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Abstract

Transmitting the gradients or model parameters is a critical bot-
tleneck in distributed training of large models. To mitigate this
issue, we propose an indirect quantization and compression of
stochastic gradients (SG) via factorization. The gist of the idea
is that, in contrast to the direct compression methods, we focus
on the factors in SGs, i.e., the forward and backward signals
in the backpropagation algorithm. We observe that these fac-
tors are correlated and generally sparse in most deep models.
This gives rise to rethinking of the approaches for quantiza-
tion and compression of gradients with the ultimate goal of
minimizing the error in the final computed gradients subject
to the desired communication constraints. We have proposed
and theoretically analyzed different indirect SG quantization
(ISGQ) methods. The proposed ISGQ reduces the reconstruc-
tion error in SGs compared to the direct quantization methods
with the same number of quantization bits. Moreover, it can
achieve compression gains of more than 100, while the exist-
ing traditional quantization schemes can achieve compression
ratio of at most 32 (quantizing to 1 bit). Further, for a fixed
total batch-size, the required transmission bit-rate per worker
decreases in ISGQ as the number of workers increases.

1 Introduction

In recent years, the size of deep learning problems is in-
creased significantly both in terms of the number of available
training samples as well as the number of model’s parame-
ters. However scaling up of neural networks requires massive
amounts of storage, memory and computational power for
training. As such, large-scale distributed machine learning
in which the training samples are distributed among differ-
ent repository or processing units (referred to as workers)
has started to be a viable approach for tackling the memory,
storage and computational constraints.

Since most common deep learning algorithms are based on
computing the gradients, in this paper, we focus on parallel
(distributed) computation of stochastic gradients (SG). The
requirement to exchange the locally computed SGs incurs
significant communication overhead which is a major bot-
tleneck in distributed learning. Variety of approaches have
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been proposed to mitigate the communication bottleneck by
reducing the overall transmission rate such as:

1. Quantization. Reducing the number of bits in representing
SG is a well-known technique to decrease the communi-
cation bit-rate. For example, quantizing the gradients to
one-bit such as (Seide et al. 2014) or SignSGD (Bernstein
et al. 2018) can significantly reduce the communication
overhead. However, the reduced accuracy of gradients and
quantization bias may impair the convergence rate. Using
different quantization levels and/or adaptive quantizers,
one can alleviate such issues (Dryden et al. 2016). Stochas-
tic quantizers such as QSGD (Alistarh et al. 2017), Tern-
Grad (Wen et al. 2017) and Dithered qunatization (Abdi
and Fekri 2019a; 2019b) are alternative unbiased quan-
tization approaches with performance guarantees which
provide a trade-off between the gradient precision and the
model accuracy.

2. Sparsification. Another approach is transmitting only the
important or a small subset of the gradients. (Strom 2015)
was among the early works to use sparsification in con-
junction with thresholded quantization to further compress
the gradients. As choosing the right threshold for gradi-
ent sparsification is difficult in practice and to improve
the performance of distributed learning, other sparsifica-
tion methods have been proposed such as transmitting
only a fixed portion of the gradients (Dryden et al. 2016;
Aji and Heafield 2017), TopK SGD (Alistarh et al. 2018),
deep gradient compression (Lin et al. 2018) and random
(stochastic) sparsification of the gradients (Wangni et al.
2018).

Contribution. In this paper, we focus on the quantiza-
tion of SGs. The main drawbacks of the existing quantiza-
tion methods are the limited compression gain of at most
32 (quantizing 32 bit floating point number to only 1 bit),
and scalability as the total transmission bits increases almost
linearly with the number of workers. To overcome these is-
sues, we observe that the cost function of a neural network
w.r.t. the parameters of a layer, W , can be reformulated
as Ex[f(Wx)] where x is the ‘virtual’ input of that layer.
Therefore, we first consider the SG quantization of this class
of functions and develop a new algorithm, indirect stochastic
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gradient quantization via factorization (ISGQ). Then, we
study its complexity and convergence properties and extend
the algorithm to distributed training of deep neural networks.
By analyzing the signals propagating in the neural networks,
we observe that the forward and backward signals in neural
networks are more compression-friendly than the stochastic
gradients, themselves. Hence, ISGQ can achieve superior per-
formance in terms of total transmission bits and quantization
error compared to the traditional approaches.

