorithm has been made any-time, i.e. it can be
stopped at any time to report the best tree it has found
so far.

In our experiments we focus our attention on traditional de-
cision tree learning problems with little other constraints, as
we consider these learning problems to be the hardest. How-
ever, we will show that DL8.5 remains sufficiently close to
DL8 that the addition of other constraints or optimization
criteria is straightforward.

In a recent MIP-based study, significant attention was
given to the distinction between binary and numerical
data (Verwer and Zhang 2019). We will show that DLS8.5
outperforms this method on both types of data.

Our implementation is publicly available at https://github.
com/aglingael/dl8.5 and can easily be used from Python.

This paper is organized as follows. The next section
presents the state of the art of optimal decision trees induc-
tion. Then we present the background on which our work
relies, before presenting our approach and our results.

Related work

In our discussion of related work, we will focus our attention
on alternative methods for finding optimal decision trees,
that is, decision trees that achieve the best possible score
under a given set of constraints.

Most attention has been given in recent years to MIP-
based approaches. Bertsimas and Dunn (2017) developed an
approach for finding decision trees of a maximum depth K
that optimize misclassification error. They use K to model
the problem in a MIP model with a fixed number of vari-
ables; a MIP solver is then used to find the optimal tree.

Verwer and Zhang (2019) proposed BinOCT, an optimiza-
tion of this approach, focused on how to deal with numeri-
cal data. To deal with numerical data, decision trees need
to identify thresholds that are used to separate examples
from each other. A MIP model was proposed in which fewer
variables are needed to find high-quality thresholds; conse-
quently, it was shown to work better on numerical data.

A benefit of MIP-based approaches is that it is relatively
easy from a modeling perspective to add linear constraints
or additional linear optimization criteria. Aghaei, Azizi, and
Vayanos (2019) exploit this to formalize a learning problem
that also takes into account the fairness of a prediction.

Verhaeghe et al. (2019) recently proposed a Constraint
Programming (CP) approach to solve the same problem.
It supports a maximum depth constraint and a minimum
support constraint, but only works for binary classification
tasks. It also relies on branch-and-bound search and caching,
but uses a less efficient caching strategy. The approach in the
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present paper is easily implemented and understood without
relying on CP systems.

Another class of methods for learning optimal decision
trees is that based on SAT Solvers (Narodytska et al. 2018;
Bessiere, Hebrard, and O’Sullivan 2009). SAT-based stud-
ies, however, focus on a different type of decision tree learn-
ing problem than the MIP-based approaches: finding a deci-
sion tree of limited size that performs 100% accurate predic-
tions on training data. These approaches solve this problem
by creating a formula in conjunctive normal form, for which
a satisfying assignment would represent a 100% accurate de-
cision tree. We believe there is a need for algorithms that
minimize the error, and hence we focus on this setting.

Most related to this work is the work of Nijssen and
Fromont (2007; 2010) on DLS, which relies on a link be-
tween learning decision trees and itemset mining. Similarly
to MIP-based approaches, DLS8 allows to find optimal deci-
sion trees minimizing misclassification error. DL8 does not
require a depth constraint; it does however assume the pres-
ence of a minimum support constraint, that is, a constraint
on the minimum number of examples falling in each leaf.
In the next section we will discuss this approach in more de-
tail. This discussion will show that DL8 can easily be used in
settings identical to those in which MIP and CP solvers have
been used. Subsequently, we will propose a number of sig-
nificant improvements, allowing the itemset-based approach
to outperform MIP-based and CP-based approaches.

Background
Itemset mining for decision trees

We limit our discussion to the key ideas behind DLS, and
assume that the reader is already familiar with the general
concepts behind learning decision trees.

DL8 operates on Boolean data. As running example of
such data, we will use the dataset of Table 1a, which consists
of three Boolean features and eleven examples. The optimal
decision tree for this database can be found in Figure 1a.

While it may seem a limitation that DL.8 only operates on
Boolean data, there are straightforward ways to transform
any tabular database in a Boolean database: for categorical
attributes, we can create a Boolean column for each possible
value of that attribute; for numerical attributes, we can create
Boolean columns for possible thresholds for that attribute.

