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Abstract

The recent advances of mobile sensing and artificial intel-
ligence (AI) have brought new revolutions in disaster re-
sponse applications. One example is disaster scene assess-
ment (DSA) which leverages computer vision techniques to
assess the level of damage severity of the disaster events from
images provided by eyewitnesses on social media. The as-
sessment results are critical in prioritizing the rescue oper-
ations of the response teams. While Al algorithms can sig-
nificantly reduce the detection time and manual labeling cost
in such applications, their performance often falls short of
the desired accuracy. Our work is motivated by the emer-
gence of crowdsourcing platforms (e.g., Amazon Mechanic
Turk, Waze) that provide unprecedented opportunities for ac-
quiring human intelligence for Al applications. In this paper,
we develop an interactive Disaster Scene Assessment (iDSA)
scheme that allows Al algorithms to directly interact with hu-
mans to identify the salient regions of the disaster images in
DSA applications. We also develop new incentive designs and
active learning techniques to ensure reliable, timely, and cost-
efficient responses from the crowdsourcing platforms. Our
evaluation results on real-world case studies during Nepal and
Ecuador earthquake events demonstrate that iDSA can sig-
nificantly outperform state-of-the-art baselines in accurately
assessing the damage of disaster scenes.

Introduction

Extreme disaster events such as hurricanes and earthquakes
can strike a community with little or no warning and leave
it with a high level of damages (e.g., casualties, injuries, and
infrastructure damages). In such events, the emergency re-
sponse providers often run out of resources (e.g., rescuers,
ambulance, fire trucks) due to the lack of preparation or the
sheer volume of the emergency events (Rawls and Turn-
quist 2010; Zhang et al. 2018a; Wang et al. 2013; 2019;
2012). For example, during the 2017 Hurricane Harvey cri-
sis, 911 emergency lines were overwhelmed with more than
56,000 calls in 15 hours in Houston alone (Gomez 2017).
To effectively prioritize the rescue operations, it is criti-
cal to accurately assess the damage severity level of the
impact areas. Traditionally, such damage assessment tasks
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are done either manually (e.g., call centers) or through
the analysis of remote sensing data (e.g., satellite images).
These methods are both expensive and time-consuming. Re-
cently, a new application called Disaster Scene Assessment
(DSA) has emerged where deep neural networks (Convo-
Iutional Neural Networks (CNNs) in particular) are applied
to recognize the severely damaged areas from self-reported
social media images of disaster scenes (Li et al. 2018;
Nguyen et al. 2017). The automatic tools like CNN allow
the DSA algorithms to be much more responsive than man-
ual efforts. The social media images of DSA also provide
more detailed on-site information of the disaster from the
perspective of the eyewitnesses than the remote sensing data.

Despite the advantages of DSA applications, they suffer
from several failure scenarios. For example, they can treat
a small fissure on a road in an image as severe damage or
take a large collapsed building as moderate damage (Zhang
et al. 2019). Such mistakes can mislead the response teams
to insignificant events and fail to respond to events where
people’s lives are at stake. We found one key element that
directly contributes to the failure of DSA algorithms is the
inaccurate “visual attention” in these algorithms. The vi-
sual attention refers to the region of an image that the Al
algorithm focuses on to identify the damage level of the
scene. We show examples of visual attention (illustrated as
heatmap) of three representative DSA algorithms in Fig-
ure 1. We also plot the ground truth annotation of human
attention (marked in red region) in the figure. Ideally, the
visual attention of a DSA scheme should focus on the dam-
aged regions that are the same/similar as those captured by
human perception. However, all three DSA schemes in Fig-
ure 1 fail to perform such tasks to different extents.
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Figure 1: Visual Attention of Various DSA Schemes