Our proposed approach is different from the existing low
rank matrix approximation methods such as (Konecný et al.
2016) in the sense that those methods enforce the updates
of SG to be as G = AB with generally A (or B) being
generated randomly and fixed at each iteration of training.
Therefore, essentially the updates of the SG are forced to
be in the subspace generated by A. Another related line
of research is optimizing quantizers as in ZipML (Zhang
et al. 2017). However, it is primarily developed for linear
regression with �2 loss and is based on double sampling
strategy for random quantization of the input data. Moreover,
optimizing the quantizer is based on a dynamic programming
algorithm requiring access to the entire dataset or knowing
its statistical properties. In contrast to these approaches, our
proposed method does not enforce any constraint on the
SGs and it exploits the natural decomposition inherent in the
calculation of SG. Further, the ISGQ is developed for general
(activation) functions, has negligible computational overhead
and can be directly applied to distributed deep learning.

2 Problem Statement and Motivation

Consider the problem of learning the parametric model mW :
X → Y , where X and Y are the sets of the inputs and outputs
of the model, respectively, and W is the parameters of the
model to be learned. Let the cost function associated with
the model’s output y = mW (x) and the desired output t
be given by �(y, t). Hence, L(W ) = E[�(mW (x), t)] is the
objective function to be minimized for learning W .

In this paper, we consider efficient quantization of the
stochastic gradients (SG) of L(·). First we consider the
class of generalized linear functions as the parametric model
mW (·) and develop and theoretically analyze our proposed
quantization. Then, we extend our algorithm and results to
the distributed training of general deep models in § 4.

Let the parametric model be given as mW (x) = σ(Wx),
where W ∈ W ⊂ R

m×n, x ∈ X ⊂ R
n and σ(·) is an

arbitrary function. Let f(Wx, t) = �(σ(Wx), t) be the cost
for input x and target t, assumed to be an arbitrary smooth
differentiable function. To simplify the notations, since t is
uniquely determined from x and the dataset, we ignore it in
our notations and denote the cost function as f(Wx). Hence,
the objective is minimizing L(W ) = E[f(Wx)].

A stochastic gradient (SG) of L(W ) is an unbiased ran-
dom estimator of the gradient, i.e., the SG G(W ) is a ran-
dom function such that E[G(W )] = ∇WL for all W .
G has bounded variance if there exists a finite B such
that E

[‖G(W )−∇L‖2F
] ≤ B. For an arbitrary x ∈ X ,

G = ∇W f(Wx) = ∇yf(y)|y=Wx xT is a SG of L. It is
common to compute and average the SG over a mini-batch

to reduce its variance. Let X = [x1, · · · ,xL] ∈ R
n×L

be a training batch of size L, δk = ∇yf(y)|y=Wxk
for

k = 1, . . . , L and Δ = [δ1, · · · , δL] ∈ R
m×L. Therefore,

G =
1

L

L∑
k=1

Gk =
1

L

L∑
k=1

δkx
T
k =

1

L
ΔXT. (1)

Our proposed method for quantization and compression of
the stochastic gradients, computed via (1), is motivated by
the following observation:
Instead of computing the gradients and then compressing
them, our idea aims at compressing the intermediate sig-
nals, Δ and X , and transmitting them. We refer to this
approach as indirect compression, in contrast to the direct
quantization and compression of the stochastic gradients G.
This is specially helpful when the number of parameters is
large relative to the batch size; since the dimension of SG
is m × n, direct method requires transmission of mn val-
ues for G. On the other hand, the indirect method requires
transmitting only L(m + n) values for a batch of size L.
Moreover, as it will be investigated later, these signals are
more compression-friendly, i.e., they tend to be sparser and
having less entropy than the stochastic gradients.

3 Indirect SG Quantization via Factorization

Here, we introduce and analyze the proposed indirect quanti-
zation of SG. Let X̃ and Δ̃ be the quantized values of X and
Δ, respectively. Then the indirect SG quantization (ISGQ) is
defined as

G̃ =
1

L
Δ̃X̃

T
. (2)

In this paper, we focus on unbiased indirect quantizers, i.e.,
E
[
G− 1

LΔ̃X̃T
]
= 0. We consider two classes of quantizers

for X and Δ, namely, deterministic and random dithered
quantization.