DL8 takes an itemset mining perspective on learning deci-
sion trees. In this perspective, the binary matrix of Table la
is transformed into the transactional database of Table 1b.
Each transaction of the dataset contains an itemset describ-
ing the presence or absence of each feature in the dataset.
More formally, the database D can be thought of as a col-
lection D = {(t,I,c)|t € T,I C Z,c € C}, where T
represents the transaction or rows identifiers, Z is the set of
possible items, and C is the set of class labels; within Z there
are two items (one positive, the other negative) for each orig-
inal Boolean feature, and each itemset / contains either a
positive or a negative item for every feature.

Using this representation, every path in a decision tree can
be mapped to an itemset / C Z, as shown in Figure 1b. For
instance, the last path in this tree corresponds to the itemset



A | B | C || class rowld items class
0Of1]1 0 1 —a, b, c 0
1101 1 2 a,—b, c 1
001 1 3 —a, b, ¢ 1
0O[11]0 0 4 —a, b, —c 0
1100 1 5 a, b, —c 1
0[0]O0 0 6 —a, b, ¢ 0
0011 0 7 —a, b, ¢ 0
11110 1 8 a,b,—c 1
0[01]O0 1 9 —a, b, ¢ 1
001 0 10 —a, b, ¢ 0
0[0]O0 1 11 —a, —b, e 1

(a) Binary matrix (b) Transactional database

Table 1: Example database
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Figure 1: Optimal tree corresponding to database of Table 1.
Max depth = 3 and minimum examples per leaf = 1

{—a, —b, =c}. Please note that multiple paths can be mapped
to the same itemset.

For every itemset I, we define its cover to be cover(l) =
{(t',I',c) € D|I C I'}: the set of transactions in which
the itemset is contained; the class-based support of an item-
set is defined as Sup(I,c) = |[{(t',I', ") € cover(I)|c
c}|, and can be used to identify the number of examples for
a given class c in a leaf. Based on class-based supports, the
error of an itemset is defined as:

leaf _error(I) =| cover(I) | — mEaCX{Sup(I, o} (1)
Unlike the CP-based approach, our error function is also
valid for classification tasks involving more than 2 classes.

The canonical decision tree learning problem that we
study in this work can now be defined as follows using item-
set mining notation. Given a database D, we wish to identify
a collection DT C 7 of itemsets such that

e the itemsets in D7 represent a decision tree;
® > cp7 leaf error(I) is minimal,

e forall I € DT: |I| < mazxdepth, where mazdepth is the
maximum depth of the tree;

e forall I € DT: |cover(I)| > minsup, where minsup is
a minimum support threshold.

As stated earlier, in DL8, the maximum depth constraint is
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not required; MIP-based approaches have ignored the mini-
mum support constraint.

Algorithm 1: DL8(maxdepth, minsup)

1 struct BestTree{ tree : Tree; error : float }
2 cache < HashSet < Itemset, BestTree >
3 (7,b) « DL8 — Recurse(f)

4 return 7

5 Procedure DL8 — Recurse (/)

6 solution < cache.get(I)

7 if solution was found then

8 | return (solution.tree, solution.error)

9 if leaf _error(I) = 0 or |I| = mazdepth then

10 | return (make _leaf (I), leaf _error(I))

u (1,b) < (make_leaf (I), leaf _error(l))

12 for all attributes i do

13 if | cover(I U {i})| > minsup and
[cover(I U {=i})| > minsup then

14 (71,e1) < DL8 — Recurse(I U {—i})

15 if e; < b then

16 (T2, €2) < DL8 — Recurse(I U {i})

17 if 1 + e3 < bthen

18 L (1,b) < (make_tree(i, 1, T2),

e + 62)

19 cache.store(I, BestTree(r,b))

20 return (7,b)

DLS8 Algorithm

A high-level perspective of the DL8 algorithm is given in Al-
gorithm 1. Essentially, the algorithm recursively enumerates
itemsets using the DL8 — Recurse(]) function. The post-
condition of this function is that it returns the optimal deci-
sion tree for the transactions covered by itemset I, together
with the quality of that tree. This optimal tree is calculated
recursively using the observation that the best decision tree
for a set of transactions can be obtained by considering all
possible ways of partitioning the set of transactions into two,
and determining the best tree for each partition recursively.