A possible approach to improve the visual attention of
DSA algorithms is to introduce neural attention mecha-
nisms (Wang et al. 2017) that can emulate the human’s vi-
sual perception by learning from the labeled data. How-
ever, such an approach has several limitations in DSA ap-
plications: 1) the lack of dedicated training data for dis-
aster events (which is often caused by expensive label-
ing costs); 2) the innate algorithm bias caused by the de-
sign and structure of the neural network (Lai et al. 2019;
Zhang et al. 2019); 3) the noisy nature of the social me-
dia images that are taken with diverse camera angles, back-
grounds, and resolutions. To address these limitations, we
develop a new human-Al DSA system inspired by the ob-
servation that the human attention is often much superior
and more reliable than the neural attention mechanism in
identifying regions of interest in images (Lai et al. 2019).
For example, in Figure 1, humans can easily identify the
damage areas correctly. A key novelty in this work is to
leverage human knowledge to interact with the DSA algo-
rithms to troubleshoot and adjust the attention region of im-
ages, which in turn will improve the accuracy of the DSA
results. We use the crowdsourcing platforms (e.g., Amazon
Mechanic Turk (MTurk)) to obtain human knowledge be-
cause they are known for their cost efficiency and the mas-
sive amount of freelance workers (Chen, Santos-Neto, and
Ripeanu 2012). However, designing such a human-AlI inter-
active system brings some critical technical challenges.

The first challenge lies in the difficulty of understand-
ing and fixing the inaccurate visual attention of Al-based
DSA models. We observe that existing attention solutions
can be easily misled by a diverse set of objects and the
noisy background of disaster scenes. Since these Al-based
attention mechanisms are often trained in a black-box fash-
ion, their failure scenarios are hard to explain (Wang et al.
2017) - is it due to the lack of training data? Or, is it due to
the wrong design of the attention mechanism? These ques-
tions make it non-trivial to leverage the crowd to effectively
improve the AI’s attention. Current solutions on human-Al
systems improves Al primarily by obtaining new ground
truth labels and retraining the model (Jarrett et al. 2014;
Laws, Scheible, and Schiitze 2011). However, such ap-
proaches treat an Al model as a black-box and do not intend
to understand and troubleshoot its internal attention mech-
anism. Unfortunately, we found no existing work has been
done to leverage the crowd intelligence to troubleshoot and
improve Al attention of DSA applications.

The second challenge lies in optimizing the delay-cost
trade-off when interacting with the crowdsourcing platform.
In particular, DSA applications are often delay-sensitive, re-
quiring all components to respond fast and accurately. In
contrast to the Al algorithms where the execution time is
quite predictable, the crowd response can be slow and signif-
icantly delays the rescue operation. Therefore, it is important
to design an incentive mechanism that can effectively stim-
ulate the crowd to provide timely and helpful knowledge to
improve the Al algorithm in DSA. However, designing such
an incentive mechanism is not a trivial task due to the com-
plex and dynamic relationship between incentives and the
response from the crowd.
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To address the above challenges, this paper develops a
new crowd-Al system - interactive Disaster Scene Assess-
ment (iDSA). To address the first challenge, we propose a
new CNN model which designs a novel interactive atten-
tion mechanism to allow crowd workers to intervene and
adjust the internal visual attention of the DSA model. To
our knowledge, iDSA is the first solution to leverage hu-
man knowledge from crowdsourcing to directly adjust the
internal attention mechanism of Al algorithms in DSA ap-
plications. To address the second challenge, we design a
constrained multi-arm bandit model to explore the opti-
mal incentive design to acquire timely responses from the
crowd workers under strict budget constraints. These de-
signs are integrated into a holistic closed-loop system that
allows the Al and crowd to effectively interact with each
other and improve the accuracy of both the visual attention
and the classification accuracy of DSA. We evaluated the
iDSA framework using Amazon MTurk on real-world dis-
aster data traces. Our evaluation results show that iDSA has
much better visual attention than the state-of-the-art base-
lines and consequently achieves a significant accuracy im-
provement in the DSA applications.

Problem Formulation

In this section, we introduce our Al and crowd models for
DSA applications and formally define our problem.

