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Abstract

Expressing incomplete knowledge in abstract argumentation
frameworks (AFs) through incomplete AFs has recently re-
ceived noticeable attention. However, algorithmic aspects
of deciding acceptance in incomplete AFs are still under-
developed. We address this current shortcoming by devel-
oping algorithms for NP-hard and coNP-hard variants of
acceptance problems over incomplete AFs via harnessing
Boolean satisfiability (SAT) solvers. Focusing on nonempty
conflict-free or admissible sets and on stable extensions, we
also provide new complexity results for a refined variant
of skeptical acceptance in incomplete AFs, ranging from
polynomial-time computability to hardness for the second
level of the polynomial hierarchy. Furthermore, central to the
proposed SAT-based counterexample-guided abstraction re-
finement approach for the second-level problem variants, we
establish conditions for redundant atomic changes to incom-
plete AFs from the perspective of preserving extensions. We
show empirically that the resulting SAT-based approach for
incomplete AFs scales at least as well as existing SAT-based
approaches to deciding acceptance in AFs.

1 Introduction

Abstract argumentation frameworks (AFs), as originally
proposed by Dung (1995), are today one of the most im-
portant and widely-studied formalisms in the field of argu-
mentation in AI. Recently, a natural generalization of AFs
to so-called incomplete argumentation frameworks (IAFs)
was proposed (Coste-Marquis et al. 2007; Baumeister et al.
2018). Modeling uncertainties in terms of the existence of
attacks and arguments, IAFs allow to represent structural
uncertainties which may arise from dynamic changes to an
AF, local views of a global AF, or uncertainties in the un-
derlying knowledge base from which the AF is instantiated.
Considering universal and existential quantification over the
uncertain parts of IAFs gives rise to the respective possible
and necessary generalizations of the central skeptical and
credulous acceptance problems in abstract argumentation.
As shown by Baumeister, Neugebauer, and Rothe (2018) via
an extensive complexity analysis, these generalizations have
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an impact on the computational complexity of acceptance
when compared to acceptance problems in AFs.

However, in their complexity analysis, Baumeister,
Neugebauer, and Rothe (2018) allowed for empty sets of ac-
ceptable arguments (extensions) or the non-existence of ex-
tensions, which may produce trivial answers to the skeptical
acceptance (SA) problem for certain semantics. In particu-
lar, it would be more meaningful to restrict the semantics
to nonempty extensions and to require the existence of at
least one extension for a “yes” answer to SA. While SA
indicates whether the target argument is among the best-
accepted arguments in the AF with respect to the given
semantics, the refined variant EXSA—formally defined as
SA with the additional condition that an extension exists—
indicates whether the target argument is actually and ulti-
mately accepted in the IAF with respect to the semantics. To
address this, we consider nonempty versions of the conflict-
freeness and admissibility properties, and formally study the
complexity of the variants of the more natural EXSA prob-
lem over IAFs.

Furthermore, algorithmic techniques for deciding accep-
tance in IAFs have not been thoroughly studied to date, and
there is no clear idea of whether the recent successes in
developing practical system implementations—often based
on harnessing the power of Boolean satisfiability (SAT)
solvers—for reasoning about acceptance in AFs can be gen-
eralized to IAFs. In this work, we address this current short-
coming by developing the first practical algorithms for de-
ciding acceptance in IAFs.

In more detail, our contributions are the following.

• We present direct Boolean satisfiability (SAT) encodings
for deciding necessary skeptical and possible credulous
acceptance in IAFs for semantics under which the prob-
lems are NP- or coNP-complete (Sect. 3).

• Highlighting potential issues with allowing the non-
existence of extensions in the earlier proposed acceptance
problems over IAFs, we propose novel problem variants
with the in-built requirement that the set of extensions
must be nonempty. We provide complexity results for
the new problem variants, ranging from polynomial-time
to second-level completeness in the polynomial hierar-
chy under conflict-free, admissible, and stable semantics

2942



(Sect. 4).

• We establish conditions for what type of atomic changes
are guaranteed to be redundant from the perspective of
preserving extensions of completions of IAFs (Sect. 5).
While of interest on their own, this analysis proves central
as a basis of SAT-based counterexample-guided abstrac-
tion refinement (CEGAR) algorithms for IAFs.

• We develop SAT-based CEGAR algorithms for the prob-
lem variants which are complete for the second-level of
the polynomial hierarchy (Sect. 6).

• We empirically evaluate the scalability of the proposed
SAT-based approaches to deciding acceptance in IAFs,
showing that the approaches scale at least as well as state-
of-the-art SAT-based approaches to deciding acceptance
in (standard) AFs (Sect. 7), and that the conditions for
redundant atomic changes play a central role in the scala-
bility of the CEGAR algorithms.

