
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

On the Expressivity of ASK Queries in SPARQL

Xiaowang Zhang,1,4 Jan Van den Bussche,2 Kewen Wang,3

Heng Zhang,1 Xuanxing Yang,1,4 Zhiyong Feng1

1College of Intelligence and Computing, Tianjin University, Tianjin, China
2Faculty of Sciences, Hasselt University, Hasselt, Belgium

3School of Information and Communication Technology, Griffith University, Brisbane, Australia
4Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China

Abstract

As a major query type in SPARQL, ASK queries are boolean
queries and have found applications in several domains such
as semantic SPARQL optimization. This paper is a first sys-
tematic study of the relative expressive power of various frag-
ments of ASK queries in SPARQL. Among many new results,
a surprising one is that the operator UNION is redundant for
ASK queries. The results in this paper as a whole paint a rich
picture for the expressivity of fragments of ASK queries with
the four basic operators of SPARQL 1.0 possibly together
with a negation. The work in this paper provides a guideline
for future SPARQL query optimization and implementation.

Introduction

The Resource Description Framework (RDF) (Cyganiak,
Wood, and Lanthaler 2014), a popular data model for infor-
mation on the Web, represents information in the form of di-
rected labelled graphs called RDF graphs (e.g., YAGO (Hof-
fart et al. 2013)), as a currently popular graph database (An-
gles and Gutiérrez 2008b). The standard query language for
RDF data is SPARQL (Prud’hommeaux and Seaborne 2008)
with its latest version SPARQL 1.1 (Harris and Seaborne
2013) by extending essential features such as negations, sub-
queries, regular expressions and aggregation. A SPARQL
query is usually expressed in terms of certain algebraic ex-
pressions called patterns.

As a major query type in SPARQL (Prud’hommeaux and
Seaborne 2008), ASK queries are boolean queries (Gott-
lob, Leone, and Scarcello 2001) while a SELECT query
extracts the set of all result mappings. The importance
of boolean queries is well-known in databases (Abiteboul,
Hull, and Vianu 1995). In fact, ASK queries have also been
applied in semantic SPARQL optimisation (Schmidt, Meier,
and Lausen 2010), representing nested queries (Angles and
Gutiérrez 2010) and RDF data access from mobile devices
with context-aware policies (Costabello, Villata, and Gan-
don 2012). The expressivity, as an important fundamental
property for query optimization and implementation, is a re-
curring topic in the area of query languages (Angles and
Gutiérrez 2008b; Chandra and Harel 1980; Wood 2012).

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The expressive power of SPARQL has been analyzed in
its relationship to the relational algebra (Cyganiak 2005),
SQL (Chebotko, Lu, and Fotouhi 2009), Datalog (Angles
and Gutiérrez 2008a; Polleres 2007), OWL (Gottlob and
Pieris 2015), and modal logics (Guido 2015). Also the re-
lationship between expressivity, complexity and optimiza-
tion of query evaluation has been studied (Pérez, Are-
nas, and Gutiérrez 2009; Arenas and Pérez 2011; Schmidt,
Meier, and Lausen 2010; Letelier et al. 2013; Chekol 2016;
Nikolaou and Koubarakis 2016). The internal expressiv-
ity of SPARQL has been investigated including regular ex-
pressions and property paths (Kostylev et al. 2015), assign-
ment and aggregation (Kaminski, Kostylev, and Grau 2016;
2017), well-designed patterns (Pichler and Skritek 2014;
Kaminski and Kostylev 2016), negation and non-monotone
operators (Angles and Gutiérrez 2016; Kontchakov and
Kostylev 2016), CONSTRUCT queries (Kostylev, Reutter,
and Ugarte 2015), operator primitivity (Zhang and den Buss-
che 2014), navigational power (Zhang and den Bussche
2015), and pattern satisfiability problem (Zhang, den Buss-
che, and Picalausa 2016; 2016).

However, the expressivity of ASK queries has not been
explicitly investigated yet, while some results on SELECT
queries and query satisfiability carry forward to ASK
queries. Informally, the problem of expressivity of ASK
queries is to study the role of an operator in expressing
ASK queries. Two SELECT queries are equivalent if they
have the same answers for each RDF graph; two queries
are equivalent for satisfiability if they have the same sat-
isfiability. Thus, the following implications for the expres-
sivity of ASK queries hold but not the vice versa in gen-
eral: Expressible for SELECT Query ⇒ Expressible for ASK
queries ⇒ Expressible for query satisfiability.

It implies that when an operator is not expressible for SE-
LECT queries, it could be expressible for ASK queries. For
instance, it is known that a SELECT query expressed by
AND (A), MINUS (M) and UNION (U) cannot be equiv-
alently rewritten into a SELECT query expressed by only
AND and MINUS (Zhang et al. 2018). It is interesting to
know whether this will hold for ASK queries.

In this paper, we conduct a systematic study on the ex-
pressivity of ASK queries in SPARQL. Also, we show some

3057

results on expressivity that are not reported in the litera-
ture while they hold for both SELECT queries and ASK
queries. Our major contributions are briefly summarized as
follows and specific results are depicted in Figure 1, Fig-
ure 2 and Figure 3, respectively. In these figures, a frag-
ment of SPARQL is represented by a sequence of the op-
erators. For instance, ADOF denotes the fragment of ASK
queries formed by three operators AND, DIFF and OPTF .
All fragments in the same rectangle box are equivalent to
each other. If there is an arrow from a box B1 to another box
B2, then every fragment in B1 is expressible in a fragment
in B2.