Deterministic Indirect SG Quantization

We call a quantizer Q(·) deterministic if for any v, repeated
application of the quantizer to v results in the same quantized
value. A quantizer Q(·) is statistically optimized for random
variable z if it is unbiased and has the minimum mean squared
error (MSE) (Max 1960; Lloyd 1982), hence

Ez[z −Q(z)] = 0, Ez[(Q(z)− z) Q(z)] = 0. (3)

Obviously, designing such a quantizer requires knowledge
about the probability distribution of data or accessing the
entire dataset.

Let g = Gi,j be an arbitrary element of the SG, x :=
(Xj,.)

T and δ := (Δi,.)
T be the j-th and i-th row of X and

Δ, respectively. Hence, g = 1
Lδ

Tx = 1
L

∑
k xk δk. Further,

assume that the signals have bounded joint second moment,
i.e., E

[‖x‖2‖δ‖2] < ∞.
One may hope that if the quantizers for x and δ are de-

signed optimally w.r.t. each individual signal, then the result-
ing indirect quantization of SG becomes almost optimal as
well. We refer to this quantization approach as naı̈ve ISGQ.
Lemma 1. Assume that the quantizers x and δ are designed
optimally and g̃ is the naı̈ve indirect quantization of g.
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Figure 1: Performance of naı̈ve-ISGQ w.r.t. the baseline (non-
quantized) for training a fully connected model over MNIST.

– If x and δ are independent random variables, then g̃ is
an unbiased and bounded-variance SG. Moreover, in 1-
bit quantization, if xk’s are i.i.d. Folded Normal and δk’s
are Normal random variables, then the MSE gap with the
optimum direct quantizer is less than 4%.

– If x and δ are correlated random variables, the naı̈ve
ISGQ is not necessarily unbiased.

Unfortunately, designing optimum individual quantizers
for x and δ is not feasible in many applications. Further, the
independence assumption between x and δ is not generally
satisfied in practice and by Lemma 1, the naı̈ve ISGQ is likely
to become biased. These shortcomings limit the effectiveness
of naı̈ve ISGQ in many applications such as distributed deep
learning (see Fig. 1).

The drawbacks of naı̈ve-ISGQ are mainly due to the fact
that the quantizers for the signals are designed independently,
i.e., the quantized signals x̃ and δ̃ are obtained by minimizing
E
[
(x− x̃)2

]
and E

[
(δ − δ̃)2

]
separately without consider-

ing their joint effect on the computed SG. To overcome the
problems of naı̈ve ISGQ, we propose jointly optimizing the
individual quantizers for X and Δ such that the MSE of the
resulting ISGQ is minimized. If the joint statistical properties
of X and Δ are available, one can aim at analytically finding
optimum individual quantizers for unbiased minimum MSE
ISGQ (please refer to the supplementary document). Here,
we focus on empirical methods (using data of each training
mini-batch) to approximately find good indirect quantizers.

Note that the quantization of X can be written as X̃ =∑K
k=1 Akαk, where K is the number of quantization bins,

[Ak]i,j = 1 if [X]i,j is in the k-th quantization bin (and
[Ak]i,j = 0, otherwise) and αk is the reconstruction point
associated with the k-th bin. Similarly, we can represent
quantization of Δ as Δ̃ =

∑
k Bkβk. Therefore, ISGQ can

be computed as

G̃ =
1

L
Δ̃X̃T =

1

L

∑
k,l

BlA
T
k αkβl =

∑
k,l

Ck,l αkβl. (4)

where Ck,l =
1
LBlA

T
k . Define the empirical bias as

Algorithm 1 Empirical MSE-ISGQ

1: Initialize α and β
2: for few iterations do
3: Fix α and solve (6) to update β.
4: Fix β and solve (6) to update α.
5: return Quantizers for X and Δ.

bias :=
∑
i,j

(
Gi,j − 1

L
[Δ̃X̃T]i,j

)