2 Incomplete AFs

We formally define abstract argumentation frameworks and
the evaluation semantics used in this work (an overview
of other semantics is given by Baroni, Caminada, and Gi-
acomin (2018)).

Definition 1. An argumentation framework (AF) consists of
a (here finite) set of arguments A and a binary attack rela-
tion R ⊆ A ×A . Acceptable sets of arguments are identi-
fied via semantics, where a set E ⊆ A is conflict-free (CF)
if (a,b) �∈R for all a,b ∈ E , and E defends a ∈A if for all
(b,a) ∈R, there exists e ∈ E with (e,b) ∈R. A CF set E is
admissible (AD) if it defends all its members, and stable (ST)
if it attacks all non-members. A set of arguments satisfying
a semantics s is called an s extension, and we denote the set
of all s extensions of AF as s(AF).

Reasoning problems for AFs are captured by the VERI-
FICATION (VER) and two types of ACCEPTANCE decision
problems.

Definition 2. Let AF = 〈A ,R〉 be an AF, E ⊆A , a ∈A ,
and s be a semantics.

• (AF,E ) ∈ s-VER if and only if E ∈ s(AF);
• (AF,a) ∈ s-CREDULOUS-ACCEPTANCE (s-CA) if and

only if there exists E ∈ s(AF) with a ∈ E ; and
• (AF,a) ∈ s-SKEPTICAL-ACCEPTANCE (s-SA) if and

only if for all E ∈ s(AF), it holds that a ∈ E .

Since the empty set is always CF and AD, the answer to
CF-SA and AD-SA is always a trivial “no.” More interest-
ing problems are obtained when restricting both semantics
to nonempty sets—we denote these restricted semantics as
CF �= /0 and AD �= /0, respectively. Clearly, for all instances with
a nonempty set of arguments, CF-VER = CF �= /0-VER and
AD-VER = AD �= /0-VER. Also, CA (and all its generaliza-
tions) do not distinguish between CF and CF �= /0 or between
AD and AD �= /0.

Baumeister et al. (2018) studied incomplete AFs (IAFs) as
a generalization of AFs, where the existence of distinguished
arguments and attacks may be uncertain.

Definition 3. An IAF 〈A ,A ?,R,R?〉 consists of definite
arguments A , uncertain arguments A ?, (conditionally) def-
inite attacks R, and uncertain attacks R?.

Arguments in A definitely exist; arguments in A ? may or
may not exist; attacks in R exist if and only if both incident
arguments exist; and attacks in R? may or may not exist,
but can exist only if both incident arguments exist. An IAF
with R? = /0 is called argument-incomplete and an IAF with
A ? = /0 is called attack-incomplete.
Definition 4. We use R|A ′ = R ∩ (A ′ ×A ′) to denote
the restriction of an attack relation to an argument set A ′.
Any AF 〈A ∗,R∗〉 that satisfies A ⊆ A ∗ ⊆ (A ∪A ?)
and R|A ∗ ⊆ R∗ ⊆ (R ∪R?)|A ∗ is a completion of IAF
〈A ,A ?,R,R?〉.

For an IAF, we say that a property defined for AFs holds
possibly if it holds for at least one of its completions, and a
property holds necessarily if it holds for all its completions.
Accordingly, Baumeister, Neugebauer, and Rothe (2018) de-
fine possible and necessary generalizations of the CA and
SA problems, which extend both problems to IAFs: s-PCA,
s-PSA, s-NCA, and s-NSA.

3 SAT Encodings

We begin by providing SAT encodings for deciding ac-
ceptance in incomplete AFs for NP and coNP variants of
the problem. These first encodings extend the standard en-
codings for argumentation semantics (Besnard and Doutre
2004) to the incomplete case by conditioning relevant parts
of the formulas with the existence of an argument or an at-
tack. These encodings also form the basis for the SAT-based
counterexample-guided approach we develop in Section 6
for deciding acceptance in incomplete AFs for problems in
the second level of the polynomial hierarchy.

Consider now an input IAF IAF = 〈A ,A ?,R,R?〉. We
use variables xa and ya for all a ∈ A ∪A ? and ra,b for all
(a,b) ∈R ∪R?, with the following interpretations:
• ya =� if and only if a ∈A ∗,
• ra,b =� if and only if (a,b) ∈R∗, and
• xa =� if and only if a ∈ E ∈ s(AF∗),
where AF∗ = 〈A ∗,R∗〉 is a completion of IAF defined by
the ya and ra,b variables. Naturally, ya is always true for all
definite arguments, and likewise ra,b is true for all definite
attacks. Further, if an uncertain argument is not included in
the completion, it cannot be accepted, and all incident at-
tacks are not included. This information is encoded as

ϕ?(IAF) =
∧

a∈A
ya∧

∧
(a,b)∈R

ra,b

∧
∧

a∈A ?

