The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Learning Graph Convolutional Network for
Skeleton-Based Human Action Recognition by Neural Searching

Wei Peng,! Xiaopeng Hong,>*' Haoyu Chen,' Guoying Zhao'>"
IcMVs, University of Oulu, Finland; 2School of Information and Technology, Northwest University, PRC
3School of Cyber Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, PRC
“Research Center for Artificial Intelligence, Peng Cheng Laboratory; “Corresponding author
{wei.peng, xiaopeng.hong, chen.haoyu, guoying.zhao} @oulu.fi

Abstract

Human action recognition from skeleton data, fuelled by the
Graph Convolutional Network (GCN) with its powerful capa-
bility of modeling non-Euclidean data, has attracted lots of at-
tention. However, many existing GCNs provide a pre-defined
graph structure and share it through the entire network, which
can loss implicit joint correlations especially for the higher-
level features. Besides, the mainstream spectral GCN is ap-
proximated by one-order hop such that higher-order connec-
tions are not well involved. All of these require huge ef-
forts to design a better GCN architecture. To address these
problems, we turn to Neural Architecture Search (NAS) and
propose the first automatically designed GCN for this task.
Specifically, we explore the spatial-temporal correlations be-
tween nodes and build a search space with multiple dynamic
graph modules. Besides, we introduce multiple-hop modules
and expect to break the limitation of representational capacity
caused by one-order approximation. Moreover, a correspond-
ing sampling- and memory-efficient evolution strategy is pro-
posed to search in this space. The resulted architecture proves
the effectiveness of the higher-order approximation and the
layer-wise dynamic graph modules. To evaluate the perfor-
mance of the searched model, we conduct extensive experi-
ments on two very large scale skeleton-based action recogni-
tion datasets. The results show that our model gets the state-
of-the-art results in term of given metrics.

Introduction

Human action recognition is a valuable but challenging re-
search area with widespread potential applications, say hu-
man computer interaction and autonomous driving. Nowa-
days, skeleton data is popularly used in action recognition.
One important reason is that skeleton data conveys com-
pact information of body movement, thus it is robust to
the complex circumstances like the variations of the view-
points, occlusion and self-occlusion. Previous works reorga-
nize the skeleton data into a grid-shape structure so that the
traditional recurrent neural networks (RNN) and convolu-
tional neural networks (CNN) can be directly implemented.
Though substantial improvements have been seen in action
recognition, the capability of deep learning is constrained

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2669

as there is no natural notion of locality in skeleton data.
Currently, Graph Convolutional Networks (GCN) (Kipf
and Welling 2016; Defferrard, Bresson, and Vandergheynst
2016) has been introduced to skeleton-based action recogni-
tion and achieved many encouraging results (Li et al. 2018;
Yan, Xiong, and Lin 2018; Li et al. 2019a; Gao et al. 2019;
Shi et al. 2019; Li et al. 2019b). Nonetheless, most GCN
methods are based on a pre-defined graph with fixed topol-
ogy constraint, which ignores implicit joint correlations.
Work in (Shi et al. 2019) intends to replace the fixed graph
with an adaptive one based on the node similarity. However,
it provides a shared mechanism through the entire network.
Besides, the spatial-temporal correlations are barely dis-
cussed. We argue that different layers contain different se-
mantic information thus a layer-specific mechanism should
be involved when construct a dynamic graph. Besides, main-
stream GCN tends to one-order Chebyshev polynomials ap-
proximation (Kipf and Welling 2016) to reduce the compu-
tational expense, meanwhile high-order connections are not
well involved so that the representational ability is limited.
Current works, like (Gao et al. 2019), introduce high-order
approximation to have GCN with a bigger receptive filed.
Nonetheless, the contribution of the each component in the
approximation is not discussed. It is apparent that designing
such different function modules for different tasks requires
exhausted try-and-error tests.