• We investigate the expressivity of 16 fragments of ASK
queries with four basic SPARQL 1.0 operators together
with DIFF (see Figure 1).

Figure 1: Expressivity of ASK queries with DIFF

ADF ,ADFOF ,ADFU ,ADFOFU ,ADOF ,ADOFU ,
DFOF ,DFOFU ,DOF ,DOFU

DF ,DFU AD,ADU

D,DU

• We investigate the expressivity of 16 fragments of ASK
queries with four basic SPARQL 1.0 operators together
with MINUS (see Figure 2).

Figure 2: Expressivity of ASK queries with MINUS

AFM,AFMOF ,AFMU ,AFMOFU , AMOF ,
AMOFU ,FMOF ,FMOFU ,MOF ,MOFU

FM,FMU AM,AMU

MU

M

• We investigate the expressivity of 16 fragments of ASK
queries with all four basic operators of SPARQL 1.0 (see
Figure 3). These results paint a complete picture for the
expressivity of the 9 classes (see Figure 3).

This paper is further organised as follows. In the next
section, we recall syntax and semantics of SPARQL pat-
terns and ASK queries. Section 3 introduces ASK queries
and ASK-expressivity. Section 4 discusses the expressivity
of ASK queries with negations and Section 5 discusses the
expressivity of ASK queries in SPARQL 1.0. Section 6 con-
cludes our works.

Figure 3: Expressivity of ASK queries in SPARQL 1.0
FOF ,AFOF ,FOFU ,AFOFU

AF ,AFU AOFU

AUF ,FU AOF

U ,OFU A

O,OF

SPARQL: Syntax and Semantics

In this section, we briefly recall some definitions and nota-
tions for the core SPARQL formalization in (Pérez, Arenas,
and Gutiérrez 2009; Kontchakov and Kostylev 2016).

RDF graphs

Let U be the universe of RDF terms consisting of IRIs (i.e.,
I) and literals (i.e., L). An RDF graph (for short, graph) is
modeled as a finite set of RDF triples (s, p, o) ∈ U × I ×U .
Following related work (Kontchakov and Kostylev 2016),
the distinction between IRIs and literals, on the one hand,
and blank nodes and RDF terms on the other hand, does
not bring up fundamentally new problems about expressive
power. Hence our model of RDF graph is adequate for the
purpose of our investigation.

Besides the set U of constants, we also assume that V is
an infinite set of variables, which is disjoint from U . A vari-
able usually starts with a question mark “?” to distinguish it
from a constant. We use u, v, w to denote elements that are
either literals or variables; ?x, ?y, ?z to denote variables; a,
b, c to denote constants.

Syntax of SPARQL

In SPARQL, a query is defined in terms of patterns. A triple
(u, v, w) from (U ∪V)×(U ∪V)×(U ∪V) is called a triple
pattern. A graph pattern (for short, pattern) P is inductively
defined as follows:

P := (u, v, w) | P1 AND P2 | P1 OPTF P2 |
P1 DIFFF P2 | P1 UNION P2 | P1 MINUS P2 |

P1 FILTER F | SELECTS(P1).

A filter condition F (or just filter) is a formula constructed
from (filter) atoms of the form bnd(?x), ?x = ?y, and ?x =
c, using logical connectives ∧, ∨, and ¬.

For a pattern P , var(P) and con(P) denote the set of all
variables and the set of all constants in P respectively.

Semantics of SPARQL

Mappings The semantics of patterns is defined in terms
of sets of so-called solution mappings. A solution mapping
(simply, mapping) is a total function μ : S → U on a
finite set S of variables. The domain S of μ is denoted

3058

dom(μ). Two mappings μ1 and μ2 are compatible, denoted
by μ1 ∼ μ2, if they agree on the intersection of their do-
mains. The empty mapping (μ∅), whose domain is empty, is
always compatible with any mapping.

Given a mapping μ and a filter F , the evaluation of F on
μ, denoted by Fμ, is defined in terms of a two-valued logic.
That is, Fμ = true if F is satisfied by μ and otherwise
Fμ = false (Kontchakov and Kostylev 2016). The standard
semantics of SPARQL is three-valued semantics (Pérez,
Arenas, and Gutiérrez 2009; Prud’hommeaux and Seaborne
2008). Fortunately, the three-valued semantics of SPARQL
can be simulated by the two-valued semantics of SPARQL
if FILTER is allowed (Zhang, Meng, and Zou 2018).

SPARQL Algebra Let Ω, Ω1, and Ω2 be three sets of
mappings and S be a set of variables. The SPARQL alge-
bra for sets of mappings is composed of the operations of
projection, selection, join, difference, left-join, union, and
minus, respectively, defined as follows:
• πS(Ω) = {μ|S∩dom(μ) | μ ∈ Ω};

• σF (Ω) = {μ ∈ Ω | Fμ = true};
• Ω1 �� Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1, μ2 ∈ Ω2, μ1 ∼ μ2};
•

Ω1 \F Ω2 = {μ1 ∈ Ω1 | ∀ μ2 ∈ Ω2,

(μ1
∼ μ2) ∨ (Fμ1∪μ2
= true)};
• Ω1 ∪ Ω2 = {μ | μ ∈ Ω1 ∨ μ ∈ Ω2};
•

Ω1 � Ω2 = {μ1 ∈ Ω1 | ∀ μ2 ∈ Ω2,

(μ1
∼ μ2) ∨ (dom(μ1) ∩ dom(μ2) = ∅)};
• Ω1 ��F Ω2 = σF (Ω1 �� Ω2) ∪ (Ω1 \F Ω2).