(
¬ya→

(
¬xa∧

∧
(a,b)∈R?

¬ra,b∧
∧

(b,a)∈R?

¬rb,a

))
.

Moving on to expressing IAF semantics, the formula

ϕCF(IAF) =
∧

(a,b)∈R∪R?

(
(ya∧ yb∧ ra,b)→ (¬xa∨¬xb)

)
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encodes conflict-free sets in a completion of IAF, expressing
the fact that if two arguments and an attack between them
are present in the completion, one cannot accept both of the
arguments. Now, defining za ↔ ∨

(b,a)∈R∪R?(xb ∧ yb ∧ rb,a)

for each b ∈A ∪A ?, the formula ϕAD(IAF) defined as

ϕCF(IAF)∧
∧

a∈A ∪A ?

∧
(b,a)∈R∪R?

(
(xa∧ ya∧ yb∧ rb,a)→ zb

)

encodes admissible sets. Nonempty admissible seman-
tics can now be encoded as ϕAD �= /0(IAF) = ϕAD(IAF) ∧∨

a∈A ∪A ? xa. We express stable semantics with

ϕST(IAF) = ϕCF(IAF)∧
∧

a∈A ∪A ?

(
(¬xa∧ ya)→ za

)
,

setting the constraint that all arguments not included in the
extension are attacked by the extension. Further, we note that
complete semantics can be handled similarly via condition-
ing on the ya and ra,b variables.

Now, for s ∈ {AD, ST}, the problem s-PCA is NP-
complete and can be decided by the input formula

ϕs-PCA(IAF,a) = ϕ?(IAF)∧ϕs(IAF)∧ xa

which is satisfiable if and only if the target argument a is
possibly credulously accepted in IAF. Note that a satisfying
truth assignment also yields a completion of the input IAF
and an s extension of the completion where the query is in-
cluded. Similarly, for s ∈ {AD �= /0, ST}, the problem s-NSA
is coNP-complete (for AD �= /0-NSA, we show this in Re-
mark 1). The formula

ϕs-NSA(IAF,a) = ϕ?(IAF)∧ϕs(IAF)∧¬xa

is unsatisfiable if and only if the target argument a is nec-
essarily skeptically accepted in IAF. A satisfying truth as-
signment yields a counterexample completion along with an
s extension not containing the query.

4 Complexity under Extension Existence
Whenever AF has no s extension, it trivially holds that
(AF,a) ∈ s-SA, even though (AF,a) �∈ s-CA. This behavior
is exhibited by all semantics that do not guarantee the exis-
tence of an extension—in particular, the CF �= /0, AD �= /0, and ST
semantics. Dunne and Wooldridge (2009) propose a refined
version of SA for such semantics that, in addition, requires
the existence of an extension for a “yes” answer. We call
this problem EXISTENCE-AND-SKEPTICAL-ACCEPTANCE
(EXSA). Formally, it is the intersection of SA and the EX-
ISTENCE (EX) problem, or equivalently, of SA and CA. For
a semantics s that guarantees s(AF) �= /0 for every AF , it
is clear that s-EXSA = s-SA. We define generalizations of
the s-EXSA problem for IAFs, namely, the s-PEXSA and
s-NEXSA problems. The former is defined as follows.

s-PEXSA

Given: An IAF 〈A ,A ?,R,R?〉 and an argument
a ∈A .

Question: Does there exist a completion AF∗ =
〈A ∗,R∗〉 of 〈A ,A ?,R,R?〉 such that AF∗
has an s extension and for each s extension
E of AF∗, a ∈ E ?

s-NEXSA is defined analogously, except that it quantifies
universally (instead of existentially) over completions.

Baumeister, Neugebauer, and Rothe (2018) fully charac-
terize the computational complexity of all variants of the
CA and SA problems for IAFs. The EXSA problem and
its generalizations for IAFs, as well as the restricted CF �= /0
and AD �= /0 semantics, add new open cases to this complexity
landscape, which we cover in this work. We characterize the
computational complexity of all variants of the skeptical ac-
ceptance problem—and in particular, of s-EXSA—for the
semantics CF �= /0, AD �= /0, and ST. Our results (together with
previously known results) are summarized in Table 1. We as-
sume the reader to be familiar with the required notions from
computational complexity theory, in particular, the classes
of the polynomial and the Boolean hierarchy (Papadimitriou
1995; Rothe 2005), and the concepts of hardness and com-
pleteness based on polynomial-time many-one reductions.
In particular, we consider deterministic and nondeterminis-
tic polynomial time, P and NP, the class DP from the sec-
ond level of the Boolean hierarchy with its canonical com-
plete problem 3-SAT-UNSAT (which is the intersection of
3-SAT and 3-UNSAT), and the classes Σp

2 and Πp
2 from the

second level of the polynomial hierarchy with their canoni-
cal complete problems Σ2SAT and Π2SAT. As noted earlier,
s-EXSA differs from s-SA only for s ∈ {CF �= /0,AD �= /0, ST},
which is why we focus on these semantics here. Also, nei-
ther s-CA nor its generalizations distinguishes between CF
and CF �= /0 or between AD or AD �= /0, so all problems based
on s-CA for s ∈ {CF �= /0,AD �= /0} inherit the complexity of
the same problem s’-CA for the respective base semantics
s′ ∈ {CF,AD}.