To address these problems, in this paper, we focus on re-
ducing the manual efforts in designing better graph convo-
lutional architecture. Specifically, the fixed graph structure
is replaced with dynamic ones by Automatic Neural Archi-
tecture Search (NAS) (Zoph and Le 2016) and with NAS,
we explore different graph generating mechanisms at differ-
ent semantic levels. NAS is designed to obtain superior neu-
ral network structures with less or without human assists.
However, it is not straightforward to apply NAS to GCN.
Graph data like skeleton has no locality and order infor-
mation as required by convolution operations, while current
NAS methods focus on the design of neural operations. Un-
fortunately, GCN itself is an emerging research topic thus
existing operations are very limited, e.g., GCN does not
even have a general pooling operation. Therefore, we pro-
pose to search in a GCN space built with multiple graph

function modules. Moreover, a high sample-efficient deep
neuro-evolution strategy (ES) (Angeline, Saunders, and Pol-
lack 1994; Miller, Todd, and Hegde 1989) is provided to ex-
plore an optimal GCN architecture by estimating the archi-
tecture distribution. The search strategy can be conducted
in both continuous and discrete search space such that one
can just activate one function module at each iteration to
search by a memory-efficient fashion. With our NAS for
GCN, we automatically build a graph convolutional network
for skeleton-based action recognition. To evaluate the pro-
posed method, we perform comprehensive experiments on
two large scale datasets, NTU RGB+D (Shahroudy et al.
2016) and Kinetcis-Skeleton (Kay et al. 2017; Yan, Xiong,
and Lin 2018). Results show that our model is robust to the
subject and view variations and achieves the state-of-the-art
performance on both of the datasets. The contributions of
this paper are manifold:

e We break the limitation of GCN caused by its fixed graph
and, for the first time, determine the GCN architecture
with NAS for skeleton-based action recognition.

e We enrich the search space for GCN from the following
two aspects. Firstly, we provide multiple dynamic graph
substructures on the basis of various spatial-temporal
graphs modules. Secondly, we enlarge the receptive field
of GCN convolution by building higher-order connections
with Chebyshev polynomial approximation.

e To improve the search efficiency, we devise a novel evolu-
tion based NAS search strategy, which is both sampling-
and memory-efficient.

Related work

Skeleton-based Action Recognition In human action
recognition, skeleton data increasingly attracts attention
thanks to its robustness against changes in body scales,
viewpoints and backgrounds. Different from the grid data,
the graph constructed by skeleton lies in a non-Euclidean
space. To benefit from the great representation ability of
deep learning, conventional methods tend to rearrange the
skeleton data into grid-shape structure and feed it directly
into the classical RNN (Shahroudy et al. 2016; Song et al.
2017; Zhang et al. 2017) or CNN (Kim and Reiter 2017;
Liu, Liu, and Chen 2017) architectures. However, as men-
tioned in (Monti et al. 2017), one can not express a meaning-
ful operator in the vertex domain. Therefore, current works
tend to GCNs since their operators are defined in the non-
Euclidean space. Yan et al. and Li et al. are the first to use
GCN for skeleton-based action recognition (Yan, Xiong, and
Lin 2018; Li et al. 2018). Gao et al. proposed a sparsified
graph regression based GCN (Gao et al. 2019) to exploit the
dependencies of each joints. Shi ef al. gave a two-stream
GCN architecture, in which the joints and the second-order
information (bones) are both used. With a score-level fusion
strategy, it gets the current best result (Shi et al. 2019). Our
method is also based on GCN and we will fully explore the
influence of the graph topology for this task.