Al-based Disaster Scene Assessment Model

In a DSA application, images posted from social media re-
lated to a disaster event are periodically crawled. We refer
to each period as a sensing cycle. The objective of the DSA
application is to classify the damage severity of collected
images into different levels such as “no damage”, “moder-
ate damage”, and “severe damage”. We assume that a DSA
application has a total of 7" sensing cycles during a disas-
ter event. For each sensing cycle ¢, the input data samples
to the DSA application is a set of N images, denoted as
Xt X4, ..., XY, where X! denotes the i*" input image at
the t*" sensing cycle. Each image X! is associated with a

ground truth label Y;' and an estimated label Y;' of the dam-
age level. The Al algorithm is pre-trained on a set of training
data from previous disaster events and manually labeled by
human annotators.

An important aspect of the DSA algorithm is the visual
attention. To quantify the accuracy of visual attention, we
adopt an Intersection-Over-Union (IOU) metric, which is
frequently used to evaluate image segmentation and object
detection schemes (Everingham et al. 2010). The IOU met-

ric is defined as JOU = Arcaof Overlap yhare the “Area
Area of Union

of Overlap” and “Area of Union” are computed with respect
to a ground truth visual attention, where the damaged area
is manually marked by annotators. IOU takes values in [0,1]
where 1 represents a complete overlap with the ground truth
annotation. We use /OU to denote the IOU for input X.

Crowdsourcing Platform Model

We first define the key terms in our crowdsourcing platform.



DEFINITION 1 Crowd Queries (¢(t)): a set of questions
assigned to the crowd at sensing cycle t.

DEFINITION 2 Crowd Responses (r(t)): the corre-
sponding answer provided to the crowd query ¢(t).

We assume each query ¢ € ¢(t) is associated with an
incentive provided by the application, denoted as b,. We as-
sume the application has a total budget of B for the crowd.
Each response r € r(t) is associated with a delay denoted
as d,.. We observe that the relationship between incentive of
a query and the delay of the response from the crowd cannot
be simply modeled as linear relationships. Instead, such rela-
tionship can be complex and dynamic (Kaufmann, Schulze,
and Veit 2011). This observation is critical in the design
of the incentive mechanism and quality control schemes in
iDSA to ensure timely responses from the crowd.

The goal of iDSA is to maximize the classification ac-
curacy as well as the visual attention accuracy of disas-
ter scenes, while minimizing the average delay from the
crowd for a given budget on the crowdsourcing platform.
Formally we formulate a constrained multi-objective opti-
mization problem as follows:

max: Pr(Y! =Y} B),V1<i<N,1<t<T
max: [OU}, V1 <i< N,1<t<T

min: d,., Vrer(t),1 <t<T 1)
T

s.t.: Z Z by < B
t=1 qeq(t)

Method

We develop a crowd-assisted interactive Disaster Scene
Assessment (iDSA) scheme (Figure 2) to address the prob-
lem defined above. The iDSA is designed as a crowd-Al hy-
brid system that consists of four main modules: i) a Crowd
Task Generation (CTG) module; ii) a Budget Constrained
Adaptive Incentive (BCAI) module; iii) an Interactive Atten-
tion Convolutional Neural Network (IACNN) module; and
iv) a Social Media Image Normalization (SMIN) module.
We present them in detail below.

Crowd Task Generation (CTG)

The Crowd Task Generation (CTG) module is designed to
generate a set of crowd queries to acquire human knowledge
to improve the Al-based DSA algorithms. An example query
is illustrated in Figure 3. It consists of two parts. The first
part is the ground truth annotation where we directly ask the
crowd to label their assessment of the damage. The mapping
from the annotation score to the class label is discussed in
detail in Evaluation. The ground truth annotation allows the
Al algorithm to obtain more training data on the fly. The sec-
ond part of the query is attention annotation where we ask
participants to draw the region in the image that they focus
on when they assess the damage. The attention annotation
allows the AI model to troubleshoot and improve its inter-
nal attention mechanism for better performance (discussed
in the next subsection). Due to the budget constraint, it is
impractical to send all data samples (i.e., images) for the
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Figure 2: iDSA Overview

crowd to label (Laws, Scheible, and Schiitze 2011). In CTG,
we selectively choose images to query the crowd based on
two criteria: i) uncertainty: the images that cannot be con-
fidently identified by the DSA algorithms should be priori-
tized in the queries; ii) diversity: keeping the annotated data
samples diverse will help avoid the repetitive crowd annota-
tions on similar images.
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Mark the damage area of the disaster scene