Figure 2 illustrates the search space of itemsets for the
dataset of Table 1, where all the possible itemsets are repre-
sented. Intuitively, DL8 starts at the top node of this search
space, and calculates the optimal decision tree for the root
based on its children.

A distinguishing feature of DLS is its use of a cache.
The idea behind this cache is to store the result of a call to
DL8 — Recurse. Doing so is effective as the same itemset
can be reached by multiple paths in the search space: item-
set ab can be constructed by adding b to itemset a, or by
adding a to itemset b. By storing the result, we can reuse the
same result for both paths.

Note that the optimal decision tree for the root can only be
calculated after all its children have been considered; hence,
the algorithm will only produce a solution once the entire
search space of itemsets has been considered.



visited node

pruned node

: ") infrequent node
,

SRS
[T

edge to visited node
pruned edge
edge to infrequent node

I :leaf_error
ub : upper_bound(init_value, ...)
b : best_error

Figure 2: Complete itemset lattice for introduction database and DL8.5 search execution

In our pseudocode, we use the following other func-
tions. Function make_leaf (I) returns a decision tree with
one node, representing a leaf that predicts the major-
ity class for the examples covered by I. The function
make_tree(i, Ty, 7o) returns a tree with a test on attribute 4,
and subtrees 7 and 7.

The code illustrates a number of optimizations imple-
mented in DLS:

Maximum depth pruning In line 9 the search is stopped
as soon as the itemsets considered are too long;

Minimum support pruning In line 13 an attribute is not
considered if one of its branches has insufficient support;
in our running example, the itemset {a, b, ¢} is not con-
sidered due to this optimization;

Purity pruning In line 9 the search is stopped if the error
for the current itemset is already 0O;

Quality bounds In the loop of lines 12-18, the best solu-
tion found among the children is maintained, and used to
prune the second branch for an attribute if the first branch
is already worse than the best solution found so far.

We omit a number of optimizations in this pseudo-code
that can be found in the original publication, in particular,
optimizations that concern the incremental maintenance of
data structures. While we will use most of these optimiza-
tions in our implementation as well, we do not discuss these
in detail here for reasons of simplicity.

The most important optimization in DL8 that we do not
use in this study is the closed itemset mining optimization.
The reason for this choice is that this optimization is hard
to combine with a constraint on the depth of a decision tree.
Similarly, while DL8 can be applied to other scoring func-
tions than error, as long as the scoring function is additive,
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we prioritize accuracy and the depth constraint here as we
focus on solving the same problem as in recent MIP-based
studies.

Our approach: DL8.5

As identified in the introduction, DL8 has a number of weak-
nesses, which we will address in this section.

The most prominent of these weaknesses is that the size
of the search tree considered by DLS8 is unnecessarily large.
Reconsider the example of Figure 2, in which DL8’s prun-
ing approach does not prune any node except from one in-
frequent itemset (abc). We will see in this section that a
new type of caching brand-and-bound search can reduce the
number of itemsets considered significantly.

The pseudo-code of our new algorithm, DLS8.5, is pre-
sented in Algorithm 2. DL8.5 inherits a number of ideas
from DLS, including the use of a cache, the recursive traver-
sal of the space of itemsets, and the use of depth and support
constraints to prune the search space.

The main distinguishing feature of DL8.5 concerns its use
of bounds during the search.

In DL8.5, the recursive procedure DL8.5 — Recurse has
an additional parameter, init_ub, which represents an upper-
bound on the quality of the decision trees that the recursive
procedure is expected to find. If no sufficiently good tree can
be found, the procedure returns a tree of type NO_TREE.

Initially, the upper-bound that is used is +oo (line 3).
However, as soon as the recursive algorithm has found one
decision tree, or has found a better tree than earlier known,
the quality of this decision tree, calculated in line 21, is used
as upper-bound for future decision trees and is communi-
cated to the children in the search tree (line 25, line 14, 18).