Note that we use \ and �� to denote \� and ��� respec-
tively. That is,

Ω1 \ Ω2 = {μ1 ∈ Ω1 | ∀ μ2 ∈ Ω2, μ1
∼ μ2}.
Ω1 �� Ω2 = (Ω1 �� Ω2) ∪ (Ω1 \ Ω2).

Clearly, the following equations hold:

Ω1 \F Ω2 = Ω1 \ σF (Ω1 �� Ω2).

Ω1 ��F Ω2 = σF (Ω1 �� Ω2) ∪ (Ω1 \ σF (Ω1 �� Ω2)).

Semantics of SPARQL Given a graph G and a pattern P ,
the semantics [[P]]G of P on G is defined by a set of map-
pings as follows:
•

[[(u, v, w)]]G = {μ : {u, v, w} ∩ V → U |
(μ(u), μ(v), μ(w)) ∈ G}.

Here μ(c) = c for any c ∈ U .
• [[P1 UNION P2]]G = [[P1]]G ∪ [[P2]]G;
• [[P1 AND P2]]G = [[P1]]G �� [[P2]]G;
• [[P1 DIFFF P2]]G = [[P1]]G \F [[P2]]G;

• [[P1 MINUS P2]]G = [[P1]]G � [[P2]]G;

• [[P1 FILTER F]]G = σF ([[P1]]G);

• [[P1 OPTF P2]]G = [[P1]]G ��F [[P2]]G;

• [[SELECTS(P1)]]G = πS([[P1]]G).

Clearly, the semantics of P1 DIFF P2 and P1 OPT P2

on G are equivalently defined as follows:

[[P1 DIFF P2]]G = [[P1]]G \ [[P2]]G.

[[P1 OPT P2]]G = [[P1]]G �� [[P2]]G.

Standard Equivalence: Two patterns P and P ′ are equiva-
lent, denoted P ≡ P ′, if [[P]]G = [[P ′]]G for any graph G.

By the definition, we have the following lemma.

Lemma 1. Let P1 and P2 be two patterns and F a filter. For
any graph G, the following two equations hold:

•
P1 DIFFF P2 = P1 DIFF ((P1 AND P2) FILTER F);

•
P1 OPTF P2 = ((P1 AND P2) FILTER F) UNION

(P1 DIFF ((P1 AND P2) FILTER F).

By Lemma 1, DIFFF and OPTF are not necessary if
AND,FILTER,UNION and DIFF are allowed.

ASK Queries and ASK-Expressivity

In this section, we define the equivalence of ASK queries
and then formalise the expressivity problem of ASK queries.

ASK Query and Expressivity

An ASK query Q is of the form ASK(P), where P is a pat-
tern. When there is no confusion, an ASK query is just called
a query.

Semantically, given a graph G, the evaluation of
ASK(P)G is true if [[P]]G
= ∅; and false otherwise.

Definition 2. Two ASK queries Q1 and Q2 are equivalent,
denoted Q1 ≡ASK Q2, if for every graph G, QG

1 = true iff
QG

2 = true. If Qi = ASK(Pi) for i = 1, 2 and Q1 ≡ASK

Q2, then we say that P1 and P2 are ASK-equivalent, denoted
P1 ≡ASK P2.

We say that Q is ASK-expressible, or just expressible, in a
fragment W if Q ≡ASK Q′ for some query Q′ in W .

A fragment W1 is ASK-expressible, or just expressible, in
another fragment W2, denoted by W1 � W2, if every ASK
query in W1 is expressible in W2. Otherwise, W1
� W2.
By W1 � W2, we mean W1 � W2 and W2
� W1.

An ASK query Q is monotone if for each pair of graphs
G1 and G2 with G1 ⊆ G2, QG1 = true implies QG2 =
true; and non-monotone otherwise. A fragment W of ASK
queries is monotone if all ASK queries in W are mono-
tone; and non-monotone otherwise. An operator X is mono-
tone if the fragment consisting of only X is monotone;
and non-monotone otherwise. DIFFF and MINUS are non-
monotone, while AND, FILTER, OPTF , and UNION are

3059

monotone under ASK queries. Note that OPTF is mono-
tone in ASK queries while it is non-monotone in SELECT
queries (Kontchakov and Kostylev 2016).

As pointed out in (Zhang, den Bussche, and Picalausa
2016), SELECT can be removed by a renaming of vari-
ables. Thus, we assume that ASK queries are SELECT-free.

Expressivity of ASK Queries with Negations

In this section, we discuss the expressivity of ASK queries
with negations (DIFFF , DIFF, and MINUS).

Expressivity of ASK queries with DIFFF

It is easy to see that there are 16 fragments of SPARQL that
are extensions of the fragment AFOU by adding DIFFF .
In this subsection, we investigate the expressive power of
ASK queries in these fragments. A major result is that AND
cannot be expressed by DIFFF .