=
∑
i,j

[
G−

∑
k,l

Ck,lαkβl

]
i,j

= Ḡ− βTPα, (5)

where Ḡ =
∑

i,j Gi,j and Pk,l =
∑

i,j [Ck,l]
i,j

. Since the
problem of optimizing the quantization bins for ISGQ is non-
convex and computationally complex, we decide to fix them
and only adjust the reconstruction points of each quantizer.
Hence, the mappings X 	→ Ak and Δ 	→ Bk are known.
For example, in 1-bit ISGQ for correlated normal X and
Δ, the quantization threshold is set to zero and only the
reconstruction values for positive and negative X and Δ
are adjusted. We propose to adjust the quantizers for the
empirical MSE-ISGQ via the optimization problem

min
α,β

‖G− G̃‖2F + λ(bias)2

=min
α,β

‖G−
∑
k,l

Ck,lαkβl‖2F + λ(βTPα− Ḡ)2, (6)

where λ controls the trade-off between the MSE and empiri-
cal bias of MSE-ISGQ.

Computational Complexity. Since, the optimization prob-
lem (6) is bi-convex, we suggest the iterative approach sum-
marized in Alg. 1 to solve it. The quantizers for X and Δ
can be initialized approximately based on the expected prop-
erties of the signals or as uniform quantizer. It can be easily
verified that by fixing α, (6) becomes a quadratic problem
w.r.t. β which has a closed form solution and can be com-
puted efficiently. Similar arguments hold for fixing β and
updating α. Moreover, in out experiments, we found out
that only 1-2 iterations of Alg. 1 yields satisfactory results.
Hence, the computational complexity of finding MSE-ISGQ
quantizers is insignificant. For example, for the special case
of 1-bit quantization, the total computational complexity of
MSE-ISGQ to solve (6) is less than 100 FLOPs. (see supp.
document for more detailed analysis.)

Dithered Indirect SG Quantization

The main drawback of using the deterministic approach for
the quantization is the dependency of the quantization noise
to the signal. Since x and δ are generally correlated, this
forced us in §3 to adjust the individual quantizers for each
batch of data (X and Δ) to minimize the MSE and bias of
ISGQ. Here, we pursue a different approach and develop a
simple and fixed quantization scheme whose noise is inde-
pendent of the signals. Our proposed algorithm is based on
dithered quantization.
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Definition (Dithered Quantization). Let � be the quantiza-
tion step size. For an input signal x, assume that u is a random
dither signal, generated independently of x. The dithered
quantization of x is defined as x̃ = �(
x/�+ u�−u), where

α� is the nearest integer to α.
Remark 1. To transmit the dithered quantization of x, it
is sufficient to send the index of the quantization bin that
x/� + u resides in, i.e., q = 
x/�+ u�. The receiver can
reproduce the (pseudo-)random sequence u using the same
random number generator algorithm and seed number and
then compute the quantized value as x̃ = �(q − u).

Characteristics of the dither signal has a major impact on
the properties of the quantization noise. It is known that if
the dither signal is generated uniformly over (−1/2, 1/2), i.e.
u ∼ U(−1/2, 1/2), then the quantization noise e = x− x̃ is
independent of the signal x and e ∼ U(−�/2, �/2).

We consider the dithered indirect quantization of SG as fol-
lows: Let Kx and Kd be the number of desired quantization
levels for X and Δ, respectively. X is quantized as

Qx = 
X/κx +U� , X̃ = κx (Qx −U) , (7)

where the scale factor κx = ‖X‖∞/Kx maps the signal
into the range [−Kx,Kx] prior to quantization and U ∼
U(−1/2, 1/2) is an independently generated random dither
signal. It can be easily verified that the scaled quantization
noise Ex = (X − X̃)/κx is independent of the signals
X and Δ, and uniformly distributed over (−1/2, 1/2). The
dithered quantization of Δ is defined similarly.
Theorem 2. Let G = 1

LΔXT be a stochastic gradient
of L(W ). Then, the Dithered-ISGQ, G̃ = 1

LΔ̃X̃T with
number of quantization levels Kx and Kd has the following
properties:

P1. G̃ is unbiased, i.e., E[G̃] = ∇L,
P2. Its variance is bounded as E

[‖G̃−∇L‖2F
] ≤

mn
L γ E

[‖X‖2∞ ‖Δ‖2∞
]
+ E

[‖G−∇L‖2F
]
, where γ

is a constant depending only on the number of quanti-
zation levels.