The upper-bound is used to prune the search space using
atest in line 17; intuitively, as soon as we have traversed one



Algorithm 2: DL8.5(maxdepth, minsup)

1 struct BestTree {init_ub : float; tree : Tree;
error : float}

cache < HashSet < Itemset, BestTree >
bestSolution + DL8.5 — Recurse(l), +00)

return bestSolution.tree

Procedure DL8.5 — Recurse (1, init_ub)

if leaf _error(I) = 0 or |I| = maxdepth or
time-out is reached then

7 return BestTree(init_ub, make_leaf (I),

L leaf _error(I))

8 solution < cache.get(I)

9 if solution was found and ((solution.tree #
NO_TREE) or (init_ub < solution.init_ub)) then
| return solution

(7,b,ub) < (NO_TREE, +00, init_ub)

for all attributes i in a well-chosen order do

A U B W N

10

11
12

13 if |cover(I U {i})| > minsup and
|cover(I U {—i})| > minsup then
14 soly < DL8.5 — Recurse(I U {—i}, ub)
15 if soly.tree = NO_TREE then
16 | continue
17 if solq.error < ub then
18 soly < DL8.5 — Recurse(] U {i},
ub — soly.error)
19 if soly.tree = NO_TREE then
20 | continue
21 feature_error <
soly.error + soly.error
2 if feature_error < ub then
23 T < make_tree(i, soly .tree,
sols.tree)
24 b < feature_error
25 ub<+—b—1
26 if feature_error = 0 then
27 | break
28 solution < BestTree(init_ub, T,b)
29 cache.store(I, solution)
30 return solution

branch for an attribute, and the quality of that branch is al-
ready worse than accepted by the bound, we do not consider
the second branch for that attribute.

In line 18 we use the quality of the first branch to bound
the required quality of the second branch further.

An important modification involves the interaction of the
bounds with the cache. In DL8.5, we store an itemset also
if no solution could be found for the given bound (line 29
is still executed even if the earlier loop did not find a tree).
In this case, the special value NO_TREE is associated with the
itemset in the cache, and the upper-bound used during the
last search is stored.

The benefit of doing so is that at a later moment, we may
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1:leaf_error
ub : upper_bound
b : best_error

Figure 3: Example of pruning

reuse the fact that for a given itemset and bound, no suf-
ficiently good decision tree can be found. In particular, in
line 9, when the current bound (init_ub) is worse than the
stored upper-bound for a NO_TREE itemset, we return the
NO_TREE indicator immediately.

Other modifications in comparison with DL8 improve the
anytime behavior of the algorithm. In line 6 the search can
be interrupted when a time-out is reached, and line 12 offers
the possibility to consider the attributes in a specific heuristic
order to discover good trees more rapidly.

A number of different heuristics could be considered. In
our experiments, we consider three: the original order of the
attributes in the data, in increasing or in decreasing order of
information gain (such as used in C4.5 and CART).

Our modifications of DL8 improve drastically the prun-
ing of the search space. Figure 2 indicates which additional
nodes are pruned during the execution of DL8.5 (for an al-
phabetic order of the attributes). At the end, 17 nodes are
visited instead of 27.

Figure 3 shows a part of the execution of DL8.5 in more
detail. The initial value of the upper-bound at node ¢ is +o0
(line 11). The attribute A provides an error of 2; the upper-
bound value is subsequently updated from +oo to 1 in line
25. In the first branch for attribute C, the new value of the
upper-bound is passed down recursively (line 14). Notice
that the initial value of the upper-bound at node —c is 1. At
this node, the attribute A is first visited and provides an er-
ror of 1 by summing errors of —a—c and a—c (line 21). The
upper-bound for subsequent attributes is then updated to 0
and passed down recursively to the first branch of attribute
B. After visiting the first item —b—c the obtained error is 1
and greater than the upper-bound of 0. The second item is
pruned as the condition of line 18 is not satisfied. So, there
is no solution by selecting the attribute B, which leads to
storing the value NO_TREE for this itemset. This error value
is represented in Figures 2 and 3 by the character z.

