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Abstract

In the recent years, there has been a significant improvement
in the quality of samples produced by (deep) generative mod-
els such as variational auto-encoders and generative adversar-
ial networks. However, the representation capabilities of these
methods still do not capture the full distribution for complex
classes of images, such as human faces. This deficiency has
been clearly observed in previous works that use pre-trained
generative models to solve imaging inverse problems. In this
paper, we suggest to mitigate the limited representation ca-
pabilities of generators by making them image-adaptive and
enforcing compliance of the restoration with the observations
via back-projections. We empirically demonstrate the advan-
tages of our proposed approach for image super-resolution
and compressed sensing.

Introduction

The developments in deep learning (Goodfellow, Bengio,
and Courville 2016) in the recent years have led to signif-
icant improvement in learning generative models. Methods
like variational auto-encoders (VAEs) (Kingma and Welling
2013), generative adversarial networks (GANs) (Goodfel-
low et al. 2014) and latent space optimizations (GLOs)
(Bojanowski et al. 2018) have found success at modeling
data distributions. However, for complex classes of images,
such as human faces, while these methods can generate
nice examples, their representation capabilities do not cap-
ture the full distribution. This phenomenon is sometimes re-
ferred to in the literature, especially in the context of GANs,
as mode collapse (Arjovsky, Chintala, and Bottou 2017;
Karras et al. 2017). Yet, as demonstrated in (Richardson
and Weiss 2018), it is common to other recent learning ap-
proaches as well.

Another line of works that has gained a lot from the de-
velopments in deep learning is imaging inverse problems,
where the goal is to recover an image x from its degraded
or compressed observations y (Bertero and Boccacci 1998).
Most of these works have been focused on training a convo-
lutional neural network (CNN) to learn the inverse mapping
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from y to x for a specific observation model (e.g. super-
resolution with certain scale factor and bicubic anti-aliasing
kernel (Dong et al. 2014)). Yet, recent works have suggested
to use neural networks for handling only the image prior in
a way that does not require exhaustive offline training for
each different observation model. This can be done by using
CNN denoisers (Zhang et al. 2017; Meinhardt et al. 2017;
Rick Chang et al. 2017) plugged into iterative optimization
schemes (Venkatakrishnan, Bouman, and Wohlberg 2013;
Metzler, Maleki, and Baraniuk 2016; Tirer and Giryes
2018), training a neural network from scratch for the imag-
ing task directly on the test image (based on internal recur-
rence of information inside a single image) (Shocher, Cohen,
and Irani 2018; Ulyanov, Vedaldi, and Lempitsky 2018), or
using generative models (Bora et al. 2017; Yeh et al. 2017;
Hand, Leong, and Voroninski 2018).

Methods that use generative models as priors can only
handle images that belong to the class or classes on which
the model was trained. However, the generative learning
equips them with valuable semantic information that other
strategies lack. For example, a method which is not based
on a generative model cannot produce a perceptually pleas-
ing image of human face if the eyes are completely missing
in an inpainting task (Yeh et al. 2017). The main drawback
in restoring complex images using generative models is the
limited representation capabilities of the generators. Even
when one searches over the range of a pre-trained generator
for an image which is closest to the original x, he is expected
to get a significant mismatch (Bora et al. 2017).

In this work, we propose a strategy to mitigate the lim-
ited representation capabilities of generators when solving
inverse problems. The strategy is based on a gentle internal
learning phase at test time, which essentially makes the gen-
erator image-adaptive while maintaining the useful informa-
tion obtained in the offline training. In addition, in scenarios
with low noise level, we propose to further improve the re-
construction by a back-projection step that strictly enforces
compliance of the restoration with the observations y. We
empirically demonstrate the advantages of our proposed ap-
proach for image super-resolution and compressed sensing.
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Related Work

Our work is mostly related to the work by Bora et al. (2017),
which have suggested to use pre-trained generative mod-
els for the compressive sensing (CS) task (Donoho 2006;
Candes, Romberg, and Tao 2006): reconstructing an un-
known signal x ∈ R

n from observations y ∈ R
m of the

form

y = Ax+ e, (1)

where A is an m × n measurement matrix, e ∈ R
m rep-

resents the noise, and the number of measurements is much
smaller than the ambient dimension of the signal, i.e. m �
n. Following the fact that in highly popular generative mod-
els (e.g. GANs, VAEs and GLOs) a generator G(·) learns a
mapping from a low dimensional space z ∈ R

k to the sig-
nal space G(z) ⊂ R

n, the authors (Bora et al. 2017) have
proposed a method, termed CSGM, that estimates the sig-
nal as x̂ = G(ẑ), where ẑ is obtained by minimizing the
non-convex1 cost function

f(z) = ‖y −AG(z)‖22, (2)

using backpropagation and standard gradient based optimiz-
ers.