We first show that ASK queries with FILTER is express-
ible in ASK queries with DIFFF .
Proposition 3. Let P be a pattern and F be a filter. Then

P FILTER F ≡ P DIFF (P DIFFF (?x, ?y, ?z)),

where ?x, ?y, ?z are fresh variables.
By definition, it follows that OPTF is expressible by

AND, DIFFF and UNION while FILTER is expressible
by only DIFFF and UNION.
Proposition 4. The following hold.
• ADFFOFU � ADFU ;
• DFFU � DFU .

The next result shows that UNION of ASK queries in
ADFU and DFU is essentially redundant in terms of the
expressivity of ASK queries.

A pattern P is in UNION normal form (UNF) if P is of
the form

P1 UNION · · ·UNION Pm (1)
where Pi is a UNION-free pattern (i = 1, . . . ,m).
Proposition 5. If P is a UNF pattern in Equation (1), then

P ≡ASK (?x, ?y, ?z) DIFF

(((?x′, ?y′, ?z′) DIFF P1) · · ·DIFF Pm) (2)

where ?x, ?y, ?z, ?x′, ?y′, ?z′ are fresh variables that do not
appear in P .

In the above proof of Proposition 5, the idea is essentially
based on the following statement.
Proposition 6. Let Q, P1, . . . , Pm are patterns. Then

Q DIFF (P1 UNION · · · UNIONPm−1UNION Pm)

≡ASK ((Q DIFF P1) · · ·DIFF Pm−1) DIFF Pm.

Since each pattern in ADU is equivalent to a UNF pat-
tern (Zhang et al. 2018), by Propositions 5 and 6, we have
the following corollary.
Corollary 7. The following hold.
• DFU � DF ;

• ADFU � ADF .
It is interesting to see whether A is expressible in DF .

The answer is negative.
Proposition 8. A
� DF .

Now, we can present our main theorem in this subsection.
Theorem 9. The following statements hold for ASK queries
in SPARQL (shown in Figure 4):
1. All fragments in W1 = {DF ,DFF ,DFFU ,DFU} are

equivalent to each other.
2. All fragments in W2 = {ADF , ADFF , ADFFOF ,
ADFFOFU , ADFFU , ADFOF , ADFOFU , ADFU ,
DFFOF , DFFOFU , DFOF , DFOFU} are equivalent
to each other.

3. If W1 ∈ W1 and W2 ∈ W2, then W1 � W2.

Figure 4: Expressivity of ASK queries with DIFFF

ADF , ADFF , ADFFOF , ADFFOFU , ADFFU , ADFOF ,
ADFOFU , ADFU , DFFOF , DFFOFU , DFOF , DFOFU

DF ,DFF ,DFFU ,DFU

Expressivity of ASK queries with either DIFF or
MINUS

In this subsection, we consider the 32 fragments of AFOFU
with either DIFF or MINUS.

We show that DIFFF is expressible in MOF and DOF .
Proposition 10. Let P1 and P2 be two patterns in ADF .
Then P1 DIFFF P2 ≡ P MINUS (?x, ?y, ?z) where
?x, ?y, ?z are fresh variables and P = (P1 OPTF

(P2 OPT (?x, ?y, ?z))).
It is shown that AND is expressible in MOF (Zhang and

den Bussche 2014). By Proposition 10, ADF is expressible
in MOF .

Now we wonder to know whether ADF is expressible in
DOF . The answer is positive.

Let P be a pattern and F a filter. Filter(P, F) denotes the
pattern P DIFF P¬F , where P¬F is defined as

(P OPTF∧?x1=?x2
((?x1, ?y1, ?z1)

OPT (?x2, ?y2, ?z2))) DIFFQ, (3)

Q = (((?x1, ?y, ?z) OPT?x1 �=?x2
(?x2, ?u1, ?v1))

OPT?x1 �=?x2 (?u2, ?x2, ?v2))

OPT?x1 �=?x2
(?u3, ?v3, ?x2); (4)

where ?y, ?z, ?x1, ?x2, ?x3, ?y1, ?y2, ?z1, ?z2, ?ui, ?vi (i =
1, 2, 3) are fresh variables.
Proposition 11. Let P be a pattern and F be a filter. For
any graph G, if G contains at least two constants then:

[[P FILTER F]]G = [[Filter(P, F)]]G.

3060

However, Proposition 11 does not hold if G consists of
only one constant of the form {(c, c, c)} (that is, G is a sin-
gleton complete graph). In this case, [[P DIFF P¬F]]G
= ∅
since [[PF]]G = ∅ no matter what F is.

So, we consider all patterns in ADFOFU but graphs con-
taining only one constant.

For the moment we consider the fragment ADF0 where
all triple patterns are constant-free and all filters are atomic.

Given a pattern P in ADF0, its mapping schema, denoted
by Γ(P), is defined as a set of variables by
• Γ((?u, ?v, ?w)) = {?u, ?v, ?w};
• Γ(P1 AND P2) = Γ(P1) ∩ Γ(P2);
• Γ(P1 DIFF P2) = Γ(P1);
• Γ(P1 FILTER F) = Γ(P1).

A pattern P in ADF0 is said to be safe if var(F) ⊆ Γ(P1)
for every subpattern Q of the form P1 FILTER F . We re-
mark that this definition extends the definition of safe pat-
tern in (Pérez, Arenas, and Gutiérrez 2009) for supporting
negated patterns.