Please choose a damage level.
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Figure 3: Example Query in CTG on MTurk

We design a Query by Committee (QBC)-based ac-
tive learning (AL) (Seung, Opper, and Sompolinsky 1992)
scheme to derive the uncertainty of the DSA algorithms.
In particular, we choose a diverse set of M state-of-the-art
DSA algorithms Aly, Als, ..., Alp; (referred to as a “com-
mittee”). The committee introduces robustness by removing
the bias of a single DSA scheme. At a given sensing cy-
cle, each algorithm independently labels all the unseen data

samples. We use Y/, ; to denote the output of Ar,, for a
given data sample X!. For each algorithm AI,,, we define
a weight - w! , representing the authority of the algorithm.

We discuss the weight assignment in the IACNN module.
The committee decides the classification result of X! as:

M
t __ § t t
Y;J - Wy, X Ym,i
m=1

is normalized by Zyey_t, y = 1 where y denotes the

2

Yt

probability of a class label in the final output Y;'. Then we
calculate an entropy score H! for each DSA algorithm as:

Hi=—)" Pr(y) xlog Pr(y)

yeyt
We note that highly ranked images in terms of entropy score
can be of high similarity (e.g., images all related to road

3)



damages, or images look alike). This is not ideal based on
the diversity criterion. Therefore, we design a redundancy
filtering algorithm to regulate the diversity of the crowd
queries. With a total of K* queries for the crowd under a
given budget, we first assign a pool of K* candidate images
with the highest entropy scores. Then we iteratively remove
images from the pool that are significantly similar to others,
until all images in the pool have similarity score lower than
a predefined threshold. When removing an image, a new im-
age with the next highest entropy is added into the pool. The
similarity scores are calculated using the deep auto encoding
technique in (Dosovitskiy and Brox 2016).

Budget Constrained Adaptive Incentive Module

After the queries are generated, we design a Budget Con-
strained Adaptive Incentive (BCAI) module to incentivize
the crowdsourcing platform for timely responses to the
queries from the crowd. We found that the incentive design
problem can be nicely mapped to a constrained multi-armed
bandit (CMB) problem in reinforcement learning. The key
reason for choosing the bandit solution is that it allows the
CMB to dynamically adapt to the uncertain crowdsourcing
environments and derive the optimized incentive policy.

We consider a CMB with an action set A* = {1,2,..., Z}
at each sensing cycle ¢, where each entry in A denotes the
amount of money (in cents). We assume each action z € A’
generates a non-negative payoff p’ (representing the inverse
of the crowd response delay) with cost ¢!, at each sensing
cycle. The payoff is only revealed at the end of the cycle
(i.e., delay is unknown until the responses are submitted by
the crowd). We use C! to denote the costs from all actions
taken at sensing cycle ¢. The objective of CMB is to derive
an optimal incentive policy to maximize the payoffs while
keeping the total action cost within the resource budget. The
objective is formulated as:

T
argmax Z P',1 <t < T (payoff maximization)
-
; 4)
S.t.: ZCt < B,1 <t < T (budget constraint)

t=1

This objective function can be solved using the classical
Epsilon-first policies approach in (Tran-Thanh et al. 2010).

Interactive Attention Convolutional Neural
Network Module

Next, we present the Interactive Attention Convolutional
Neural Network (JACNN) that leverages an interactive at-
tention design to identify damage areas in disaster scenes.
An overview of JACNN is shown in Figure 4. The IJACNN
employs the deep convolutional neural network, which has
been a popular and effective tool for the image classification
task (Deng et al. 2009). Our CNN model contains 5 convo-
lutional blocks (with 16 convolutional layers and 5 pooling
layers) as shown in Figure 4. We initialize our model with
the pre-trained VGG19 model for all convolutional blocks,
and fine-tune it using disaster-related images. The existing
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Figure 4: IACNN Overview