For specific classes of images, such as handwritten dig-
its and human faces, the experiments in (Bora et al. 2017;
Hand, Leong, and Voroninski 2018) have shown that us-
ing learned generative models enables to reconstruct nice
looking images with much fewer measurements than meth-
ods that use non-generative (e.g. model-based) priors. How-
ever, unlike the latter, it has been also shown that CSGM
and its variants cannot provide accurate recovery even when
there is no noise and the number of observations is very
large. This shortcoming is mainly due to the limited rep-
resentation capabilities of the generative models (see Sec-
tion 6.3 in (Bora et al. 2017)), and is common to related
recent works (Hand, Leong, and Voroninski 2018; Bora,
Price, and Dimakis 2018; Dhar, Grover, and Ermon 2018;
Shah and Hegde 2018).

Note that using specific structures of A, the model (1)
can be used for different imaging inverse problems, making
the CSGM method applicable for these problems as well.
For example, it can be used for denoising task when A is
the n × n identity matrix In, inpainting task when A is an
m × n sampling matrix (i.e. a selection of m rows of In),
deblurring task when A is a blurring operator, and super-
resolution task if A is a composite operator of blurring (i.e.
anti-aliasing filtering) and down-sampling.

Our image-adaptive approach is inspired by (Tirer and
Giryes 2019), which is influenced itself by (Shocher, Cohen,
and Irani 2018; Ulyanov, Vedaldi, and Lempitsky 2018).
These works follow the idea of internal recurrence of in-
formation inside a single image within and across scales
(Glasner, Bagon, and Irani 2009). However, while the two
methods (Shocher, Cohen, and Irani 2018; Ulyanov, Vedaldi,
and Lempitsky 2018) completely avoid an offline training
phase and optimize the weights of a deep neural network

1The function f(z) is non-convex due to the non-convexity of
G(z).

only in the test phase, the work in (Tirer and Giryes 2019)
incorporates external and internal learning by taking of-
fline trained CNN denoisers, fine-tuning them in test time
and then plugging them into a model-based optimization
scheme (Tirer and Giryes 2018). Note, though, that the in-
ternal learning phase in (Tirer and Giryes 2019) uses patches
from y as the ground truth for a denoising loss function
(f(x̃) = ‖y − x̃‖22), building on the assumption that y di-
rectly includes patterns which recur also in x. Therefore, this
method requires that y is not very degraded, which makes it
suitable perhaps only for the super-resolution task, similarly
to (Shocher, Cohen, and Irani 2018), which is also restricted
to this problem.

Note that the method in (Ulyanov, Vedaldi, and Lempit-
sky 2018), termed as deep image prior (DIP), can be applied
to different observation models. However, the advantage of
our approach stems from the offline generative learning that
captures valuable semantic information that DIP lacks. As
mentioned above, a method like DIP, which is not based on
a generative model, cannot produce a perceptually pleasing
image of human face if the eyes are completely missing in
an inpainting task (Yeh et al. 2017). In this paper, we demon-
strate that this advantage holds also for highly ill-posed sce-
narios in image super-resolution and compressed sensing. In
addition, note that the DIP approach typically works only
with huge U-Nets like architectures that need to be modified
for each inverse problem and require much more memory
than common generators. Indeed, we struggled (GPU mem-
ory overflow, long run-time) to apply DIP to the 1024×1024
images of CelebA-HQ dataset (Karras et al. 2017).