Our first result is that all variants of SA for the CF �= /0 se-
mantics can be efficiently decided. This is due to the fact that
an argument is in some conflict-free set if and only if it has
no self-attack, and it is in all conflict-free sets if and only if
all other arguments have self-attacks. Uncertainty in the IAF
can easily be resolved to meet these criteria.
Proposition 1. CF �= /0-SA, CF �= /0-EXSA, CF �= /0-PSA, CF �= /0-
PEXSA, CF �= /0-NSA, and CF �= /0-NEXSA are all in P.

Next, we show DP-hardness of AD �= /0-EXSA by reducing
from the DP-complete problem 3-SAT-UNSAT. An illus-
tration is given in Figure 1a. Our reduction bears some sim-
ilarities to the one used by Dunne and Wooldridge (2009)
in their proof that ST-EXSA is DP-hard. Our reduction is
different, though, due to us having to avoid unwanted AD �= /0
sets that do not include the target argument.
Theorem 2. AD �= /0-EXSA is DP-complete.

All further results are based on the standard reduc-
tion from Σ2SAT and Π2SAT problems to decision prob-
lems in IAFs, defined by Baumeister, Neugebauer, and
Rothe (2018). All hardness results obtained hold even in
the special cases where either A ? = /0 or R? = /0. For ST-
PEXSA, the proof of Theorem 17 by Baumeister, Neuge-
bauer, and Rothe (2018)—which shows Σp

2 -hardness of ST-
PSA—is still valid and provides the same hardness result.
Corollary 3. ST-PEXSA is Σp

2 -complete.

For AD �= /0-PSA and AD �= /0-PEXSA, we show Σp
2 -hardness
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Table 1: Overview of complexity results for variants of the standard and the refined skeptical acceptance problems, with re-
sults marked by ♥ due to Rey (2014); marked by ♠ due to Dimopoulos and Torres (1996); marked by ♣ due to Dunne and
Wooldridge (2009); and marked by � due to Baumeister, Neugebauer, and Rothe (2018). New results are labeled with the
respective theorem or proposition number.

s-SA s-EXSA s-PSA s-PEXSA s-NSA s-NEXSA
CF �= /0 ∈ P (Prop. 1) ∈ P (Prop. 1) ∈ P (Prop. 1) ∈ P (Prop. 1) ∈ P (Prop. 1) ∈ P (Prop. 1)
AD �= /0 coNP-c. ♥ DP-c. (Thm. 2) Σp

2 -c. (Thm. 4) Σp
2 -c. (Thm. 4) coNP-c. ♥ Πp

2 -c. (Thm. 5)
ST coNP-c. ♠ DP-c. ♣ Σp

2 -c. � Σp
2 -c. (Cor. 3) coNP-c. � Πp

2 -c. (Thm. 5)

x̄1
1 x1

1 x̄1
2 x1

2 x̄1
3 x1

3

c̄1
1 c̄1

2

ϕ1

ϕ̄1

x̄2
1 x2

1 x̄2
2 x2

2 x̄2
3 x2

3

c̄2
1 c̄2

2

ϕ2

ϕ̄2

ψ

(a) (AF, ϕ̄2) ∈ AD �= /0-EXSA if and only if formula ϕ1 is satisfiable and formula
ϕ2 is unsatisfiable.

ȳ1 y1 ȳ2 y2

c̄1 c̄2

ϕ

ϕ̄

x̄1 x1

g1

x̄1 x1

g1

(b) (AF, ϕ̄) ∈ AD �= /0-PSA if and only if there is an as-
signment to the X variables such that ϕ is unsatisfiable.

Figure 1: Illustrations of the reductions from SAT problems used in Theorem 2 (left) and Theorems 4 and 5 (right).

by extending the standard reduction with additional defi-
nite attacks from argument ϕ̄ against all literal arguments
and all grounded arguments. The reduction is illustrated in
Figure 1b, where either the top framed part or the bottom
framed part is included to obtain either R? = /0 or A ? = /0.
The dotted self-attack by ϕ̄ is not included here. Our modifi-
cation does not impair admissible sets that contain argument
ϕ , but has the effect that argument ϕ̄ is a member of all
nonempty admissible sets unless formula ϕ is satisfiable.