DSA algorithms lack explicit attention mechanism to pin-
point the damaged area in the image. To address this is-
sue, our JACNN model develops two attention mechanisms.
The first one is a trainable gated attention mechanism that
is an internal component of the CNN model. We employ
the gated attention approach from (Schlemper et al. 2018),
where three separate attention blocks (connected to the last
three pooling layers) are aggregated and connected to the fi-
nal output layer. Compared to existing single attention block
approach such as Residual Attention Network (Wang et al.
2017), the gated attention allows the CNN to capture the
attention of different resolutions of an image and is more
robust against low resolution and noisy image inputs. How-
ever, this internal attention alone is not enough to accurately
capture the damage region given the limited amount of train-
ing data (Lai et al. 2019). Therefore, we design the second
interactive external attention mechanism to further enhance
the attention of IACNN.

The intuition of the interactive attention is to develop an
ensemble of the visual attention from a set of DSA algo-
rithms to decrease the bias of the attention of each individ-
ual algorithm. The attention annotations from the crowd are
leveraged to derive the weight of each algorithm in the en-
semble. In particular, we design an attention ensemble ap-
proach by employing the class activation map (CAM) (Sel-
varaju et al. 2017) technique. The CAM is a visualization
technique that can identify the important regions (i.e., pix-
els) that contribute significantly to the final classification re-
sults. Following (Li et al. 2018), we use the last convolu-
tional layer to derive the CAM. Assuming the dimension of
the last convolutional layer of ICNN is U x V x L (e.g,
14 x 14 x 512 in the proposed CNN), we calculate the CAM
score s, ,, for each image region (u, v) as:

Sup = Z (Az x fi(u, U))

leL

1
AN = ——
T UxVv Z
uelU,weV

oY )

Ofi(u,v)

where ); is a gradient-based weight parameter for the last
convolutional layer, and f;(u, v) represents the value at im-
age location (u, v) in the [-th feature vector. \j is derived as
the sum of the gradients of output Y with respect to f;(u, v).



To ensemble the CAMs from each DSA algorithm, we can
either 1) find the union of the CAMs; 2) find the intersection
of the CAMs; or 3) find the weighted sum of the CAMs. In
this work, we pragmatically pick the last approach because
it gives the best empirical performance. The weights of each
CAM is determined based on how similar it is as compared
to the ground truth attention region provided by the crowd
workers. We calculate the weight of each DSA algorithm as:

N m
wh, o Y IOUL Y wh, =1,VI<t<T (6)

i=1 m=1
After combing the CAMs of DSA algorithms, we generate
a binary map called Region of Interest (ROI) (Eppel 2017).
This binary map is used as a preprocessing layer to the input
of TACNN to first filter out the irrelevant regions of image
and focus only on the potentially important areas (i.e., dam-
ages). The binary map is calculated as:

M t
St % sun > ©
t
Zmzl Wy, X Su,v,m <o

@)

where ROI, , is the ROI score of region (u, v) of the image.
Su,v,m 18 the CAM at region (u, v) from AI,,. © is a thresh-
old parameter. We set the O to be a relatively small value so
it provides a rough filtering of non-important regions based
on the CAMs. Then the more fine-grained attention is cap-
tured by the trainable gated attention described above.

Social Media Image Normalization Module

Finally, we develop a Social Media Image Normalization
(SMIN) module to handle the noisy input of social media
images and generate the final classification output. Note that
in the IACNN module, we only output two classes - “dam-
age” and “no damage”. The reason we chose two classes
for IACNN is that the boundary between damage severity
levels such as “moderate” and “severe” is unclear to the Al
algorithms and they often output the wrong results. There-
fore, we adopt the approach from (Doshi, Basu, and Pang
2018) where the damage severity is derived as the percent-
age of damage regions (e.g., captured by the CAM) in the
image. However, the social media images can be taken with
diverse camera angles where the absolute size of the dam-
age region cannot always reflect the damage severity levels
(Figure 5). To address this issue, we designed a normalized

Su,w

damage score as ZuEU,vEV (W)
ing factor denoting the level of “zoom in” of an image. To
calculate 6, we first identify the anchor objects in the images
(e.g., cars, bridges, and road signs) using the YOLO V3 ob-
ject detection tool (Redmon et al. 2016). We then compare
the actual size of the anchor objects (based on prior knowl-
edge) with the size of the objects in the image. We observed
such normalization significantly improves the classification
results as discussed in the evaluation.

xd, where 0 is a weight-

Evaluation

In this section, we conduct extensive experiments on real-
world datasets to answer the following questions:
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Figure 5: Example Failure Scenarios

* Q1: Can iDSA achieve a better classification accuracy
than the state-of-the-art DSA algorithms?