The Proposed Method

In this work, our goal is to make the solutions of inverse
problems using generative models more faithful to the ob-
servations and more accurate, despite the limited represen-
tation capabilities of the pre-trained generators. To this end,
we propose an image-adaptive approach, whose motivation
is explained both verbally and mathematically (building on
theoretical results from (Bora et al. 2017)). We also dis-
cuss a back-projection post-processing step that can fur-
ther improve the results for scenarios with low noise level.
While this post-processing, typically, only moderately im-
proves the results of model-based super-resolution algo-
rithms (Glasner, Bagon, and Irani 2009; Yang et al. 2010),
we will show that it is highly effective for generative priors.
To the best of our knowledge, we are the first to use it in
reconstructions based on generative priors.

An Image-Adaptive Approach

We propose to handle the limited representation capabilities
of the generators by making them image-adaptive (IA) us-
ing internal learning in test-time. In details, instead of re-
covering the latent signal x as x̂ = G(ẑ), where G(·) is a
pre-trained generator and ẑ is a minimizer of (2), we sug-
gest to simultaneously optimize z and the parameters of the
generator, denoted as θ, by minimizing the cost function

fIA(θ, z) = ‖y −AGθ(z)‖22. (3)
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The optimization is done using backpropagation and stan-
dard gradient based optimizers. The initial value of θ is the
pre-trained weights, and the initial value of z is ẑ, obtained
by minimization with respect to z alone, as done in CSGM.
Then, we perform joint-minimization to obtain θ̂IA and ẑIA,
and recover the signal using x̂IA = Gθ̂IA

(ẑIA).
The rationale behind our approach can be explained as

follows. Current leading learning strategies cannot train a
generator whose representation range covers every sam-
ple of a complex distribution, thus, optimizing only z is
not enough. However, the expressive power of deep neu-
ral networks (given by optimizing the weights θ as well)
allows to create a single specific sample that agrees with
the observations y. Yet, contrary to prior works that opti-
mize the weights of neural networks only by internal learn-
ing (Shocher, Cohen, and Irani 2018; Ulyanov, Vedaldi, and
Lempitsky 2018), here we incorporate information captured
in the test-time with the valuable semantic knowledge ob-
tained by the offline generative learning.

To make sure that the information captured in test-time
does not come at the expense of offline information which
is useful for the test image at hand, we start with optimiz-
ing z alone, as mentioned above, and then apply the joint
minimization with a small learning rate and early stopping
(details in the experiments section below).

Mathematical Motivation for Image-Adaptation

To motivate the image-adaptive approach, let us consider an
L-layer neural network generator

G(z; {W�}L�=1) = WLσ(WL−1σ(. . . σ(W1z) . . .)),
(4)

where σ(·) denotes element-wise ReLU activation, and
W� ∈ R

k�×k�−1 such that kL = n. Recall that typically
k0 < k1 < . . . < kL (as k0 � n). The following theorem,
which has been proven in (Bora et al. 2017) (Theorem 1.1
there), provides an upper bound on the reconstruction error.
Theorem 1. Let G(z) : Rk → R

n as given in (4), A ∈
R

m×n with Aij ∼ N (0, 1/m), m = Ω(kLlogn), and y =
Ax+ e. Let ẑ minimize ‖y−AG(z)‖2 to within additive ε
of the optimum. Then, with probability 1− e−Ω(m) we have

‖G(ẑ)− x‖2 ≤ 6Erep(G(·),x) + 3‖e‖2 + 2ε, (5)
where Erep(G(·),x) := min

z
‖G(z)− x‖2.

Note that Erep(G(·),x) is in fact the representation error
of the generator for the specific image x. This term has been
empirically observed in (Bora et al. 2017) to dominate the
overall error, e.g. more than the error of the optimization al-
gorithm (represented by ε). The following proposition builds
on Theorem 1 and motivates the joint optimization of z and
W1 by guaranteeing a decreased representation error term.
Proposition 2. Consider the generator defined in (4) with
k0 < k1, A ∈ R

m×n with Aij ∼ N (0, 1/m), m =

Ω(k1Llogn), and y = Ax + e. Let ẑ and Ŵ1 minimize
f̃(z,W1) = ‖y −AG(z; {W�}L�=1)‖2 to within additive ε

of the optimum. Then, with probability 1− e−Ω(m) we have

‖G(ẑ;Ŵ1, {W�}L�=2)− x‖2 ≤ 6Ẽrep + 3‖e‖2 + 2ε, (6)

where Ẽrep ≤ Erep(G(·),x).
Proof. Define ˆ̃z := Ŵ1ẑ and G̃(z̃) :=
WLσ(WL−1σ(. . . σ(W2σ(Ik1

z̃)) . . .)). Note that
G(ẑ;Ŵ1, {W�}L�=2) = G̃(ˆ̃z), therefore ˆ̃z minimize
‖y − AG̃(z̃)‖2 to within additive ε of the optimum.
Applying Theorem 1 on G̃(z̃) and ˆ̃z we have