Theorem 4. AD �= /0-PSA and AD �= /0-PEXSA are Σp
2 -

complete.

Remark 1. As a special case, when both A ? = /0 and R? = /0,
we obtain a reduction from 3-UNSAT to AD �= /0-SA, which
provides coNP-hardness of AD �= /0-SA,1 and thus also of its
generalization AD �= /0-NSA.

For AD �= /0-NEXSA and ST-NEXSA, we show Πp
2 -

hardness by adding the definite attack (ϕ̄, ϕ̄) (dotted attack
in Figure 1b). This change disables any admissible sets con-
taining argument ϕ̄ . Here, “yes” instances of Π2SAT pro-
duce AFs that have ϕ in all stable sets, and “no” instances
produce AFs that have completions without any nonempty
admissible sets.

Theorem 5. AD �= /0-NEXSA and ST-NEXSA are Πp
2 -

complete.

5 Preservation of Extensions

In this section, we describe atomic changes to completions
(adding and removing arguments and attacks) that are guar-

1Using different techniques, Rey (2014) showed coNP-
hardness of AD �= /0-SA.

anteed to be redundant from the point of view of preserv-
ing a given s extension of the completion. As we will show
later on, these observations will prove to be crucial in de-
signing efficient algorithms for the second-level problems in
this work.

Let AF∗ = 〈A ∗,R∗〉 be a completion, E ∈ s(AF∗) an
extension, where we denote IN(E ) = E , OUT(E ) = {a ∈
A ∗ | (b,a) ∈R∗ with b ∈ IN(E )}, and UNDEC(E ) = A ∗ \
(IN(E )∪OUT(E )), and let s ∈ {AD �= /0, ST} be a semantics.

We begin by considering adding an argument a ∈ A ? \
A ∗ to the completion. If there is a definite attack (b,a) ∈R
with b∈ IN(E ), then any attacks by a against arguments in E
would be defended by E in the modified completion, which
ensures that E stays an extension, both under nonempty ad-
missible and stable semantics.
Proposition 6. Let IAF = 〈A ,A ?,R,R?〉 be an incomplete
AF, AF∗ = 〈A ∗,R∗〉 a completion of IAF, E ∈ s(AF∗), and
a ∈A ? \A ∗. If there exists (b,a) ∈R with b ∈ IN(E ), then
E ∈ s(AF′) for AF′ = 〈A ∗ ∪{a},R∗ ∪R|A ∗∪{a}〉.

We continue by considering removing arguments a ∈
A ?∩A ∗ from the completion. Removing arguments (along
with incident attacks) that are members of OUT(E ) or of
UNDEC(E ) has no effect on the current extension E .

Proposition 7. Let IAF = 〈A ,A ?,R,R?〉 be an incomplete
AF, AF∗ = 〈A ∗,R∗〉 a completion of IAF, E ∈ s(AF∗), and
a∈A ?∩A ∗. If a �∈ IN(E ), then E ∈ s(AF′) for AF′= 〈A ∗ \
{a},R∗|A ∗\{a}〉.

The preservation of a stable extension when removing and
adding attacks was first studied by (Rienstra, Sakama, and
van der Torre 2015); our results for stable naturally coincide,
and we further extend the results to admissible sets. Remov-
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ing an uncertain attack (b,a) ∈ R? ∩R∗ with the source
b ∈ OUT(E ) has no effect on the extension E , and neither
has an attack with the target a ∈ IN(E ). Further, the fact that
E is admissible is not changed by removing attacks between
UNDEC(E ) arguments or from UNDEC(E ) to OUT(E ) argu-
ments.

Proposition 8. Let IAF = 〈A ,A ?,R,R?〉 be an incomplete
AF, AF∗ = 〈A ∗,R∗〉 a completion of IAF, E ∈ s(AF∗), and
(b,a) ∈ R? ∩R∗. If b �∈ IN(E ) or a �∈ OUT(E ), then E ∈
s(AF′) for AF′ = 〈A ∗,R∗ \{(b,a)}〉.

Finally, adding an uncertain attack (b,a) ∈ R? \R∗ is
only relevant if the source b �∈ OUT(E ) and if the target
a ∈ IN(E ), assuming b,a ∈ A ∗. This is due to the fact that
attacks by OUT(E ) arguments are defended and thus inac-
tivated by E . Similarly, adding any attacks against OUT(E )
arguments has no effect on E . Finally, the admissibility of
E is not changed by adding attacks between UNDEC(E )
arguments or from IN(E ) arguments to UNDEC(E ) argu-
ments. The assumption b,a ∈ A ∗ suffices, since if b �∈ A ∗
or a �∈A ∗, we would first need to add the argument in order
to add the attack, and we only consider atomic changes.