Neural Architecture Search As an important part of au-
tomated machine learning (AutoML), Neural Architecture
Search (NAS) (Zoph and Le 2016) is to automatically

2670

build neural networks. Numerous approaches for NAS al-
ready exist in the literature, including black-box optimiza-
tion based on reinforcement learning (Zoph and Le 2016),
evolutionary search (Real et al. 2018), and gradient-based
method (Liu, Simonyan, and Yang 2018). Besides, promis-
ing progresses are also seen in aspects such as searching
space design (Liu, Simonyan, and Yang 2018), and archi-
tecture performance evaluation (Saxena and Verbeek 2016;
Real et al. 2018). Automatically designed architectures have
already got superior performances against the famous man-
ual ones in the fields like image classification tasks (Zoph
et al. 2018), and semantic image segmentation (Liu et al.
2019). There are also some attempts about NAS on action
recognition (Peng, Hong, and Zhao 2019) from RGB data.
However, little NAS-based methods provide a solution to the
non-Euclidean data. In fact, currently Gao et al. transferred
ENAS (Pham et al. 2018) to graph neural network for cita-
tion networks and inductive learning tasks. Compare to our
task, it is totally different since it aims to find the transform-
ing, propagating and aggregating functions for a network
with only two or three layers.

GCN and Attention mechanism Graph neural network
is widely used on irregular data like social networks, and
biological data. Generally, there are two ways to define
a GCN. The spectral-domain method (Defferrard, Bres-
son, and Vandergheynst 2016; Kipf and Welling 2016)
models the representation in the Fourier domain based on
eigen-decomposition, meanwhile it is time-consuming. The
Nodal-domain method (Monti et al. 2017; Velickovié et al.
2018) directly implements operators on the graph node and
its neighbors. However, it is difficult to model the global
structure. To further improve the performance of GCN, at-
tention mechanisms, which select relatively critical informa-
tion from all inputs, is introduced to GCN (Veli¢kovi¢ et al.
2018; Vaswani et al. 2017). Velickovic er al.leveraged atten-
tion mechanism for graph node classification and achieved
state-of-the-art performance (Velickovié et al. 2018). Work
in (Sankar et al. 2019) employs self-attention along both
spatial and temporal dimensions and get superior results
on link prediction tasks. Nonetheless, our work is different
since we are to build a dynamic graph via the interaction be-
tween nodes based on various semantic information, while
others are to compute the importance weights for different
representations or frames.

Methodology

In this section, we detail our search-based GCN. To make
the paper self-contained, we briefly review how to model a
spatial graph with GCN first.

Consider an undirected graph G = {V, &, A} composed
of n = |V| nodes, which are connected by |€| edges and
the node connections are encoded in the adjacency matrix
A e R"™™ Let X € R" be the input representation of G
and {z;,Vi € V} be its n elements. Then to model the repre-
sentation of G, a Fourier transform is conducted on the graph
so that the transformed signal, as in the Euclidiean space,
could then be dealt with formulation of fundamental opera-
tions such as filtering. To this end, a graph Laplacian L, of

which the normalized definition is L = I,, — D~Y/2AD~1/?
and D;; = > j A;j, is used for Fourier transform. Then a
graph filtered by operator gy, parameterized by 6, can be
formulated as

Y = go(L)X = Uge(MNU X, (1)

where Y is the extracted graph feature. U is the Fourier ba-
sis and it is a set of orthonormal eigenvectors for L so that
L = UAUT with the A as its corresponding eigenvalues.
However, multiplication with the eigenvectors matrix is ex-
pensive. The computational burden of this non-parametric
filter is O(n?) (Defferrard, Bresson, and Vandergheynst
2016). Suggested by (Hammond, Vandergheynst, and Gri-
bonval 2011), the filter gy can be well-approximated by a
Chebyshev polynomials with R-th order.

R
Y =3 0,T(L)X, @
r=0

of which 9; denotes Chebyshev coefficients. Chebyshev

polynomial T.(L) is recursively defined as

3

with Ty = 1 and Ty = L. Here L = 2L/Apax — I, is
normalized to [-1,1]. For Eq. (2), work in (Kipf and Welling
2016) sets R = 1, A\;qx = 2 and makes the network adapt
to this change. In this way, a first-order approximation of
spectral graph convolutions is formed. Therefore,

T,(L) = 2LT,_y(L) — T,_5(L)

Y = 0y X + 60, (L —1,)X = 0,X —0,(D"/?AD~'/?)X.