The reuse of the cache is illustrated for itemset —ac (Fig-
ure 2). The first time we encounter this itemset, we do so
coming from the itemset —a for an upper-bound of zero; af-
ter the first branch, we observe that no solution can be found
for this bound, and we store NO_TREE for this itemset. The



second time we encounter —ac, we do so coming from the
parent ¢, again with an upper-bound of 0. From the cache
we retrieve the fact that no solution could be found for this
bound, and we skip attribute A from further consideration.

Results
In our experiments we answer the following questions:

Q1 How does the performance of DL8.5 compare to DLS,
MIP-based and CP-based approaches on binary data?

Q2 What is the impact of different branching heuristics on
the performance of DL8.5?

Q3 What is the impact of caching incomplete results in
DL8.5 (NO_TREE itemsets)?

Q4 How does the performance of DL8.5 compare to DLS,
MIP-based and CP-based approaches on continuous data?

As arepresentative MIP-based approach, we use BinOCT, as
it was shown to be the best performing MIP-based approach
in a recent study (Verwer and Zhang 2019). The implemen-
tations of BinOCT', DL8 and the CP-based approach? used
in our comparison were obtained from their original authors,
and use the CPLEX 12.9° and OscaR * solvers. Experiments
were performed on a server with an Intel Xeon E5-2640
CPU, 128GB of memory, running Red Hat 4.8.5-16.

To respect the constraint of the CP-based algorithm all
the datasets used in our experiments have binary classes. We
compare our algorithms on 24 binary datasets from CP4IM?,
described in the first columns of Table 2.

Similar to Verwer and Zhang (2019), we run the different
algorithms for 10 minutes on each dataset and for a maxi-
mum depth of 2, 3 and 4. All the tests are run with a mini-
mum support of 1 since this is the setting used in BinOCT.

We do not split our datasets in training and test sets since
the focus of this work is on comparing the computational
performance of algorithms that should generate decision
trees of the same quality. The benefits of optimal decision
trees were discussed in (Bertsimas and Dunn 2017).

We compare a number of variants of DLS8.5. The

following table summarizes the abbreviations used.

Abbreviation Meaning

d.o. the original order of the attributes in the
data is used as branching heuristic

asc attributes are sorted in increasing value
of information gain

desc attributes are sorted in decreasing value
of information gain

n.p.s. no partial solutions are stored in the

cache
Table 2 shows the results for a maximum depth equal to 4,
as we consider deeper decision trees of more interest. If op-
timality could not be proven within 10 minutes, this is indi-
cated using 70; in this case, the objective value of the best

"https://github.com/SiccoVerwer/binoct
“https://bitbucket.org/helene_verhaeghe/classificationtree/src/
default/classificationtree/
3https://www.ibm.com/analytics/cplex-optimizer
*https://oscarlib.bitbucket.io
>https://dtai.cs.kuleuven.be/CP4IM/datasets/
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tree found so far is shown. Note that we here exploit the
ability of DL8.5 to produce a result after a time-out. The
best solutions and best times are marked in bold while a star
(*) is added to mark solutions proven to be optimal.

BinOCT solved and proved optimality for only 1 instance
within the timeout; the older DL8 algorithm solved 7 in-
stances and the CP-based algorithm solved 11 instances.
DL38.5 solved 19 (which answers Q1). The difference in per-
formance is further illustrated in Figure 4, which gives cac-
tus plots for each algorithm, for different depth constraints.
In these plots each point (z,y) indicates the number of in-
stances (z) solved within a time limit (y). While for lower
depth thresholds, BinOCT does find solutions, the perfor-
mance of all variants of DL8.5 clearly remains superior to
that of DLS8, BinOCT and the CP-based algorithm, obtain-
ing orders of magnitude better performance.

Comparing the different branching heuristics in DLS.5,
the differences are relatively small; however, for deeper
trees, a descending order of information gain gives slightly
better results. This confirms the intuition that chosen a split
with high information gain is a good heuristic (Q2).