Especially, if we assume that X follows a Normal or Folded-
Normal distribution with variance σ2

x and Δ ∼ N (0, σ2
d),

independent of each other, then

E
[‖G̃−∇WL‖2F

] ≤ mn

L
σ2
xσ

2
d

( ln(√2nL)

3K2
x

+ 1
)×

( ln(√2mL)

3K2
d

+ 1
)
. (8)

Note that although the Dithered-ISGQ may have higher
variance than MSE-ISGQ in some applications, it has the
advantages of having fixed quantizers and not requiring joint-
optimization of the individual factorized quantizer.

Rate-Distortion Analysis. It is worth exploring the rela-
tion between the variance of Dithered-ISGQ (i.e., the distor-
tion) and the total number of bits (i.e., the transmission rate).
Since the quantizer index of X , Qx ∈ {−Kx, . . . ,Kx} can
take at most 2Kx + 1 distinct values and X has nL ele-
ments, the total number of bits for quantized X would be

nL log(2Kx + 1). Similarly, total number of bits for quan-
tized Δ would be mL log(2Kd + 1). Hence, the total num-
ber of bits for dithered ISGQ is R = L

(
n log(2Kx + 1) +

m log(2Kd + 1)
)

per training iteration.
Considering the rate-distortion with respect to the batch-

size L, we realize that R = O(L) while from (8) MSE=
O( ln(L)2

L ). Thus, the rate increases linearly w.r.t. the batch-
size but the decrease in quantization noise is sublinear.

Similarly, to analyze the rate-distortion w.r.t. the number
of quantization levels, we observe that doubling the number
of quantization levels increases the number of bits by 1 per
sample. For sufficiently large nL and mL (relative to Kx and
Kd), the MSE would be reduced approximately by a factor
of 16. However, when ln(nL) � K2

x and ln(mL) � K2
d ,

which corresponds to more quantization levels (i.e. finer quan-
tization of X and Δ), the MSE of Dithered-ISGQ would be
the same as the non-quantized SG and any further increase in
the number of bits would not improve the accuracy anymore.

Computational Complexity. It is worth mentioning that
only the intermediate signals, X and Δ, are required to be
available for Dithered-ISGQ and there is no need to compute
the SG via (1). Moreover, quantizing X can be done in paral-
lel while performing the forward and backward computations.
Hence, generally the computation time of Dithered-ISGQ is
less than other direct quantization methods.

Convergence Analysis. The convergence analysis of the
Dithered-ISGQ relies on the fact that the proposed quantiza-
tion method is unbiased and has bounded variance. Consider
stochastic gradient descent learning algorithm with ISGQ in
which at the t-th iteration, the parameters are updated as

Wt+1 = Wt − ηtG̃t, (9)

where ηt is the learning rate. Convergence of the learning
algorithm can be easily verified under almost the same as-
sumptions as in (Bottou 1998, §5.1), i.e.,

A1. f(·) is lower bounded and 3-times differentiable with
continuous derivatives.

A2. Learning rates satisfy
∑

ηt = +∞ and
∑

η2t < ∞.

A3. Over the support of f(·), the signals have bounded joint
4th moment E

[‖X‖4F .‖Δ‖4F
]
< ∞.

A4. If W grows too large, the gradient descent direction
points towards zero.

Theorem 3. Assume that conditions (A1) to (A4) hold. Then
gradient descent with Dithered-ISGQ (9) converges almost
surely to a local extremum, i.e., ∇Wt

L a.s.→ 0 as t → +∞.

4 Application to Distributed Training of

Neural Networks

In this section, we show how ISGQ can be employed for
efficient communication of stochastic gradients in distributed
training of deep neural networks. Consider the l-th layer of a
neural network, whose input signal is x(l−1) and the weights
and biases are W (l) and b(l), respectively. By concatenating
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b(l) to W (l) and appending 1 to x(l−1) 1, the input signal
into the nodes and the output of the l-th layer are given by

y(l) = W (l)x(l−1) , x(l) = σ(y(l)), (10)

where σ(·) is the activation function, applied element-wise.
It is worth noting that the convolutional layers can be repre-
sented similarly by appropriate reshaping and reformulation
of the input and the parameters.