¢ Q2: Can the interactive attention in iDSA accurately cap-
ture the damaged area of a social media image?

e Q3: Can iDSA achieve a high crowd responsiveness for
DSA applications given a limited budget?

* Q4: How does each component of iDSA contribute to its
overall performance?

Dataset, Experiment Setup, and Baselines

Data. We use a dataset (Nguyen et al. 2017) that consists of
a total of 21,384 social media images related to two disaster
events - the 2016 Ecuador Earthquake (2,280 images) and
the 2015 Nepal Earthquake (19,104 images) . The dataset
contains ground truth labels of damage severity levels. We
further collect the ground truth of the exact damaged areas in
the image were labeled by multiple human annotators via the
LabelMe tool (Russell et al. 2008). We use Amazon MTurk,
one of the largest crowdsourcing platforms, to acquire hu-
man intelligence for iDSA. In particular, we choose 3 work-
ers to assess the damage severity level of each queried image
using the scale from O to 5 (see Figure 3). We then use the
following rubrics to decide the class label of the image: the
aggregated score (from three workers) > 10: severe damage;
the aggregated score < 1: no damage; otherwise: moderate
damage. For the attention annotation, we treat a pixel in the
image as part of the visual attention if it appears in the anno-
tation from at least two workers. For each crowd response,
we assign 6 incentive levels (2 cents, 4 cents, 6 cents, 8 cents,
10 cents, and 20 cents) decided by the BCAI module.

Experiment Setup. In our experiments, the dataset is
split into a training set and a fest set. The training set con-
tains all 19,104 images from Nepal Earthquake and the test
set includes all images from the Equador Earthquake. The
choice of data from different events for training and test sets
is to emulate the real-world DSA scenarios where the train-
ing data is often acquired from the disasters that happened
in the past. All compared schemes were run on a server with
Intel Xeon E5-2637 v4 3.50GHz CPU and 4 NVIDIA GTX
1080Ti GPUs.

Baselines. We choose a few Al-only algorithms as our
DSA baselines, including ASONAM18 (Li et al. 2018), In-
ception (Szegedy et al. 2016), ResNet (He et al. 2016), and
VGGATT (Wang et al. 2017). We further consider 3 state-
of-the-art human-AlI hybrid baselines.



* DirectEnsemble: It directly ensembles the outputs of the
above Al-only schemes (Zhang et al. 2019).

e Hybrid-Para: A human-Al hybrid system where the la-
bels from humans and Al algorithms are integrated using
a complexity index (Jarrett et al. 2014).

e Hybrid-AL: An active learning framework where the an-
notated labels collected from humans are used to re-train
the AT algorithms (Laws, Scheible, and Schiitze 2011).

For a fair comparison, we let all Al-only algorithms to
randomly query the same amount of images as the human-
Al schemes from the crowd. The obtained labels are used as
ground truth to retrain the DSA algorithm of the baseline.

Evaluation Results

Classification Effectiveness (Q1). In the first set of exper-
iments, we focus on the overall performance of all schemes
in terms of classification effectiveness, which is evaluated
using the classic metrics for multi-class classification: Ac-
curacy, Precision, Recall and F1-Score. Similar to (Li et al.
2018; Nguyen et al. 2017), these scores are macro-averaged
since our dataset has balanced class labels.