Proposition 9. Let IAF = 〈A ,A ?,R,R?〉 be an incomplete
AF, AF∗ = 〈A ∗,R∗〉 a completion of IAF, E ∈ s(AF∗), and
(b,a)∈R?\R∗ with b,a∈A ∗. If b∈ OUT(E ) or a �∈ IN(E ),
then E ∈ s(AF′) for AF′ = 〈A ∗,R∗ ∪{(b,a)}〉.

We note that there is a substantial amount of research on
the dynamic aspects of AFs (see (Doutre and Mailly 2018)
for an overview), in particular on the impact of the addi-
tion and removal of arguments and attacks on the semantics,
which we overview in Section 8.

6 Second-level Algorithms

Complementing the complexity results, we develop an iter-
ative SAT-based approach to s-PEXSA for s ∈ {AD �= /0, ST},
both of which are Σp

2 -complete and hence beyond the reach
of polynomial-size direct SAT encodings. In particular, we
develop a SAT-based counterexample-guided abstraction re-
finement (CEGAR) approach for these problems.

In solving the problems, we are essentially looking for a
witness completion in which the query argument is skepti-
cally accepted, i.e., included in every s extension. The CE-
GAR approach, presented in pseudocode as Algorithm 1,
is based on the idea of starting with an NP abstraction
of the problem at hand, overapproximating the set of wit-
nesses for the actual problem to be solved. Concretely,
we use the corresponding s-PCA problem as the NP ab-
straction via ABSTRACTION(IAF,a) = ϕs-PCA(IAF,a). If
ABSTRACTION(IAF,a) is unsatisfiable, we can reject the
query, as it is not even possibly credulously accepted. If it
is satisfiable, we know that a is credulously accepted in the
completion AF∗ = EXTRACT(τ) = 〈A ∗,R∗〉 given by the
satisfying truth assignment τ via

A ∗ = {a ∈A ∪A ? | τ(ya) =�},
R∗ = {(a,b) ∈R ∪R? | τ(ra,b) =�}.

Algorithm 1 CEGAR for possible existence and skeptical
acceptance for s ∈ {AD �= /0, ST}.
Input: IAF = 〈A ,A ?,R,R?〉, a ∈A .

1: ϕ ← ABSTRACTION(IAF,a)
2: while true do
3: (sat,τ)← SAT(ϕ)
4: if sat = false then return reject
5: AF∗ ← EXTRACT(τ)
6: (sat,τ)← SAT(CHECK(IAF,AF∗,a))
7: if sat = false then return accept
8: ϕ ← ϕ∧ REFINE(IAF,AF∗)
9: end while

We continue by checking whether it is skeptically accepted,
which is accomplished with the input formula

CHECK(IAF,AF∗,a) =
ϕs-NSA(IAF,a)∧COMPLETION(IAF,AF∗),

where COMPLETION(IAF,AF∗) is defined by
∧

a∈A ∗
ya∧

∧
a∈(A ∪A ?)\A ∗

¬ya∧
∧

(a,b)∈R∗
ra,b∧

∧
(a,b)∈(R∪R?)\R∗

¬ra,b

and encodes the current completion AF∗.
If CHECK(IAF,AF∗,a) is unsatisfiable, this proves that

we have successfully found a witness completion for skep-
tical acceptance of a, and can accept the argument. If it
is satisfiable, this is not the case as we have shown that
there exists an extension E ∈ s(AF∗) not containing the
query argument, so we refine the abstraction by adding the
clause REFINE(IAF,AF∗) = ¬COMPLETION(IAF,AF∗) to
the SAT solver, excluding the current completion, and con-
tinue iteratively.

We would ideally like to exclude all completions which
still possess the counterexample E as an s extension, since
these would only cause more undesired iterations in the CE-
GAR algorithm. Due to results in Section 5, the following
strong refinement is also valid, and excludes certain other
completions which contain the counterexample extension:

REFINE(IAF,AF∗,E ) =
∨

a∈A ?∩IN(E )

¬ya∨
∨

a∈A ?\A ∗
�∃(b,a)∈R,b∈IN(E )

ya

∨
∨

(a,b)∈R?∩R∗∩(IN(E )×OUT(E ))

¬ra,b

∨
∨

(a,b)∈(R?\R∗)∩((IN(E )∪UNDEC(E ))×IN(E ))

ra,b.