If we disable DL8.5’s ability to cache incomplete results,
we see a significant degradation in performance. In this vari-
ant only 12 instances are solved optimally, instead of 19, for
a depth of 4. Hence, this optimization is significant (Q3).

To answer Q4, we repeat these tests on continuous data.
For this, we use the same datasets as Verwer and Zhang
(2019). These datasets were obtained from the UCI repos-
itory® and are summarized in the first columns of Table 3.
Before running DLS, the CP-based algorithm and DL8.5, we
binarize these datasets by creating binary features using the
same approach as the one used by Verwer and Zhang (2019).
Note that the number of generated features is very high in
this case. As a result, for most datasets all algorithms reach a
time-out for maximum depths of 3 and 4, as was also shown
by Verwer and Zhang (2019). Hence, we focus on results
for a depth of 2 in Table 3. Even though BinOCT uses a
specialized technique for solving continuous data, the table
shows that DL8.5 outperforms DL8, the CP-based algorithm
and BinOCT. Note that the differences between the different
variations of DL8.5 are small here, which may not be sur-
prising given the shallowness of the search tree considered.

Conclusions

In this paper we presented the DL8.5 algorithm for learning
optimal decision trees. DL8.5 is based on a number of ideas:
the use of itemsets to represent paths, the use of a cache
to store intermediate results (including results for parts of
the search tree that have only been traversed partially), the
use of bounds to prune the search space, the ability to use
heuristics during the search, and the ability to return a result
even when a time-out is reached.

Our experiments demonstrated that DL8.5 outperforms
existing approaches by orders of magnitude, including ap-
proaches presented recently at prominent venues.

In this paper, we focused our experiments on one par-
ticular setting: learning maximally accurate trees of lim-

®https://archive.ics.uci.edu/ml/index.php
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heart-cleveland 190 296 39 | TO o0 TO 25 TO 25* 124.1 25" 130.3 25 132.23 25% | 214.76
hepatitis 136 137 71 TO 3% 166.62 3% 1 109.36 3" 13.46 3 14.06 3 14.88 3% | 27.28
hypothyroid 176 3247 5[ TO ) TO 53 TO 53* | 392.22 53* | 368.95 53* | 42734 53 TO
ionosphere 890 351 27 TO o0 TO 20 T0 17 T0O 11 TO 13 TO 17 T0
kr-vs-kp 146 3196 193] TO oo TO | 144* | 483.15 | 144 216.11 || 144* | 206.18 || 144 223.85 [ 144™ [ 528.72
letter 448 20000 | 813 [ TO ) TO 574 TO | 550 TO 586 TO 802 TO 550 TO
lymph 136 148 6| TO 3* | 56.29 3* | 112.48 3* 8.7 3* 11.03 3* 8.47 3* 25.04
mushroom 238 8124 2718 | TO oo TO 0* [ 352.18 0" 331.39 4 TO 0* 0.11 4 TO
pendigits 432 7494 | 780 | TO 0 TO 38 TO 32 TO 26 TO 14 TO 32 TO
primary-tumor 62 336 37 | TO 34* 2.79 34* 8.96 34* 1.48 34* 1.51 34* 1.38 34 2.43
segment 470 2310 3] TO 0 TO 0% [ 12825 0" 3.54 0* 6.99 [ 7.05 0¥ 3.54
soybean 100 630 151 TO 14% [ 41.59 14 | 4013 14F 5.7 14 6.34 14 5.75 14 | 1841
splice-1 574 319 574 TO o0 TO 00 T0 224 T0 224 TO 141 TO 224 T0
tic-tac-toe 54 958 180 | TO [ 137 [ 3.76 | 137F 9.17 | 187F 1.43 [ 137F 1.54 ]| 137" 1.55 || 137* 2.12
vehicle 504 846 61 [ TO 0 TO 22 TO 16 TO 18 TO 13 TO 16 TO
vote 96 435 6| TO 5% | 29.84 5* 44.47 5* 5.48 5% 5.33 5% 5.58 5% 12.82
yeast 178 1484 395 TO 0 TO | 366 TO | 366™ | 318.87 || 366 326.2 || 366™ | 334.15 || 366™ | 470.88
200-1 72 101 0% ] 0.52 0* | 111 0" 0.2 0" 0.01 0" 0.01 0* 0.01 [ 0.01