Table 1: Classification Accuracy for All Schemes

Algorithms || Accuracy Precision Recall — FI

iDSA ‘ ‘ 0.869 0.881 0.853 0.867
ASONAMI8 || 0.808 0.819 0.79  0.804
Inception H 0.755 0.75 0.765 0.757
ResNet | 0812 0819 08 0809
VGGATT H 0.799 0.803 0.791  0.797
DirectEnsemble H 0.817 0.828 0.799 0.813
Hybrid-Para ‘ ‘ 0.814 0.826 0.797 0.811
Hybrid-AL ‘ ‘ 0.821 0.828 0.809 0.818
Gain(%) | 58 6.4 54 60

The results are reported in Table 1. We observe iDSA
consistently outperforms all baselines. Compared to Al-only
schemes, iDSA is able to achieve 7.8 % higher F-1 score than
the best performing baseline (i.e., ResNet). The reason is
that the iDSA can effectively incorporate human intelligence
into the DSA algorithm. iDSA is also superior to the human-
Al hybrid baselines. For example, iDSA achieved 6% im-
provement on F-1 score compared to the best-performing
human-AI baseline (i.e., Hybrid-AL). This is because none
of the hybrid baselines addresses the innate issue of inac-
curate attention of the CNN models they use. For example,
DirectEnsemble simply aggregates the results of all Al-only
algorithms without touching the internal model of these al-
gorithms. In contrast, iDSA directly interacts with the inter-
nal attention mechanism of Al and leverages human intelli-
gence to troubleshoot, calibrate, and eventually improve the
attention of Al. We further evaluate all schemes by tuning
the size of training data (in terms of percentage of the whole
training set as shown in Figure 6a) as well as the number of
images that we use to query the crowd (from 5% to 25% of
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the testing set as shown in Figure 6). We observe iDSA out-
performs the baselines with different sizes of training data
and different amount of knowledge from the crowd.
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Figure 6: F1 vs. Training and Query Sizes

Attention Accuracy (Q2). We further investigate whether
iDSA can outperform baselines in terms of correctly attend-
ing to the damaged areas in the images. We use the IOU
metric defined in Problem Formulation. Considering the ac-
curacy of the attention is directly affected by the number
of answers collected from the crowd, we tuned the percent-
age of images that we send out to query the MTurk from
5% to 25%. The results are presented in Table 2. We skip
DirectEnsemble and Hybrid-Para in the table because tun-
ing the number of crowd queries will not affect their atten-
tion since they do not retrain their models. We observe that
iDSA continues to outperform all baselines. The improved
accuracy in both attention (Table 2) and classification (Table
1) also validates our hypothesis that improving the attention
detection accuracy of DSA algorithms will eventually boost
the classification performance of DSA applications.

Table 2: IOU for All Schemes w.r.t % of Images

Algorithms || 5% (Images) 10%  15% 20%  25%
iDSA [ 0.549 0.558 0.570 0.582 0.598
ASONAM138 || 0.389 0.392  0.397 0.401 0.405
Inception [ 0.316 0322 0335 0.337 0.341
ResNet [ 0.451 0461 0479 0.490 0.496
VGGATT [ 0.322 0.329 0339 0.352 0.358
Hybrid-AL H 0.462 0469 0474 0.482 0.499
Gain(%) [ 18.8 19.5 202 204 19.8

Crowd Responsiveness (Q3). We then evaluate the delay
of all human-AI hybrid schemes in terms of 1) execution
time, and 2) delay of query answered by the crowdsourcing
platform. The results are shown in Table 3. We observe that
the response delay from the crowdsourcing platform is the
major contributor to the overall delay of human-Al hybrid
systems including iDSA. This observation further demon-
strates the importance of designing an effective incentive
policy to minimize the delay from the crowd and provide
timely response to the DSA applications. The results show



that iDSA scheme significantly reduces the crowd delay
by 16.8%, 27.3%, and 18.9% compared to DirectEnsemble,
Hybrid-Para, and Hybrid-AL, respectively, which all adopt a
fixed incentive policy. We attribute such a performance gain
to our adaptive incentive module that leverages a multi-arm
bandit scheme to dynamically identify the optimal incentive
strategy to reduce the response delay from the crowd.