4)
Likewise, 9; can also be approximated with an unified pa-
rameter 6, which means 6 = 6, = —60,, and let the training
process adapt the approximation error, then

Y =0(I, + D"Y?AD"YH) X, (5)

The computational expense is O(|€]). One can stack mul-
tiple GCN layers to get high-level graph feature. To make
it simple, in the following sections, we set L = [, +
D~'2AD~"/2 and generally, X € R™*® is with multi-
channels. Thus

Y =LX6. ©6)

Work in (Yan, Xiong, and Lin 2018) presents a ST-GCN
block, which takes skeleton data and a fixed matrix L as in-
puts, to extract the spatial-temporal representation of nodes.
Our GCN-block is also a spatial-temporal block, while in-
stead of providing a pre-defined graph, we generate dynamic
graphs based on the node correlations captured by different
function modules.

Searched Graph Convolutional Network

We consider the human action recognition problem from
skeleton data as a graph classification task from a sequence
of graphs G = {G1, Go, ..., Gr}. Each graph denotes a skele-
ton at a certain time step and its nodes and edges represent
the skeleton joints and their connections, respectively. Then,
this task can be framed as supervised learning problem on

2671

graph data, in which the goal is to learn a robust representa-
tion of G with GCN and thus to give a better prediction of
action classes. To this end, we propose to construct this GCN
with NAS, which automatically assembles graph generating
modules for layers at different semantic levels.

Firstly, we will detail the GCN search space built with
different graph modules. Then, we present a sampling- and
memory-efficient search strategy.

GCN search space In NAS, a neural search space deter-
mines what and how neural operations a searching strategy
could take to build a neural network. Here we search in space
built with multiple GCN modules to explore the optimal
module combination for dynamic graph at different repre-
sentation levels. There are mainly two kinds of correlations
being captured to construct the dynamic graph.

D h'”(x)

\
1
1
1
1
1
1
1
1
:

o>
1
'
1
1
'
:
1
1
1
'
1

/

Spatial m Temporal m Spatio-Temporalfm

— T &
1
1
\
N

Figure 1: Tllustration of the search space. Here, X de-
notes matrix multiplication. € is the element-wise summa-
tion. There are eight function modules for generating graphs.
The top part is a implementation of Chebyshev polynomial
based on Eq. (3). We also add its separate components to the
graphs and let the network choose the final ones. The bottom
part contains three dynamic graph modules. All the graphs
are added together according to Eq. (8). The contribution of
each module works as the architecture parameters. Note that
there is a softmax function before the summation operation
for dynamic graphs.

Structure representation Correlation. Structure correla-
tion is to model graph topology based on current node con-
nections. To determine how strong the connection is between
two nodes, like in (Shi et al. 2019), a normalized Gaussian
function is applied on the graph nodes and the similarity
score works as the correlation. That is

e?(h(z:)) & ¥(h(z;)))

Vi,j €V, Ap(i,j) = UL TIC N

(7

This module is named as ‘Spatial m’ in Figure 1. Here, we
compute the correlation score Ap (4, j) between node i and
node j based on their representations h(z;) and h(x;). The
Q) represents matrix multiplication. The ¢(-) and 1)(-) are
two projection functions, referred as conv_s in Figure 1 and
can be implemented by channel-wise convolution filters. In
this way, the similarity between nodes are captured to build
the dynamic graph.

Temporal representation Correlation. Structure correla-
tion definitely contains most intuitive cues for the topology

Algorithm 1 CEIM algorithm

1: procedure

2: epochs <— Max steps of iterations
3 N < Size of populations in CEIM
4: 7 < Initial iteration step with 0
5: 1 < Initial sample index with /
6.
7
8

Y. < Initial covariance matrix of CEIM
1 <— Initial mean of CEIM
o < Initial architecture with 1

10: while j < epochs do

11: Update network weights © with « fixed.