Table 2: Comparison table for binary datasets with max depth = 4

max depth = 2 max depth =3 max depth = 4
1e+03-
1e+02-
1e+02-
1e+01- B 1e+01- @ 1e+01 -
[0 [0}
£ £
1 J = =
e+00 € 1e+00- S
x x
1e-01- 1e-01- A 1e-01-
A
1e-02- 1e-02- &
0 5 0 15 20 25 0 5 10 15 20 5 10 15
# instances solved # instances solved # instances solved
-=- BinOCT —+ DL8 - DL85do -= DL85n.ps

Algo
—4~ CP-based =< DL8.5asc - DL8.5desc

Figure 4: Cumulative number of instances solved over time

BinOCT DL8 CP-Based DL8.5

Dataset nTrans | nFeat | nltems d.o. asc desc
Py Py by by o Py
= E =y ] =z £ = £ = £ = =
© 3 ] -3 o S o S © 3 ] 3
balance-scale 625 4 32 149* 1.2 | 149* 0.5 | 149 0.01 | 149* 0.01 || 149* 0.01 || 149* 0.01
banknote 1372 4 3710 101 | TO | 100* | 363.01 S TO | 100* 52.81 || 100* 63.41 || 100* 58.07
bank 4521 51 3380 449 1 TO 448 TO 00 TO | 446™ | 253.87 || 446™ | 223.42 || 446™ | 222.66
biodeg 1055 41 8356 212 | TO 212 T0 S TO | 202* | 341.57 || 202* | 365.83 || 202* | 370.26
car 1728 6 28 250* | 4.09 | 250* 0.32 | 250* 0.02 | 250 0.01 || 250* 0.01 || 250" 0.01
IndiansDiabetes 768 8 1714 171 | TO | 171* 36.75 00 TO | 171* 7.43 || 171 8.46 || 171* 8.72
Tonosphere 351 34 4624 29 [ TO 29 | 423.52 ) TO 29* 25.68 29* 33.76 29* 33.04
iris 150 4 52 0* | 0.02 0* 0.05 0* 0.01 0* 0.01 0* 0.01 0* 0.01
letter 20000 16 352 625 | TO | 591* 5.97 | 591* | 392.09 | 591* 8.61 || 591* 8.26 || 591* 8.83
messidor 1151 19 9460 383 | TO 383 T0 S TO | 383* | 533.27 || 383* | 563.83 || 383* | 534.32
monk1 124 6 22 22* 1 0.33 22* 0.28 22* 0.01 22* 0.01 22 0.01 22* 0.01
monk2 169 6 22 57 1 0.79 57 0.28 57 0.01 57 0.01 57 0.01 57 0.01
monk3 122 6 22 8* [ 0.31 8* 0.28 8* 0.01 8* 0.01 8* 0.01 8* 0.01
seismic 2584 18 2240 166 | TO | 164* | 117.34 S T0O | 164* 44.3 || 164* 47.36 || 164 47.17
spambase 4601 57 16012 660 | TO 900 T0 S T0 741 T0 845 T0 586 T0
Statlog 4435 36 3274 460 | TO 443 T0 00 TO | 443* | 205.14 || 443* | 193.87 || 443* 188.9
tic-tac-toe 958 18 36 282* | 7.52 | 282 0.33 | 282* 0.01 | 282~ 0.01 || 282* 0.01 || 282~ 0.01
wine 178 13 1198 6* [ 73.1 6* 7.0 6" 74.72 6* 1.17 6" 1.45 6" 1.09

Table 3: Comparison table for continuous datasets with max depth =2
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ited depth without support constraints. This was motivated
by our desire to compare our new approach with other ap-
proaches. However, we believe DL8.5 can be modified for
use in other constraint-based decision tree learning prob-
lems, using ideas from DL8 (Nijssen and Fromont 2010).
Acknowledgements. This work was supported by Bpost.
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