There exists a function g(·) such that the final output of the
neural network, y, can be represented as y = g(x(l)), where
g(·) may depend on other signals and parameters of the neural
network. Hence the loss function w.r.t. x(l) and desired output
t is given by �(g(x(l)), t). By defining f(v) = �(g(σ(v)), t),
the training loss function with respect to the parameters of the
l-th layer would be L = E

[
f(W (l)x(l−1))

]
, where x(l−1)

can be considered as the virtual input of the l-th layer.
Moreover, it is worth mentioning that the backpropaga-

tion algorithm, widely used in deep learning (Rojas 1996;
Goodfellow et al. 2016), is indeed a realization of (1) and
chain-rule. It is well-known that gradient of the cost function
for an input x w.r.t. the parameters of the l-th layer can be
computed as

∇W (l)L = δ(l)
(
x(l−1)

)T
, (11)

δ(l) = σ′(y(l))� (
(W (l+1))Tδ(l+1)

)
. (12)

where δ
(l)
j := ∂f

∂y
(l)
j

is the partial derivative of the cost func-

tion w.r.t. input signal of the j-th node of the l-th layer, i.e.,
δ(l) = ∇yf(y)|y=W (l)x(l−1) . These observations imply the
potential application of the ISGQ algorithms developed in §3
for the compression of SG and distributed training of deep
models. Using ISGQ in distributed learning can provide the
following benefits:
• Since calculating SGs at the workers is generally done

via backpropagation algorithm, computing forward and
backward signals does not incur extra computational com-
plexity. On the other hand, in Dithered-ISGQ, there is no
need to compute the SG via (11) and having access to X
and Δ (computed via (12)) is sufficient. Since the com-
plexity of quantizing individual signals is less than matrix
multiplication, we argue that Dithered-ISGQ can slightly
reduce the computational load at the workers in addition
to reducing the total transmission bits.

• As the majority of signals are sparse due to the structure
of neural networks and the forward and backward signals
have generally less entropy, they are more compressible
than the gradients (please refer to the supplementary docu-
ment and [Anonymized]). For example, with ReLU acti-
vation function, σ(y) = σ′(y) = 0 for y < 0. Hence, the
forward and backward signals (x, δ) in the hidden layers
are mostly sparse, and because of (10) and (12) their spar-
sities are correlated which can be used to further reduce
the communication bit rate.

• Since the quantization of the signals are performed sepa-
rately, it can be potentially implemented in parallel, and

1i.e., W (l) ← [W (l), b(l)] and x(l) ← [x(l); 1].

some operations (such as generating random dither sig-
nal) can be executed simultaneous to the neural network’s
forward and backward computations.

Note that the proposed indirect quantization is more suit-
able when the batch-size is smaller then the number of
parameters. For layers with weight sharing schemes such
as convolutional layers which generally have fewer param-
eters for transmission, distributed training benefits more
from direct compression and transmission of the stochas-
tic gradients using methods such as (Alistarh et al. 2017;
Wen et al. 2017).

5 Experiments

In this section, we evaluate the properties of the devel-
oped ISGQ algorithms and their performance in distributed
training. For the simulations, we consider MNIST database
with fully-connected (784-1000-300-100-10) neural network
(hereafter referred to as FC) and Lenet model (LeCun et
al. 1998), CIFAR-10 database using CifarNet (Krizhevsky,
Sutskever, and Hinton 2012), and Imagenet (Russakovsky et
al. 2015) using AlexNet deep model (Krizhevsky, Sutskever,
and Hinton 2012). The considered deep models, FC, Lenet,
CifarNet and AlexNet have approximately 1.16, 1.66, 1.07
and 62.4 million parameters, respectively. In all our experi-
ments, we use SGD or Adam algorithm with initial learning
rate 0.01, decay rate 0.98 per epoch and batch-sizes 256 or
128 per worker. To evaluate the reduction in the transmission
bits as well as the performance loss of the trained model,
we compared our proposed method against the baseline dis-
tributed training without any quantization (i.e., 32 bits used
for the transmissions of values) and other direct quantiza-
tion methods: 1-bit quantization of (Seide et al. 2014), Tern-
Grad (Wen et al. 2017) and QSGD (Alistarh et al. 2017). For
implementation details and the distributed learning algorithm,
please refer to the supplementary document.