Firstly, we consider the safe fragment ADF safe
0 where all

patterns are safe and all filters are atomic.
Let ?x0 be a fixed variable and P be a pattern in ADF safe

0 .
We define δ(P) as an AD-pattern in an inductive way.
• δ(?u, ?v, ?w) = (?x0, ?x0, ?x0);
• δ(P1 AND P2) = δ(P1) AND δ(P2);
• δ(P1 DIFF P2) = δ(P1) DIFF δ(P2);
• δ(P FILTER bound(?y)) = δ(P);
• δ(P FILTER ¬bound(?y)) = δ(P) DIFF
(?x0, ?x0, ?x0);

• δ(P FILTER ?y =?z) = δ(P);
• δ(P FILTER ?y
=?z) = δ(P) DIFF (?x0, ?x0, ?x0);
• δ(P FILTER ?y = c) = δ(P) AND (c, c, c);
• δ(P FILTER ?y
= c) = δ(P) DIFF (c, c, c).

The definition of δ(P) can be extended in ADFU .
Lemma 12. Let P be a patten in ADFOFU . For any RDF
graph G of the form {(c, c, c)} with c ∈ U , the following
hold:

[[P]]G is nonempty iff [[δ(P)]]G is nonempty.
By Proposition 11 and Lemma 12, we can show that pat-

terns in ADFOFU are expressible in DOF .
We first prove a proposition.
Given a pattern P in ADFOFU , we define

P ∗ = PF UNION (δ(P) AND P�); (5)

where PF is a FILTER-free pattern by substituting
Filter(P ′, F) for all sub-patterns of the form P ′FILTERF
in P , P� is defined by

P� = ((?x3, ?y3, ?z3) OPT?x1=?x2
((?x1, ?y1, ?z1)

OPT (?x2, ?y2, ?z2))) DIFFQ. (6)

Here Q is defined in Equation (4) and ?xi, ?yi, ?zi (i =
1, 2, 3) are fresh variables.

Proposition 13. Let P be a pattern in ADFOFU and the
pattern P ∗ is defined as above. Then P ≡ASK P ∗.

Now, we show that ADFOFU is expressible in DOF .
Theorem 14. ADFOFU � DOF .

By Theorems 9, 13 and 14, we conclude the following.
Corollary 15. The following hold.
• AFMOFU � MOF .
• ADFOFU � DOF .

Next, we show that OPTF is necessary to express
FILTER when DIFFF is absent. This is due to the fact that
equality-constraints of FILTER are not expressible in any
equality-free fragment (Casanovas, Dellunde, and Jansana
1996).

Since DIFF can be rewritten by MINUS syntactically in
ADMU , we have the following result.
Proposition 16. ADMU � AMU .

In the proof of Proposition 16, in a pattern P in ADMU ,
for any subpattern Q of the form P1 DIFF P2, we can
rewrite it into P1 MINUS (P1 AND P2).

We will show that FILTER is not expressible in ADMU .
By Proposition 16, we consider only the fragment AMU
instead of ADMU .

It is in order to introduce the notion of surjective strict
homomorphism for graphs.
Definition 17. Let G and G′ be two graphs and C be a set
of constants. A surjective strict C-homomorphism from G
to G′ is a surjective function h : const(G) → const(G′)
such that (s, p, o) ∈ G iff (h(s), h(p), h(o)) ∈ G′ for all
constants s, p, o ∈ const(G), and h(c) = c for all c ∈ C.
Lemma 18. Let P be a pattern in AMU and C = con(P).
Let G and G′ be two graphs such that there is a surjective
strict C-homomorphism h from G onto G′. Then
1. μ ∈ [[P]]G iff μ ◦ h ∈ [[P]]G′ ;
2. If μ ∈ [[P]]G′ , then μ = μ′ ◦ h for some μ′ ∈ [[P]]G.

Note that OPTF is needed for expressing FILTER.
By Lemma 18 and Proposition 16, we can show the fol-

lowing theorem.
Theorem 19. F
� ADMU .

Proof. Consider the pattern P = (?x, p, ?y) FILTER ?x
=
?y with C = {p}. Take G = {(a, p, a), (a, p, b), (b, p, a),
(b, p, b)} and G′ = {(a, p, a)}. Let h be a function such that

h(a) = h(b) = a and h(p) = p.

Clearly, h is a surjective strict C-homomorphism h from G
to G′. It is not difficult to see that [[P]]G
= ∅. On the other
hand, by Lemma 18, [[P]]G′ = ∅, a contradiction.

By Theorem 19, we have F
� AMU and F
� ADU .
We note that DMU is expressible in GF (Zhang et

al. 2018) and cyclic join queries are not expressible in
GF (Flum, Frick, and Grohe 2002; Gottlob, Grädel, and
Veith 2002) while cyclic join queries can be expressed by
AND in the proof of Proposition 8. Also, we have the fol-
lowing.

3061

Proposition 20. A
� DMU .

By Proposition 20, we have that A
� MU and A
� DU .
Next, we would like to know whether ASK queries in a

fragment of AFDU are expressible in the corresponding
fragment with UNION. The answer is positive.

To do so, we need an important lemma.

Lemma 21. Let P be a pattern in UNF as Equation (1) and
P ′ be the UNION-free pattern

(?x, ?y, ?z) DIFF (((?x′, ?y′, ?z′) DIFF (P1)) · · ·
DIFF (Pm)),

where ?x, ?y, ?z, ?x′, ?y′, ?z′ are fresh variables.