While our focus is on the Σp
2 -complete problems of

AD �= /0-PEXSA and ST-PEXSA, a similar CEGAR approach
can be obtained for the Πp

2 -complete problem AD-NCA by
modifying Algorithm 1 as follows. We initialize the abstrac-
tion with ϕAD-NSA(IAF,a), since we are now looking for
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a counterexample, i.e., a completion AF∗ where a is not
credulously accepted. We check using ϕAD-PCA(IAF,a) ∧
COMPLETION(IAF,AF∗) whether the counterexample can-
didate is not valid, that is, whether there is an extension
containing a, implying credulous acceptance for that com-
pletion, in which case we refine the abstraction by exclud-
ing the completion. Finally, the roles of accept and reject
are naturally swapped. The problem ST-NCA, which is
also Πp

2 -complete, requires more modifications, since the
abstraction initialized with ϕST-NSA(IAF,a) only considers
those AFs which have a stable extension not containing a,
that is, we would end up accepting a even though there
might exist completions without a stable extension. If the ab-
straction becomes unsatisfiable, we iteratively call the SAT
solver with input formula ϕST-PCA(IAF,a), excluding the
completion using the refinement. Finally, we check using
ϕ?(IAF)∧ϕCF(IAF) whether there still are completions; if
so, we reject the query, since these completions have no sta-
ble extension, and otherwise we accept it.

7 Experiments

We continue by an overview of results from an empirical
evaluation of the scalability of the approaches to accep-
tance problems in incomplete AFs presented in this paper.
Our implementation uses Glucose 4.1 (Audemard and Si-
mon 2018) as the underlying SAT solver, and is available
in open source via https://bitbucket.org/andreasniskanen/
taeydennae. The experiments were run on Intel Xeon E5-
2680 v4 2.4-GHz, 256-GB machines with CentOS 7. We set
a per-instance time limit of 900 seconds and a per-instance
memory limit of 64 GB.

We generated incomplete AFs based on the ICCMA
2017 (Gaggl et al. 2016) benchmarks as follows. For each
AF, we select a query argument uniformly at random
from the set of arguments. Now, for each probability p ∈
{0.05,0.1,0.15,0.2}, we generated three incomplete AFs:
one where each argument (except for the query) is uncer-
tain with probability p, one where each attack is uncertain
with probability p, and one where each argument and attack
is uncertain with probability p. We used the ICCMA 2017
benchmark set A for problems on the second level and the set
B for problems on the first level, in-line with the complexity
of the acceptance problems for which these sets were used
in ICCMA 2017. This resulted in a total of 4200 IAFs for
each of the two ICCMA 2017 benchmark sets.

For the NP-complete problems AD-PCA and ST-PCA,
and the coNP-complete problems AD �= /0-NSA and ST-NSA,
the mean run times (with timeouts included as the timeout
limit of 900 seconds) are visualized in Figure 2, 3, and 4
(left) for different values of p and argument-incompleteness
or attack-incompleteness. Interestingly, the empirical hard-
ness of the instances does not increase as incompleteness is
increased; in fact, we are able to solve the corresponding in-
complete instance sets in general faster than for p= 0, which
is exactly the original ICCMA benchmark set (i.e., “normal”
acceptance problems over AFs), especially when introduc-
ing attack-incompleteness. Indeed, the maximum number of
timeouts (28/350) is observed on ST-NSA for p = 0.
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Figure 2: Mean run times (with timeouts included as 900s)
for purely argument-incomplete AFs for the problems on the
first (left) and the second (right) level.
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Figure 3: Mean run times (with timeouts included as 900s)
for purely attack-incomplete AFs for the problems on the
first (left) and the second (right) level.
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Figure 4: Mean run times (with timeouts included as 900s)
for general incomplete AFs for the problems on the first
(left) and the second (right) level.

The Σp
2 -complete problems AD �= /0-PEXSA and

ST-PEXSA are solved via the CEGAR approach. Similarly,
we show the mean run times (with timeouts included) in
Figure 2, 3, and 4 (right). In contrast to the NP encodings,
introducing uncertainty makes the instances significantly
harder to solve. We suspect this to be due to the fact that
the number of potential completions to guess and check is
exponential in the number of uncertain elements. However,
the strong refinements, resulting from the analysis presented
in Section 5, significantly speed-up the CEGAR approach;
mean run times when using the trivial refinement are
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considerably higher than when using the strong refinement,
especially for AD �= /0-PEXSA, to the extent that the strong
refinements are central in making the CEGAR approach
viable for deciding acceptance in incomplete AFs. As a
concrete example, for AD �= /0-PEXSA the average runtime
over solved instances is only 24.3 seconds with p = 0.2
on general IAFs using the strong refinement, with 104/350
timeouts, as compared to 39.6 seconds and 225/350 time-
outs for the trivial refinement, indicating that we improve
especially with respect to the number of timeouts.