‖G̃(ˆ̃z)− x‖2 ≤ 6Erep(G̃(·),x) + 3‖e‖2 + 2ε, (7)

with the advertised probability. Now, note that

Erep(G̃(·),x)
= min

z̃∈Rk1

‖WLσ(WL−1σ(. . . σ(W2σ(Ik1 z̃)) . . .))− x‖2
≤ min

z∈Rk0

‖WLσ(WL−1σ(. . . σ(W2σ(W1z)) . . .))− x‖2
= Erep(G(·),x), (8)

where the inequality follows from W1R
k0 ⊂ R

k1 . We finish
with substituting G̃(ˆ̃z) = G(ẑ;Ŵ1, {W�}L�=2) in (7) and
defining Ẽrep := Erep(G̃(·),x).

Proposition 2 shows that under the mathematical frame-
work of Theorem 1, and under the (reasonable) assumption
that the output dimension of the first layer is larger than its
input, it is possible to further reduce the representation error
of the generator for x (the term that empirically dominates
the overall error) by optimizing the weights of the first layer
as well. The result follows from obtaining an increased set
in which the nearest neighbor of x is searched.

Note that if k0 < k1 < . . . < kL, then the procedure
which is described in Proposition 2 can be repeated sequen-
tially layer after layer to further reduce the representation
error. However, note that this theory loses its meaningful-
ness at high layers because m = Ω(k�Llogn) approaches
Ω (n) (so no prior is necessary). Yet, it presents a motivation
to optimize all the weights, as we suggest to do in practice.

”Hard” vs. ”Soft” Compliance to Observations

The image-adaptive approach improves the agreement be-
tween the recovery and the observations. We turn now to
describe another complementary way to achieve this goal.

Denote by x̂ an estimation of x, e.g. using CSGM method
or our IA approach. Assuming that there is no noise, i.e. e =
0, a simple post-processing to strictly enforce compliance
of the restoration with the observations y is back-projecting
(BP) the estimator x̂ onto the affine subspace {AR

n = y}
x̂bp = argmin

x̃
‖x̃− x̂‖22 s.t. Ax̃ = y. (9)

Note that this problem has a closed-form solution

x̂bp = A†y + (In −A†A)x̂

= A†(y −Ax̂) + x̂, (10)

where A† := AT (AAT )−1 is the pseudoinverse of A (as-
suming that m < n, which is the common case, e.g. in super-
resolution and compressed sensing tasks). In practical cases,
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Figure 1: Compressed sensing with Gaussian measurement matrix using BEGAN. From left to right and top to bottom: original
image, CSGM for m/n = 0.122, CSGM-BP for m/n = 0.122, CSGM for m/n = 0.61, CSGM-BP for m/n = 0.61, IAGAN
for m/n = 0.122, IAGAN-BP for m/n = 0.122, IAGAN for m/n = 0.61, IAGAN-BP for m/n = 0.61.

Figure 2: Compressed sensing with Gaussian measurement
matrix using BEGAN. Reconstruction MSE (averaged over
100 images from CelebA) vs. the compression ratio m/n.

where the problem dimensions are high, the matrix inver-
sion in A† can be avoided by using the conjugate gradient
method (Hestenes and Stiefel 1952). Note that when y is
noisy, the operation A†y in (10) is expected to amplify the
noise. Therefore, the BP post-processing is useful as long as
the noise level is low.

Let PA := A†A denote the orthogonal projection onto
the row space of A, and QA := In − A†A denote its or-
thogonal complement. Substituting (1) into (10) gives

x̂bp = PAx+QAx̂+A†e, (11)

which shows that x̂bp is consistent with y on PAx (i.e. dis-
plays ”hard” compliance), and considers only the projection
of x̂ onto the null space of A. Therefore, for an estimate x̂
obtained via a generative model, the BP technique essen-
tially eliminates the component of the generator’s represen-
tation error that resides in the row space of A, but does not
change at all the component in the null space of A. Still,
from the (Euclidean) accuracy point of view, this strategy
is very effective at low noise levels, as demonstrated in the
experiments section.