Since each pattern in AFDU is equivalent to an AFD
pattern in UNF, by Lemma 21, we conclude the following.

Proposition 22. The following hold.

• ADU � AD;
• FDU � FD;
• DU � D.

Finally, we show that ASK queries in a fragment of
AFMU are expressible in the corresponding fragment
without UNION.

Proposition 23. AMU � AM.

Let P be a pattern in FMU . We use pos(P) to denote
the set of triple patterns in P as follows.

• pos((u, v, w)) = {(u, v, w)};

• pos(P1 UNION P2) = pos(P1) ∪ pos(P2);

• pos(P1 MINUS P2) = pos(P1);

• pos(P1 FILTER F) = pos(P1).

We are ready to show that UNION is expressible by
FILTER and MINUS.

Proposition 24. FMU � FM.

Surprisingly, different from DIFF, MINUS cannot ex-
press UNION.

Proposition 25. U
� M.

Proof. (Sketch) Consider the pattern Q =
ASK(a, a, a) UNION (b, b, b) where a, b ∈ U .

Claim 26. There exists no pattern P in M such that for
every RDF graph G, QG = true iff ASK(P)G = true.

In order to prove this claim, consider three graphs:

• G1 = {a, b} × {a, b} × {a, b} \ {(a, a, a), (b, b, b)}.
• G2 = {a, b} × {a, b} × {a, b} \ {(a, a, a)}.
• G3 = {a, b} × {a, b} × {a, b} \ {(b, b, b)}.

Note that QG1 = false but QG2 = true and QG3 = true.
However, there exists no pattern P in M such that PG1 =
false but PG2 = true and PG3 = true.

Therefore, we can conclude that U
� M.

Clearly, by Proposition 25, it is immediate to conclude
that MU
� M.

In the proof of U
� M, we consider patterns with only
constants. So we wonder whether a pattern in U is express-
ible in M if each of triple patterns in the given pattern con-
tains a variable. Fortunately, the answer is positive.

Proposition 27. Let P be a pattern in MU . If pos(P) con-
tains no variable-free triple patterns, then ASK(P) can be
expressed in M.

Expressivity of ASK queries in SPARQL 1.0

In this section, we discuss the expressivity of ASK queries
in AFOFU (i.e., SPARQL 1.0). We study the expressivity
of each operator from FILTER, UNION, OPTF and AND.
So, there are four cases.

The case of FILTER is easy. We show that an ASK
query containing FILTER is not expressible in AOFU .
That is, F
� AOFU . To see this, we consider pattern
P = (?x, ?y, ?z) FILTER ?x
=?y and graph G =
{(c, c, c)}. Then [[P]]G = ∅. We will show that if a pattern
P ′ is in AOFU , then [[P ′]]G
= ∅. Thus, the pattern P can-
not be expressed in AOFU . It is sufficient to show that the
UNION, OPTF and AND of two triple patterns (u, v, w)
and (u′, v′, w′) is always nonempty.

Case 1 [[(u, v, w) UNION (u′, v′, w′)]]G contains two map-
pings μ : var((u, v, w)) → {c} and μ′ :
var((u′, v′, w′)) → {c}.

Case 2 [[(u, v, w)AND(u′, v′, w′)]]G contains one mapping
μ : var((u, v, w)) ∪ var((u′, v′, w′)) → {c}.

Case 3 [[(u, v, w) OPTF (u′, v′, w′)]]G contains one map-
ping μ : var((u, v, w)) ∪ var((u′, v′, w′)) → {c}.

Given G = (c, c, c) and P ′ in AOU , two mappings in
[[P ′]]G are always compatible. Therefore, [[P ′]]G
= ∅ for
each P ′ in AOU . This implies P is not expressible in AOU .

In the rest of this section, we investigate the expressivity
of the other cases.

Expressivity of ASK queries with UNION

It is known that UNION is a primitive operator under select
queries. It would be interesting to see whether this holds for
ASK queries. We will demonstrate that this is not the case
for ASK queries. Specifically, when OPTF is absent, each
ASK query with UNION can be expressed by some ASK
query with FILTER and AND.

Proposition 28. The following hold.

• AFU � AF;
• FU � F .

From Proposition 28, we see that FILTER can be used
to express ASK queries with UNION. Moreover, the next
proposition shows that FILTER is necessary. We need a
lemma before proving the proposition.

Lemma 29. Let G1 = {(a, a, a)} and G2 = {(b, b, b)} be
two graphs. For every pattern P in AOF , if both [[P]]G1

and
[[P]]G2

are nonempty then [[P]]G3
is nonempty for any graph

G3 = {(c, c, c)} with c
∈ con(P).

3062

This lemma can be shown by a simple induction on the
structure of patterns.
Proposition 30. U
� AOF .

When OPTF is involved, the conclusion of Proposi-
tion 28 still holds.
Proposition 31. AFOFU � FOF .

Expressivity of ASK queries with OPT

In this subsection we show that OPT is necessary in
SPARQL 1.0 if UNION is absent. However, UNION is
strong enough for expressing OPT. This result can be proven
by the (non)-monotonicity of fragment of ASK queries.