12: if S,;4 is not () then

13: Uniformly get r1 and r2 in the range [0,1].
14: while : <= N do

15: Take a sample o’ from S;4.

16: if Ineq (10) satisfied then

17: Shew < ab.

18: Draw a sample o, with ™ ~ N (1, %) .
19: if Ineq (11) satisfied then

20: Snew .

21: 1 =1+ 1.

22: while |S),c.,| > N do

23: Randomly remove a sample from .S,,c,,.
24: while |S;,c.,| < N do

25: Snew < Draw a sample with 7.

26: Evaluate every a € S,,¢, On current network ©.
27: Sort samples by their performances.

28: Compute importance weight \ by Eq. (12).

29: Told < T

30: Sold — Snew

31: Update i and X by Eq. (13) and Eq. (14).

32: Spew — 0

33: Tnew < T

34: a4— U

35: j=7+1

36: if j == epochs then return best o € S,,¢q.

of the graph. However, ignoring the temporal correlation can
loss implicit joint correlations. We take an example from
NTU RGB+D dataset. Without the temporal information, it
is hard to tell a person is to touch his head or just wave his
hand, since from the structure perspective, little connection
could be captured from head node and hand node during the
action of “touch head”. But including the temporal infor-
mation will make it much easier. Therefore, we introduce
two temporal convolutions to extract the temporal informa-
tion of each node before computing node correlations with
Eq. (7). In this way, the node interactions between neigh-
bor frames are involved when we calculate the node con-
nections. Note that, this is different from temporal attention
mechanism since we capture temporal information for a bet-
ter generation of the spatial graph. To this regard, we also
introduce a Gaussian function, as in Eq. (7), to compute
the node correlation. This module is referred as ‘Temporal
m’, in which the functions ¢(-) and 1 (-) are implemented

2672

by temporal convolutions, referred as conv_t in Figure 1. It
is also worth mentioning that, for the structure correlation,
even the T frames of representation are all involved when
compute the graph, the interaction is limited to the features
from same dimension at the same time step. While the tem-
poral module could involve interactions beyond frames.

With our ‘Spatial m’ and ‘Temporal m’, it is straightfor-
ward to build a spatial-temporal function module for dy-
namic graph. Thus we build the ‘Spatio-Temporal m’ as
shown in Figure 1. In total, there are three kinds of modules
for dynamic graphs.

Furthermore, we want to explore the contribution of each
component in the Chebyshev polynomials, and thus bene-
fit from high-order hop connections. As we know, the work
in (Kipf and Welling 2016) gives a well-approximation of
the spectral filter with the order-one Chebyshev polynomi-
als. Instead, as illustrated in Figure 1, in our search space, we
build Chebyshev polynomials functions with different or-
ders at different layers and let the network determine which
order and polynomial components each layer prefers. The
function module can be constructed by Eq. (3), and here the
biggest order is R = 4. Since all the dynamic graphs are
normalized, here we also add a normalized one for the order-
4 approximation. Therefore, there are totally eight function
modules, as illustrated in the Figure 1, in this search space.

With these eight modules, we could search for the best
architecture. Previous NAS methods would search a single
block to reduce the computational burden. However, we ar-
gue that different feature layers contain different level of se-
mantic content and thus a layer-specific mechanism is pre-
ferred to build a graph. So we search for an entire GCN net-
work instead of a single block. To improve the efficiency, a
high computation- and memory-efficient search strategy will
be provided.