Interestingly, note that our image-adaptive strategy en-
forces only a ”soft” compliance of the restoration with the

observations y, because our gentle joint optimization (which
prevents overriding the offline semantic information) may
not completely diminish the component of the generator’s
representation error that resides in the row space of A, as
done by BP. On the other hand, intuitively, the strong prior
(imposed by the offline training and by the generator’s struc-
ture) is expected to improve the restoration also in the null
space of A (unlike BP). Indeed, as shown below, by com-
bining the two approaches, i.e. applying the IA phase and
then the BP on x̂IA, we obtain better results than only ap-
plying BP on CSGM. This obviously implies decreasing the
component of reconstruction error in the null space of A.

Experiments

In our experiments we use two recently proposed GAN mod-
els, which are known to generate very high quality samples
of human faces. The first is BEGAN (Berthelot, Schumm,
and Metz 2017), trained on CelebA dataset (Liu et al. 2015),
which generates a 128× 128 image from a uniform random
vector z ∈ R

64. The second is PGGAN (Karras et al. 2017),
trained on CelebA-HQ dataset (Karras et al. 2017) that gen-
erates a 1024× 1024 image from a Gaussian random vector
z ∈ R

512. We use the official pre-trained models, and for de-
tails on the models and their training procedures we refer the
reader to the original publications. Note that previous works,
which use generative models for solving inverse problems,
have considered much simpler datasets, such as MNIST (Le-
Cun et al. 1998) or a small version of CelebA (downscaled to
size 64×64), which perhaps do not demonstrate how severe
the effect of mode collapse is.

The test-time procedure is done as follows, and is almost
the same for the two models. For CSGM we follow (Bora et
al. 2017) and optimize (2) using ADAM optimizer (Kingma
and Ba 2014) with learning rate (LR) of 0.1. We use 1600
iterations for BEGAN and 1800 iterations for PGGAN. The
final z, i.e. ẑ, is chosen to be the one with minimal objective
value f(z) along the iterations, and the CSGM recovery is
x̂ = G(ẑ). Performing a post-processing BP step (10) gives
us also a reconstruction that we denote by CSGM-BP.

In the reconstruction based on image-adaptive GANs,
which we denote by IAGAN, we initialize z with ẑ, and then
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Figure 3: Compressed sensing with 30% (top) and 50% (bot-
tom) subsampled Fourier measurements and noise level of
10/255, for CelebA images. Left to right: original image,
naive reconstruction (zero padding and IFFT), DIP, CSGM,
and IAGAN. CSGM and IAGAN use the BEGAN prior.

optimize (3) jointly for z and θ (the generator parameters).
For BEGAN we use LR of 10−4 for both z and θ in all
scenarios, and for PGGAN we use LR of 10−4 and 10−3

for z and θ, respectively. For BEGAN, we use 600 itera-
tions for compressed sensing and 500 for super-resolution.
For PGGAN we use 500 and 300 iterations for compressed
sensing and super-resolution, respectively. In the examined
noisy scenarios we use only half of the amount of iterations,
to avoid overfitting the noise. The final minimizers θ̂IA and
ẑIA are chosen according to the minimal objective value,
and the IAGAN result is obtained by x̂IA = Gθ̂IA

(ẑIA).
Another recovery, which uses also the post-processing BP
step (10) on x̂IA, is denoted by IAGAN-BP.

We also compare the methods with DIP (Ulyanov,
Vedaldi, and Lempitsky 2018). We use DIP official imple-
mentation for the noiseless scenarios, and for the examined
noisy scenarios we reduce the number of iterations by a fac-
tor of 4 (tuned for best average performance) to prevent the
network from overfitting the noise.

Apart from presenting visual results2, we compare the
performance of the different methods using two quantitative
measures. The first one is the widely-used mean squared er-
ror (MSE) (sometimes in its PSNR form3). The second is a
distance between images that focuses on perceptual similar-
ity (PS), which has been proposed in (Zhang et al. 2018) (we
use the official implementation). Displaying the PS is impor-
tant since it is well known that PSNR/MSE may not corre-
late with the visual/perceptual quality of the reconstruction.
Note that in the PS score — lower is better.