We note that both AFU and OFU of ASK queries are
monotone. But AOF is non-monotone. To see this, consider
the pattern P as follows:

P = ((?x, p, ?y) OPT (?x, q, ?z)) AND (?y, r, ?z).

Let G1 = {(a, p, b), (b, r, c)} and G2 = G1 ∪ {(a, q, b)}.
Then [[P]]G1

= {{?x → a, ?y → b, ?z → c}} while
[[P]]G2

= ∅. Thus, P is not monotone. This implies AOF

is non-monotone.
Proposition 32. The following hold.
• AOF
� AFU ;
• AOF
� OFU .

By Proposition 32, it is clear that AOFU
� AU .
Next, we show that OPT can be expressed by UNION.

We first recall the notion of principal subpattern. Given a
pattern P , the principal subpattern ps(P) of P is an OPTF -
free subpattern of P defined as follows (Zhang et al. 2018):
• ps((u, v, w)) = (u, v, w);
• ps(P1 UNION P2) = ps(P1) UNION ps(P2);
• ps(P1 AND P2) = ps(P1) AND ps(P2);
• ps(P1 OPTF P2) = ps(P1); and
• ps(P1 FILTER F) = ps(P1) FILTER F .
Lemma 33. If P is a pattern in OFU , then ASK(P) ≡ASK

ASK(ps(P)).
By the above lemma, it is easy to see the following result.

Proposition 34. The following hold.
• OFU � U ;
• OF � O.

Expressivity of ASK queries with AND

It is proven that AND can be expressed by OPT and
FILTER (Zhang and den Bussche 2014, Proposition 4).

Moreover, we show that both OPTF and FILTER are
necessary for expressing AND. We need a lemma before
proving the result.
Lemma 35. Let P be a pattern in FU . If there exists some
graph G such that [[P]]G is nonempty, then there must be a
singleton graph G′ such that [[P]]G′ is nonempty.

It is in order to state the main result in this subsection.
Proposition 36. A
� FU .

By Propositions 34 and 36, U cannot be expressed by OF

alone.

Corollary 37. OFU
� OF .

Based on Proposition 36 and Corollary 37, we can as-
sert that both OPTF and FILTER are necessary to express
AND for ASK queries.

So far, we have investigated the expressivity of ASK
queries in all 16 fragments of AFOFU in Figure 3.

Conclusion

In this paper, we have conducted a systematic study of rela-
tive expressivity for various fragments of SPARQL. Besides
new results on SELECT queries, we have shown several in-
teresting expressivity results for ASK queries. These results
provide a guideline for SPARQL query optimisation and im-
plementation. As a future work, we are going to investigate
expressivity of fragments for ASK queries with the presence
of some other operators in SPARQL 1.1 such as EXISTS
and NOT EXISTS.

Acknowledgments

This work is supported by the National Key Research and
Development Program of China (2017YFC0908401) and the
National Natural Science Foundation of China (61972455,
61672377). Xiaowang Zhang is supported by the Peiyang
Young Scholars at Tianjin University (2019XRX-0032).

References

Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Angles, R., and Gutiérrez, C. 2008a. The expressive power
of SPARQL. In Proceedings of th 7th International Seman-
tic Web Conference, ISWC 2008, Karlsruhe, Germany, 114–
129. Springer.
Angles, R., and Gutiérrez, C. 2008b. Survey of graph
database models. ACM Computing Survey 40(1):1:1–1:39.
Angles, R., and Gutiérrez, C. 2010. SQL nested queries in
SPARQL. In Proceedings of the 4th Alberto Mendelzon In-
ternational Workshop on Foundations of Data Management,
Buenos Aires, Argentina. CEUR-WS.org.
Angles, R., and Gutiérrez, C. 2016. Negation in SPARQL.
In Proceedings of the 10th Alberto Mendelzon International
Workshop on Foundations of Data Management, Panama
City, Panama. CEUR-WS.org.
Arenas, M., and Pérez, J. 2011. Querying semantic web data
with SPARQL. In Proceedings of the 30th ACM SIGMOD
Symposium on Principles of Database Systems, PODS 2011,
Athens, Greece, 305–316. ACM.
Casanovas, E.; Dellunde, P.; and Jansana, R. 1996. On el-
ementary equivalence for equality-free logic. Notre Dame
Journal of Formal Logic 37(3):506–522.
Chandra, A. K., and Harel, D. 1980. Computable queries for
relational data bases. Journal of Computing System Science
21(2):156–178.