8 Related work
Other models that, like IAFs, aim to represent uncertainty
or dynamics in abstract AFs include Partial AFs (PAFs),
Control AFs (CAFs), and various types of probabilistic AFs.
For PAFs (which are interchangeable with attack-incomplete
AFs), Cayrol, Devred, and Lagasquie-Schiex (2007) develop
new, dedicated semantics, opposed to the approach of IAFs,
where the semantics of an incomplete AF are derived from
the standard semantics via its completions. CAFs due to Di-
mopoulos, Mailly, and Moraitis (2018) were developed to
capture strategic scenarios and, like IAFs, feature uncertain
elements. Even though CAFs have a more specific role, IAF
problems can be represented by corresponding CAFs prob-
lems, indicating that algorithmic and complexity results for
IAFs could be reused to fuel similar results for CAFs. Fi-
nally, different types of quantitative uncertainty in AFs were
proposed, where a numerical probability is associated with
individual arguments or attacks (PrAFs due to Li, Oren, and
Norman (2011)); with elements in an underlying knowledge
base from which the AF is created (Rienstra 2012); or with
entire substructures of the AF (Hunter 2014). Of these mod-
els, only PrAFs are similar to IAFs in that they allow inde-
pendently uncertain arguments and attacks. However, the in-
creased expressiveness due to the explicit probabilities—as
opposed to the unquantified uncertainty in IAFs—comes at
the cost of FP#P-completeness for most reasoning problems
in PrAFs, as shown by Fazzinga, Flesca, and Parisi (2015).

Closely related to the analysis presented in Section 5,
Cayrol, Dupin de Saint-Cyr, and Lagasquie-Schiex (2010)
study the problem of adding an argument and incident at-
tacks, specifically by studying necessary and sufficient con-
ditions for satisfying different properties, also defining the
atomic changes (adding and removing arguments and at-
tacks) we study in the context of incomplete AFs. How-
ever, their focus is on grounded and preferred semantics,
whereas we consider admissible and stable semantics. Se-
mantical change when removing an argument along with
incident attacks was studied by Bisquert et al. (2011) un-
der preferred, stable, and grounded semantics, also focusing
on the satisfaction of properties of extensions. The preserva-
tion of the grounded extension was studied by Boella, Kaci,
and van der Torre (2009; 2010) when removing arguments
and attacks, or adding attacks; again, we focus on admis-
sible and stable extensions. Finally, the work of Rienstra,
Sakama, and van der Torre (2015) focuses on the preser-
vation of grounded, complete, preferred, stable, and semi-
stable labelings under changes to the attack structure, and
their results for the stable semantics coincide with ours.

The problem of adding an argument along with incident
attacks is also related to expansions (Baumann and Brewka
2010; Baumann 2012b; 2012a), where sets of new argu-
ments along with incident attacks are added to an AF. Like-
wise, removing arguments has been studied in the form of
deletions (Baumann 2014). There may be potential for us-
ing further theoretical results of expansion, deletion, and up-
date equivalence in order to strengthen the refinement in the
CEGAR algorithm. However, equivalence is a considerably
more general concept, as it concerns preserving all exten-
sions of a given AF, whereas in our approach we are inter-
ested in preserving just the counterexample.

The SAT-based approaches developed in this work con-
tinue the successful line of work on applying SAT-based
approaches to reason about argument acceptance in stan-
dard AFs (Dvořák et al. 2014; Cerutti, Giacomin, and Val-
lati 2019) and dynamic problems in AFs, including ex-
tension (Wallner, Niskanen, and Järvisalo 2017) and sta-
tus (Niskanen, Wallner, and Järvisalo 2016) enforcement.
The strong refinements we develop may also be applicable
for other hard problems dealing with dynamic aspects of
argumentation frameworks; so far, similar ideas have only
been applied in the specific context of the NP-complete
problem of extension enforcement under grounded seman-
tics (Niskanen, Wallner, and Järvisalo 2018), in contrast to
the second-level problems we develop algorithms for here.

9 Conclusion

Incomplete AFs are a natural generalization of Dung’s ab-
stract argumentation frameworks, allowing for representing
uncertainties that may arise in various settings. This work
makes progress in computational aspects of incomplete AFs
in terms of both theory and practice, focusing on accep-
tance problems. From the theoretical perspective, we pro-
posed natural refinements of the skeptical acceptance prob-
lem and its generalizations over incomplete AFs, and pro-
vided complexity results for the new variants. From the
practical perspective, we developed the first algorithmic ap-
proaches to acceptance in incomplete AF, covering both
first-level (via direct SAT encodings) and second-level (via
SAT-based counterexample-guided abstraction refinement)
acceptance problems. Combining theory and practice, we
also provided conditions for atomic changes to completions
of incomplete AFs being redundant in terms of preserving an
extension of a completion. This analysis is central to scaling
up the SAT-based algorithms for second-level acceptance
problems by allowing for significantly stronger abstraction
refinement steps. The promising empirical results encourage
further work on extending the SAT-based approach to ac-
ceptance in incomplete AFs to cover further semantics and
problem variants; this also calls for further analysis towards
strong refinements for the CEGAR approach.
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