Compressed Sensing

In the first experiment we demonstrate how the proposed IA
and BP techniques significantly outperform or improve upon
CSGM for a large range of compression ratios. We consider
noiseless compressed sensing using an m×n Gaussian ma-
trix A with i.i.d. entries drawn from Aij ∼ N (0, 1/m), sim-
ilar to the experiments in (Bora et al. 2017). In this case,
there is no efficient way to implement the operators A and

2More examples are presented in the companion technical re-
port (Abu Hussein, Tirer, and Giryes 2019).

3We compute the average PSNR as 10log10(255
2/MSE),

where MSE is averaged over the test images.

Figure 4: Compressed sensing with 30% (top group) and
50% (bottom group) subsampled Fourier measurements and
noise level of 10/255, for CelebA-HQ images. From left to
right and top to bottom: original image, naive reconstruction
(zero padding and IFFT), DIP, CSGM, and IAGAN. Note
that CSGM and IAGAN use the PGGAN prior.

AT . Therefore, we consider only the BEGAN that generates
128× 128 images (i.e. n = 3× 1282 = 49, 152), which are
much smaller than those generated by PGGAN.

Figure 1 shows several visual results and Figure 2 presents
the reconstruction MSE of the different methods as we
change the number of measurements m (i.e. we change the
compression ratio m/n). The results are averages over 20
images from CelebA dataset. It is clearly seen that IAGAN
outperforms CSGM for all the values of m. Note that due
to the limited representation capabilities of BEGAN (equiv-
alently – its mode collapse), CSGM performance reaches a
plateau in a quite small value of m, contrary to IAGAN er-
ror that continues to decrease. The back-projection strategy

Figure 5: Binary masks for compressed sensing with 30%
(left) and 50% (right) subsampled Fourier measurements.

3125



Table 1: Compressed sensing with subsampled Fourier mea-
surements. Reconstruction PSNR [dB] (left) and PS (Zhang
et al. 2018) (right), averaged over 100 images from CelebA
and CelebA-HQ, for compression ratios 0.3 and 0.5, with
noise level of 10/255.

CelebA naive IFFT DIP CSGM IAGAN
CS ratio 0.3 19.23 / 0.540 25.96 / 0.139 20.12 / 0.246 25.50 / 0.092

CS ratio 0.5 20.53 / 0.495 27.21 / 0.125 20.32 / 0.241 27.59 / 0.066

CelebA-HQ naive IFFT DIP CSGM IAGAN
CS ratio 0.3 19.65 / 0.625 24.97 / 0.566 21.38 / 0.520 25.80 / 0.429

CS ratio 0.5 20.45 / 0.597 26.29 / 0.535 21.82 / 0.514 28.26 / 0.378

Figure 6: Super-resolution with scale factor 4, bicubic ker-
nel, and no noise, for CelebA images. From left to right
and top to bottom: original image, bicubic upsampling,
DIP, CSGM, CSGM-BP, IAGAN, and IAGAN-BP. Note that
CSGM and IAGAN use the BEGAN prior.

is shown to be very effective, as it makes sure that CSGM-
BP is rescued from the plateau of CSGM. The fact that IA-
GAN still has a very small error when the compression ratio
is almost 1 follows from our small learning rates and early
stopping, which have been found necessary for small values
of m, where the null space of A is very large and it is im-
portant to avoid overriding the offline semantic information.
However, this small error is often barely visible, as demon-
strated by visual results in Figure 1, and further decreases by
the BP step of IAGAN-BP.

In order to examine our proposed IA strategy for the
larger model PGGAN as well, we turn to use a different
measurement operator A which can be applied efficiently
– the subsampled Fourier transform. This acquisition model
is also more common in practice, e.g. in sparse MRI (Lustig,
Donoho, and Pauly 2007). We consider scenarios with com-
pression ratios of 0.3 and 0.5, and noise level of 10/255 (due
to the noise we do not apply the BP post-processing). The
PSNR and PS results (averaged on 100 images from each
dataset) are given in Table 1, and several visual examples
are shown in Figures 3 and 4. In Figure 5 we present the bi-
nary masks used for 30% and 50% Fourier domain sampling
of 128× 128 images in CelebA. The binary masks that have
been used for CelebA-HQ have similar forms.