Table 3: Average Delay (in Seconds) per Sensing Cycle

Algorithms || Algorithm Delay ~Crowd Delay — Total Delay
iDSA I 66.98 427.81 494.79
DirectEnsemble || 55.62 513.24 568.86
Hybrid-Para H 94.28 588.75 683.03
Hybrid-AL H 53.54 527.61 581.15

Abrasion Study (Q4). Finally, we perform a comprehen-
sive abrasion study to examine the effect of each component
of iDSA. In particular, we present the classification results
by removing each of the four modules of iDSA. We found
that, by adding the interactive attention design, iDSA is able
to increase its F-1 score by 5.2%. The incentive module
contributes to 2.8% increase in F-1 score, which highlights
the importance of minimizing the response delay from the
crowd. We also found the crowd task generation is indeed
helpful - yielding 3.5% higher F-1 score. The normalization
module helps iDSA to achieve 6.25% performance again by
making iDSA more robust against noisy social media im-
ages.

Table 4: Abrasion Study

Algorithms | Accuracy Precision Recall — Fl

iDSA | 0.869 0.881 0.853 0.867

iDSAw/0o CTG | 0.839 0.842 0.835 0.838

iDSA w/o IACNN | 0.826 0.831 0.818 0.824

iDSA w/o SMIN H 0.821 0.842 0.791 0.816

iDSA w/o BCAI H 0.843 0.849 0.835 0.842
Related Work

Disaster scene assessment (DSA) is a critical step in dis-
aster response that determines the severity of the damage
caused by a disaster based on imagery data. Recently, so-
cial media images have become a new data source for DSA
which provides more detailed on-site information from the
perspective of the eyewitnesses of the disaster at a much
lower cost (Rashid et al. 2019). Nguyen et al. developed
the first deep CNN model with domain-specific fine-tuning
to effectively detect the level of damage from social me-
dia images (Nguyen et al. 2017). Many follow up solutions
have been developed (Li et al. 2018; Zhang et al. 2019;
2018b). However, existing Al-driven solutions are prone to
focus on wrong regions of the disaster scene image and pro-
vide inaccurate assessment results due to the lack of an ex-
plicit attention mechanism.
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Recognizing the importance of visual attention in disas-
ter assessment, more recent DSA applications leverage post-
hoc attention analysis with the goal of pin-pointing the dam-
aged areas within disaster scene images. For example, Li et
al. combined CNN and Grad-CAM to generate a heatmap
of a given image to locate the damaged area (Li et al. 2018).
Recently, trainable attention mechanisms, such as Residual
attention (Wang et al. 2017) and SCA-CNN (Chen et al.
2017) have attracted enormous interest in image classifica-
tion tasks due to their potential in simulating human’s vi-
sual perception process to improve the classification accu-
racy. However, these pure data-driven attention mechanisms
cannot be directly applied to our problem due to their infe-
rior performance caused by either insufficient training data,
or the internal drawbacks of the neural network design. In
this work, we propose a novel interactive attention design
that leverages human knowledge to troubleshoot and inter-
vene in the attention module in DSA.

A few relevant human-Al hybrid frameworks have been
recently developed (Jarrett et al. 2014; Nushi et al. 2017) that
allows Al systems to interact with human to improve their
performance. Active Learning (AL) is a commonly used
technique to combine Al and human intelligence, where Al
actively obtains labels of some instances from domain ex-
perts (Laws, Scheible, and Schiitze 2011). The major benefit
of such a framework is that it significantly reduces the label-
ing costs and improves the efficiency by judiciously select-
ing a “subset” of data samples to be labeled. However, the
AL-based solutions largely ignored the innate limitations of
the Al algorithms that cannot be simply improved by retrain-
ing the model with more data. In contrast, iDSA is the first
solution to leverage human knowledge from crowdsourcing
to directly adjust the internal attention mechanism of Al al-
gorithms in DSA applications.

Conclusion

This paper presents iDSA to addresses fundamental chal-
lenges in melding crowd intelligence into Al in boosting the
performance of DSA applications. iDSA designs a novel in-
teractive attention-aware CNN model to accurately capture
the damaged area in the image by interacting with the crowd.
An adaptive incentive design is developed to ensure iDSA
can acquire timely and reliable responses from the crowd.
Evaluation results on a real-world DSA application show
that iDSA significantly outperforms existing Al-only DSA
solutions and state-of-the-art human-Al frameworks.
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