Let us formally define the search space first. Here we
redefine X as a sequence of graphs. Given a fixed graph
L and the feature h*(X) from the k-th layer, we extract
the output representation h*T1(X) at k + 1 layer, with the
function modules we choose. Inspired by one-shot NAS and
DARTS (Liu, Simonyan, and Yang 2018), all the function
modules are paralleled and the weighted sum of their out-
puts are the output 2*+1(X), that is

M
X)) =)

i=1

Qlt1,i
— L MG(RR(X), L)R*(X) Oy
Zj Xk+1,5
3

Here, ©y, is the network weights for the k-th layer. M; de-
notes the i-th function module, and 1,5, which works as
the architecture parameter, is its corresponding parameter at
the k& + 1 layer. Then the problem here is to search a set of
parameters o € RE>*M for a network with K layers so that
« minimizes the loss L,,;;4 on the validation data. That is

9

Here, © is the network parameters shared by all sub-
networks and it will be learned on the training dataset. Previ-
ous works search on a small proxy dataset to evade the com-
putational burden. Instead, we search directly on the target
dataset to avoid extra domain adaption problem.

a* = argmin Lyq1i4(0(),)
«

GCN search strategy Inspired by (Pou. and S. 2019), we
propose to search with a high sampling-efficient ES-based
method, denoted CEIM. This method explore an optimal ar-
chitecture by estimating the architecture distribution. Thus it
is not limited in a differentiable search space. One could im-
prove the memory-efficiency by only activating one function
module at each searching step.

Specifically, this search strategy combines Cross-Entropy
method (Larrafiaga and Lozano 2001) with Importance-
Mixing (CEIM), in which architecture parameters « is
treated as a population and the distribution of architecture
is modeled by a Gaussian distribution. Then CEIM samples
a group of architectures and with their performances, impor-
tant samples are selected to update the architecture distri-
bution. Thus an optimal architecture could be finally sam-
pled from the architecture distribution. In total, there are
three steps in our CEIM algorithm, sampling populations,
selecting populations, and updating architecture distribution.
Firstly, we model the architecture distribution with a Gaus-
sian distribution 7 ~ A (p, X)) and sample N architecture
samples S,e.y = {ai}Y | as the populations for CEIM.
Secondly, combining S,,¢,, with historical selected popula-
tions S,;q = {a’} |, we employ an importance mixing
method on all these populations to choose architecture sam-
ples. Finally, the newly selected samples are used to update
the architecture distribution 7.

Here, we detail the last two steps. In the selecting step, for
each population in S,;4 and S,,¢.,, We compare its probabil-
ity density (pd) in both current (7,,¢,,) and old (7,;4) prob-
ability density functions (pdf). Generally, for the old popu-
lation o, we keep it once it is with a bigger pd in the new
distribution than that in the old one. That is

pad; Tola)

Here r1 is a threshold randomly got from rang [0, 1] and
p(+;7) is a pdf with specific distribution 7. Likewise, for
new sample o, drawn from the current distribution, if its pd
in the new pdf is bigger than that in the old one, we will also
keep it. Therefore, when

min(1,) >rl (10)

p(ady; Tora)

PLOniTold) y o 1o
p(a:ﬁ Wnew)

maz(0,1 — (11)
we save it. Here 72 is another threshold in [0, 1].

For the updating step, the samples selected in previous
step are used to update mean p and convariance . Be-
fore that, the © of the network is updated on the training
data with current architecture o = p. Then, the © is fixed
and every selected sample is set as the current architecture.
Its corresponding fitness is evaluated on the validation data.
With their performances, all the selected samples are sorted.
Based on the performance order, an importance weight \; is
assigned to the ¢-th sample. That is

log(1+ N)/i
SN log(1+ N) /i’

In this way, the sample with better performance will be given
a bigger weight, thus it contributes more to the updating of

(12)

P =

2673

the distribution. Finally, the weighted samples is applied to
update the architecture distribution. That is

N
Hnew = Z)\iaia (13)
i=1
N
Yhnew = Z)\1(041 - M)2 + €. (14)

i=1
Here, €Z is a noise term for better exploring of the neural
architecture. Since, in practice, Y is too large to compute
and update, here we constrain it to be a diagonal one. Note
that in Eq. (14), different with the original cross-entropy
method, which updates > with the new mean fiy,¢q,, We use
the mean of last iteration to update Y since convariance ma-
trix adaption evolution strategy (CMA-ES) shows it is more
efficient (H. 2016). More details about CEIM please refer to
Algorithm. 1.