Quantizer Performance. First, we investigate how our
proposed ISGQ methods are compared against the direct
optimum Lloyd-Max quantization (Lloyd 1982; Max 1960).
For this purpose, we consider different neural networks at
various stages of training and repeated the experiments nu-
merous times to compute the mean and variance of the desired
metrics. Some of the results are presented in figures 2 and 3.

We observe that generally the forward and backward sig-
nals are sparser (Fig. 2a), and their optimum quantized
values have less entropy and normalized MSE (defined as
‖v − ṽ‖2/‖v‖2 for vector v) than the SG (Fig. 2). Hence,
quantization of the intermediate signals generally requires
fewer number of bits and has smaller individual quantization
noise than directly quantizing the signals, confirming that
these signals are more compression-friendly.

Moreover, our proposed MSE-ISGQ (using only 1 iteration
of Alg. 1) and Dithered-ISGQ usually performs comparable
or better than the optimum (Lloyd-Max) direct quantization
of the SG (see Fig. 3), showing the effectiveness of ISGQ.

Processing Time per Iteration. Next, we measure the
complexity of the proposed SG compression technique by
measuring the average time required to process (e.g., feed
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(a) Percentage of Non-Zeros (b) Normalized MSE (c) Entropy

Figure 2: Sparsity at different stages of training, Normalized MSE and Entropy of quantized SG vs signals of the 2nd hidden
layer of FC at accuracy=40% for various number of quantization levels.

Figure 3: Comparing ISGQ with optimum direct SG quanti-
zation, 2nd hidden layer of FC at accuracy=40%.

mini-batch and compute the SG), quantize and communicate
the SGs. Let Tp be the total processing and quantization time
and Tc be the average communication time to transmit the
raw parameters of the model. Obviously, if a worker com-
presses the gradients by a factor of k, its communication
time would be reduced approximately by Tc/k, while on
the other hand, its processing time might increase slightly.
As a result, in a centralized synchronous distributed training
with P identical workers, the total processing time would be
Tp + PTc/k + Tu, where Tu is the communication time to
broadcast back the aggregated gradients to the workers by
the server.

First, we compare the required total processing and quanti-
zation times of the proposed ISGQ with QSG (Alistarh et al.
2017) and baseline (no quantization) for different batch-sizes
and different models using Intel Core i7 CPU and Nvidia
Titan Xp GPU. Since, baseline transmission only computes
the SGs, the total processing time is expected to be larger
when quantization is added. Tables 1 and 2 show the results
for processing 200 batches on CPU and GPU, respectively.
Since the dithered-ISGQ does not require computing the SG
via (11) and only relies on back-propagation calculations,
when matrix multiplications are costly (e.g., on CPU or for
large matrices), its computation time is significantly lower
than other quantization techniques and comparable to the
baseline.

Next, to find the effectiveness of different quantization
schemes in terms of communication overhead, we calculated

2 4 6 8 10 12 14 16
0.92

0.93

0.94

0.95

Number of workers

A
cc

u
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Baseline
1-bit ISGQ
2-bit ISGQ

Figure 4: Final accuracy of the trained model, shaded areas
represent 1 standard deviation.

and compared compression gain of each scheme as

compression gain =
32× (# model’s parameters)
# transmitted bits per worker

.

Some of the results are presented in Tbl. 3 for different mod-
els, batch-sizes and various quantization schemes.

One can easily conclude that 1000 iterations of decen-
tralized distributed training Alexnet with 4 workers, batch-
size 128 per worker using Titan Xp GPUs connected via
InfiniBand links would take approximately 3.9 minutes using
ISGQ compared to 4.5 minutes by QSG and 9 minutes by
Baseline (no SG compression), while centralized single node
training with the same total batch-size takes approximately
14.8 minutes to execute.

Accuracy of the Distributed Training. Although it is pos-
sible to evaluate the performance of the quantization and
compression schemes in both synchronous and asynchronous
settings, here we assume that the workers and server are syn-
chronous. The main reason for such a setting is to cancel-out
the performance degradation (in terms of training accuracy
or speed) that may be caused by the stale gradients in asyn-
chronous updates and to solely compare the effect of the
quantization algorithms.