3063

Chebotko, A.; Lu, S.; and Fotouhi, F. 2009. Semantics pre-
serving sparql-to-sql translation. Data Knowledge Engineer-
ing 68(10):973–1000.
Chekol, M. W. 2016. On the containment of SPARQL
queries under entailment regimes. In Proceedings of the
30th AAAI Conference on Artificial Intelligence, Phoenix,
Arizona, USA, 936–942. AAAI Press.
Costabello, L.; Villata, S.; and Gandon, F. 2012. Context-
aware access control for RDF graph stores. In Proceedings
of the 20th European Conference on Artificial Intelligence,
ECAI 2012, Montpellier, France, 282–287. IOS Press.
Cyganiak, R.; Wood, D.; and Lanthaler, M. 2014. RDF 1.1
Concepts and Abstract Syntax. W3C Recommendation.
Cyganiak, R. 2005. A relational algebra for SPARQL. Tech-
nical report, HP Laboratories Bristol.
Flum, J.; Frick, M.; and Grohe, M. 2002. Query evaluation
via tree-decompositions. Journal of ACM 49(6):716–752.
Gottlob, G., and Pieris, A. 2015. Beyond SPARQL un-
der OWL 2 QL entailment regime: Rules to the rescue. In
Proceedings of the 24th International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina,
2999–3007. AAAI Press.
Gottlob, G.; Grädel, E.; and Veith, H. 2002. Datalog LITE: a
deductive query language with linear time model checking.
ACM Transactions Computational Logic 3(1):42–79.
Gottlob, G.; Leone, N.; and Scarcello, F. 2001. The com-
plexity of acyclic conjunctive queries. Journal of ACM
48(3):431–498.
Guido, N. 2015. On the static analysis for SPARQL
queries using modal logic. In Proceedings of the 24th Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, 4367–4368. AAAI Press.
Harris, S., and Seaborne, A. 2013. SPARQL 1.1 Query Lan-
guage. W3C Recommendation.
Hoffart, J.; Suchanek, F. M.; Berberich, K.; and Weikum, G.
2013. YAGO2: A spatially and temporally enhanced knowl-
edge base from wikipedia. Artificial Intelligence 194:28–61.
Kaminski, M., and Kostylev, E. V. 2016. Beyond well-
designed SPARQL. In Proceedings of the 19th International
Conference on Database Theory, ICDT 2016, Bordeaux,
France, 5:1–5:18. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik.
Kaminski, M.; Kostylev, E. V.; and Grau, B. C. 2016. Se-
mantics and expressive power of subqueries and aggregates
in SPARQL 1.1. In Proceedings of the 25th International
Conference on World Wide Web, WWW 2016, Montreal,
Canada, 227–238. ACM.
Kaminski, M.; Kostylev, E. V.; and Grau, B. C. 2017. Query
nesting, assignment, and aggregation in SPARQL 1.1. ACM
Transactions Database Systems 42(3):17:1–17:46.
Kontchakov, R., and Kostylev, E. V. 2016. On expressibil-
ity of non-monotone operators in SPARQL. In Proceedings
of the Fifteenth International Conferenceon Principles of
Knowledge Representation and Reasoning: , KR 2016, Cape
Town, South Africa, 369–379. AAAI Press.

Kostylev, E. V.; Reutter, J. L.; Romero, M.; and Vrgoc, D.
2015. SPARQL with property paths. In Proceedings of the
14th International Semantic Web Conference, ISWC 2015,
Bethlehem, PA, USA, 3–18. Springer.
Kostylev, E. V.; Reutter, J. L.; and Ugarte, M. 2015. CON-
STRUCT queries in SPARQL. In 18th International Confer-
ence on Database Theory, ICDT 2015, Brussels, Belgium,
212–229. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik.
Letelier, A.; Pérez, J.; Pichler, R.; and Skritek, S. 2013.
Static analysis and optimization of semantic web queries.
ACM Transactions on Database Systems 38(4):25:1–25:45.
Nikolaou, C., and Koubarakis, M. 2016. Querying incom-
plete information in RDF with SPARQL. Artificial Intelli-
gence 237:138–171.
Pérez, J.; Arenas, M.; and Gutiérrez, C. 2009. Semantics and
complexity of SPARQL. ACM Transactions on Database
Systems 34(3):16:1–16:45.
Pichler, R., and Skritek, S. 2014. Containment and equiva-
lence of well-designed SPARQL. In Proceedings of the 33rd
ACM SIGMOD Symposium on Principles of Database Sys-
tems, PODS’14, Snowbird, UT, USA, 39–50. ACM.
Polleres, A. 2007. From SPARQL to rules (and back). In
Proceedings of the 16th International Conference on World
Wide Web, WWW 2007, Banff, Alberta, Canada, 787–796.
ACM.
Prud’hommeaux, E., and Seaborne, A. 2008. SPARQL
Query Language for RDF. W3C Recommendation.
Schmidt, M.; Meier, M.; and Lausen, G. 2010. Foundations
of SPARQL query optimization. In Proceedings of the 13th
International Conference, ICDT 2010, Lausanne, Switzer-
land, 4–33. ACM.
Wood, P. T. 2012. Query languages for graph databases.
SIGMOD Record 41(1):50–60.
Zhang, X., and den Bussche, J. V. 2014. On the primitiv-
ity of operators in SPARQL. Information Processing Letter
114(9):480–485.
Zhang, X., and den Bussche, J. V. 2015. On the power of
SPARQL in expressing navigational queries. The Computer
Journal 58(11):2841–2851.
Zhang, X.; den Bussche, J. V.; Wang, K.; and Wang, Z. 2018.
On the satisfiability problem of patterns in SPARQL 1.1. In
Proceedings of the 32 AAAI Conference on Artificial Intel-
ligence, (AAAI-18), New Orleans, Louisiana, USA, 2054–
2062. AAAI Press.
Zhang, X.; den Bussche, J. V.; and Picalausa, F. 2016. On
the satisfiability problem for SPARQL patterns. Journal Ar-
tificial Intelligence Research 56:403–428.
Zhang, X.; Meng, C.; and Zou, L. 2018. Expressiv-
ity issues in SPARQL: monotonicity and two-versus three-
valued semantics. SCIENCE CHINA Information Sciences
61(12):129102:1–3.

3064