The unsatisfactory results obtained by CSGM clearly
demonstrate the limited capabilities of both BEGAN and
PGGAN for reconstruction: Despite the fact that both of
them can generate very nice samples (Berthelot, Schumm,
and Metz 2017; Karras et al. 2017), they typically can-

Figure 7: Super-resolution with bicubic kernel, scale factor
8, and noise level of 10/255, for CelebA-HQ images. From
left to right and top to bottom: original image, bicubic up-
sampling, DIP, CSGM, and IAGAN. Note that CSGM and
IAGAN use the PGGAN prior.

Figure 8: Super-resolution with bicubic kernel, scale fac-
tor 16, and no noise, for CelebA-HQ images. From left to
right and top to bottom: original image, bicubic upsampling,
DIP, CSGM, IAGAN, CSGM-BP, and IAGAN-BP. Note that
CSGM and IAGAN use the PGGAN prior.
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Table 2: Super-resolution with bicubic downscaling kernel. Reconstruction PSNR [dB] (left) and PS (Zhang et al. 2018) (right),
averaged over 100 images from CelebA and CelebA-HQ, for scale factors 4, 8 and 16, with no noise.

CelebA Bicubic DIP CSGM CSGM-BP IAGAN IAGAN-BP
SR x4 26.50 / 0.165 27.35 / 0.159 20.51 / 0.235 26.44 / 0.165 27.16 / 0.092 27.14 / 0.092

SR x8 22.39 / 0.212 23.45 / 0.339 20.23 / 0.240 22.71 / 0.212 23.49 / 0.158 23.53 / 0.157

CelebA-HQ Bicubic DIP CSGM CSGM-BP IAGAN IAGAN-BP
SR x8 29.94 / 0.398 30.01 / 0.400 22.62 / 0.505 28.54 / 0.398 28.76 / 0.387 28.76 / 0.360

SR x16 27.43 / 0.437 27.51 / 0.480 22.34 / 0.506 26.20 / 0.437 26.28 / 0.421 25.86 / 0.411

Table 3: Super-resolution with bicubic downscaling kernel.
Reconstruction PSNR [dB] (left) and PS (Zhang et al. 2018)
(right), averaged over 100 images from CelebA and CelebA-
HQ, for scale factors 4, 8 and 16, with noise level of 10/255.

CelebA Bicubic DIP CSGM IAGAN
SR x4 24.72 / 0.432 24.19 / 0.280 20.57 / 0.238 25.54 / 0.133

SR x8 21.65 / 0.660 21.22 / 0.513 20.22 / 0.243 21.72 / 0.243

CelebA-HQ Bicubic DIP CSGM IAGAN
SR x8 26.31 / 0.801 27.61 / 0.430 21.60 / 0.519 26.30 / 0.421

SR x16 25.02 / 0.781 24.20 / 0.669 21.31 / 0.516 24.73 / 0.455

not represent well an image that fits the given observations
y. This is resolved by our image-adaptive approach. For
CelebA dataset DIP has competitive PSNR with our IA-
GAN. However, both the qualitative examples and the PS
(perceptual similarity) measure agree that IAGAN results
are much more pleasing. For CelebA-HQ dataset our IA-
GAN clearly outperforms the other methods.

Inference run-time. Since IAGAN performs a quite
small number of ADAM iterations to jointly optimize z and
θ (the generator’s parameters), it requires only a small addi-
tional time compared to CSGM. Yet, both methods are much
faster than DIP, which trains from scratch a large CNN at
test-time. For example, for compression ratio of 0.5, using
NVIDIA RTX 2080ti GPU we got the following per im-
age run-time: for CelebA: DIP ∼100s, CSGM ∼30s, and
IAGAN ∼35s; and for CelebA-HQ: DIP ∼1400s, CSGM
∼120s, and IAGAN ∼140s. The same behavior, i.e. CSGM
and IAGAN are much faster than DIP, holds throughout the
experiments in the paper (e.g. also for the super-resolution
task).