Through our simulations, we have found that distributed
training of the considered deep models using either of the
quantization schemes eventually converges to ±1% of the
accuracy of the baseline model. However, the convergence
speed of the 1-bit method (Seide et al. 2014) is considerably
slower than the others for complex models, while ISGQ per-
forms comparably well. For example, Fig. 4 compares the
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Table 1: Computation time (sec.) with Core i7 CPU

Batch size 256 128 64

Baseline 1.2 0.78 0.63
FC QSGD 1.85 1.43 1.23

D-ISGQ 1.29 0.76 0.52

Baseline 14.4 8.17 5.1
Lenet QSGD 15.79 9.1 5.9

D-ISGQ 15.12 8.45 4.98

Baseline 30.33 16.31 9.2
Cifarnet QSGD 31.59 17.1 9.92

D-ISGQ 31.4 16.77 9.19

Baseline 66.4 34.5 18.9
Alexnet QSGD 70 37.6 21.8

D-ISGQ 66.7 34.4 18.4

Table 2: Computation time (sec.) w/ Titan Xp GPU

Batch size 256 128 64

FC
Baseline 0.29 0.26 0.25
QSGD 0.34 0.32 0.31
D-ISGQ 0.36 0.33 0.31

Lenet
Baseline 1.27 0.84 0.62
QSGD 1.39 0.98 0.77
D-ISGQ 1.41 1.0 0.79

Cifarnet
Baseline 3.27 1.62 0.92
QSGD 3.34 1.69 0.99
D-ISGQ 3.26 1.7 1.01

Alexnet
Baseline 83 45.2 25
QSGD 86 46.1 25.5
D-ISGQ 84 44.4 24.1

final accuracy of the trained model with ISGQ using different
number of workers with the baseline. As seen, the accuracy
loss due to the training with quantized SG is small (less than
0.2% most of the time for 2-bit ISGQ).

Figure 5 shows the test accuracy of the model at each
iteration during training with stochastic gradient descent us-
ing baseline (no quantization), 1-bit quantization (Seide et
al. 2014) and our proposed ISGQ. Note that here we omit-
ted the time delays that is caused by more communication
overhead in the baseline and 1-bit quantization and assumed
that the speed of connection link is infinity. As shown in
the figure, the convergence rate of ISGQ closely follows the
baseline while it has the potential of achieving compression
gains of beyond 32, much higher than the traditional direct
quantization methods.

6 Conclusion

In this paper, we proposed a novel approach, indirect stochas-
tic gradient quantization via factorization, instead of com-
monly used direct methods. Our method takes advantage
of the characteristics of the backpropagation algorithm and

Table 3: Average compression gains of different quantization
methods in distributed deep learning

Batch size 256 128 64

FC

1-bit ISGQ 33 67 133
1-bit (Seide et al. 2014) 28.4 28.4 28.4
TernGrad / 1-bit QSGD 20.2 20.2 20.2

L
en

et 1-bit ISGQ 56 105 180
1-bit (Seide et al. 2014) 28 28 28
TernGrad / 1-bit QSGD 20 20 20

C
ifa

rn
et 1-bit ISGQ 38 65 98

1-bit (Seide et al. 2014) 28 28 28
TernGrad / 1-bit QSGD 20.1 20.1 20.1

A
le

xN
et 1-bit ISGQ 117 170 221

2-bits ISGQ 80 118 153
1-bit (Seide et al. 2014) 29 29 29
TernGrad / 1-bit QSGD 19.4 19.4 19.4
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Figure 5: Convergence rate of distributed training with 8
workers using different quantization methods.

the statistical properties of the forward and backward sig-
nals during training. For the quantization of the forward and
backward signals, we proposed different approaches whose
objective is minimizing the error in the reconstructed SG. We
showed that despite its simplicity, ISGQ can perform close
to the optimum Lloyd-Max quantization algorithm in terms
of reconstruction error while requiring much less bite-rate.
Moreover, ISGQ leads to significant reduction in the com-
munication overhead, achieving compression gain of more
than 100, without sacrificing the training speed or accuracy.
Especially for a fixed total batch-size, at each worker the
required transmission bit-rate of the fully connected layers
decreases as the number of workers increases. This results in
the reduction of total bits for transmission of the parameters
in ISGQ, in contrast to the existing direct approaches whose
transmission bit-rate remains fixed regardless of the number
of workers.
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