Super-Resolution

We turn to examine the super-resolution task, for A which is
a composite operator of blurring with a bicubic anti-aliasing
kernel followed by down-sampling. For BEGAN we use
super-resolution scale factors of 4 and 8, and for PGGAN we
use scale factors of 8 and 16. We check a noiseless scenario
and a scenario with noise level of 10/255. For the noiseless
scenario we also examine the GAN-based recovery after a
BP post-processing, which can be computed efficiently, be-
cause A† can be implemented by bicubic upsampling. The
PSNR and PS results (averaged on 100 images from each
dataset) of the different methods are given in Tables 2 and 3,
and several visual examples are shown in Figures 6 - 8.

Once again, the results of the plain CSGM are not satis-
fying. Due to the limited representation capabilities of BE-

Figure 9: Super-resolution of misaligned images with bicu-
bic kernel and scale factor 4 using BEGAN. Left to right:
original image, bicubic upsampling, CSGM, and IAGAN.

GAN and PGGAN, the recovered faces look very different
than the ones in the test images. The BP post-processing is
very effective in reducing CSGM representation error when
the noise level is minimal. For our IAGAN approach, the BP
step is less effective (i.e. IAGAN and IAGAN-BP have sim-
ilar recoveries), which implies that the ”soft-compliance” of
IAGAN obtains similar results as the ”hard-compliance” of
the BP in the row space of A. In the noiseless case, DIP of-
ten obtains better PSNR than IAGAN. However, as observed
in the compressed sensing experiments, both the visual ex-
amples and the PS (perceptual similarity) measure agree that
IAGAN results are much more pleasing and sharper, in both
noisy and noiseless scenarios. A similar tradeoff between
distortion and perception has been recently investigated by
Blau and Michaeli (2018). Their work supports the obser-
vation that the balance between fitting the measurements
and preserving the generative prior, which is the core of our
IAGAN approach, may limit the achievable PSNR in some
cases but significantly improves the perceptual quality.

We finish this section with an extreme demonstration of
mode collapse. In this scenario we use the BEGAN model to
super-resolve images with scale factor of 4. Yet, this time the
images are slightly misaligned — they are vertically trans-
lated by a few pixels. The PSNR[dB] / PS results (averaged
on 100 CelebA images) are 19.18 / 0.374 for CSGM and
26.73 / 0.127 for IAGAN. Several visual results are shown
in Figure 9. The CSGM is highly susceptible to the poor ca-
pabilities of BEGAN in this case, while our IAGAN strategy
is quite robust.
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Table 4: Deblurring with 9× 9 uniform filter and noise level
of 10/255. Reconstruction PSNR [dB] (left) and PS (Zhang
et al. 2018) (right), averaged over 100 images from CelebA
and CelebA-HQ.

CelebA Blurred DIP CSGM IAGAN
Deb U(9x9) 22.21 / 0.490 25.63 / 0.203 20.37 / 0.241 26.15 / 0.110

CelebA-HQ Blurred DIP CSGM IAGAN
Deb U(9x9) 25.80 / 0.622 28.28 / 0.458 21.62 / 0.507 28.25 / 0.388

Deblurring

We briefly demonstrate that the advantage of IAGAN car-
ries to more inverse problems by examining a deblurring
scenario, where the operator A represents blurring with a
9× 9 uniform filter, and the noise level is 10/255 (so we do
not apply the BP post-processing). The PSNR and PS results
(averaged on 100 images from each dataset) of DIP, CSGM,
and IAGAN are given in Table 4, and several visual exam-
ples are presented in Figure 10.

Similarly to the previous experiments, the proposed IA-
GAN often exhibits the best PSNR and consistently exhibits
the best perceptual quality.

Conclusion

In this work we considered the usage of generative models
for solving imaging inverse problems. The main deficiency
in such applications is the limited representation capabilities
of the generators, which unfortunately do not capture the full
distribution for complex classes of images. We suggested
two strategies for mitigating this problem. One technique
is a post-processing back-projection step, which is applica-
ble at low noise level, that essentially eliminates the com-
ponent of the generator’s representation error that resides in
the row space of the measurement matrix. The second tech-
nique, which is our main contribution, is an image adaptive
approach, termed IAGAN, that improves the generator capa-
bility to represent the specific test image. This method can
improve also the restoration in the null space of the measure-
ment matrix. One can also use the two strategies together.
Experiments on compressed sensing and super-resolution
tasks demonstrated that our strategies, especially the image-
adaptive approach, yield significantly improved reconstruc-
tions, which are both more accurate and perceptually pleas-
ing than other alternatives.
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