One could improve the memory-efficiency by only ac-
tivating one function module at each searching step. That
means for the output /*+1(X), it can be a single output from
the activated module.

My (hF(X), L)hk(X)®k+17 p= #
i %k+1,j5
RFFN(X) =
k k _ X+1,M
Mar(h*(X), LA™ (X)Op 41, p = SV iy
15)

Here, each module is activated by a multinomial distribution
with the probability p ~ aj11,; and O, is the activated
weight of the (k + 1)-th layer. In the following section, we
will evaluate the proposed method.

Experiments

To evaluate the performance of our model, we carry
out comparative experiments on two large-scale skele-
ton datasets, NTU RGB+D (Shahroudy et al. 2016) and
Kenitics-Skeleton (Kay et al. 2017; Yan, Xiong, and Lin
2018), for action recognition task.

Dataset & Evaluation Metrics

NTU RGB+D (Shahroudy et al. 2016) is currently the most
widely used and the largest multi-modality indoor-captured
action recognition dataset. There are RGB videos, depth se-
quences, infrared videos and 3D skeleton data in it. The
skeleton data is the one we use. There are totally 56,880
video clips captured from three cameras at different heights
with different horizontal angles. These actions cover 60 hu-
man action classes including single-actor actions, which are
from class 1 to 49, and two-actor actions, which are from
class 50 to 60. There are 25 3D joints coordinates for each
actor. We follow the benchmark evaluations in the original
work (Shahroudy et al. 2016), which are Cross-subject (CS)
and the Cross-view (CV) evaluations. In the CS evaluation,
the training set contains 40,320 videos from 20 subjects,
and the rest 16,560 video clips are used for testing. In the
CV evaluation, videos captured from camera two and three,
containing 37,920 videos, are used in the training and the

videos from camera one, containing 18,960 videos, are used
for testing. In the comparison, Top-1 accuracy is reported on
both of the two benchmarks.

Kinetics-Skeleton is based on the very large scale action
dataset Kinetics (Kay et al. 2017), in which there are ap-
proximately 300 000 video clips collected from YouTube.
This dataset covers 400 kinds of human actions. However,
the original Kinectics dataset has no skeleton data. Yan et
al. employed the open source toolbox OpenPose (Cao et al.
2017) to estimate the 2D joints location of each frame and
then built this huge dataset Kinetics-Skeleton (Yan, Xiong,
and Lin 2018). For each person, coordinates (X, Y) form 18
joints are estimated. For the frames which contain more than
two persons, only the top-2 persons are selected based on the
average joint confidence. The released data pads every clips
to 300 frames. During comparison, both the Top-1 and Top-
5 recognition accuracy are reported since this task is much
harder due to its great variety.

Implementation details

Our framework is implemented on the PyTorch (Paszke et
al. 2017) and the code is released at here'. To keep consis-
tent with the state-of-the-art GCN methods (Yan, Xiong, and
Lin 2018; Shi et al. 2019)?, we introduce ten GCN blocks
into our network for both searching and training steps. Each
of them is based on the block in Figure 1. Like the previ-
ous works, each block is followed with a temporal convo-
lution with the kernel size 9 x 1 to capture the temporal
information. The first GCN block projects the inputs into
a feature space with the channel number of 64. Then there
will be three layers outputting 64 channels for the outputs.
After that, the following three layers double the output chan-
nels. The last three layers have 256 channels for outputs. Just
like (Yan, Xiong, and Lin 2018), the resnet mechanism is ap-
plied on each GCN block. Finally, the extracted features are
fed into a fully-connected layer for the final prediction.

For each GCN block, the spatial modules conv_s are
channel-wise convolution filters and the temporal filters
conv_t are convolution filters with kernel size 9 x 1 per-
forming along the temporal dimension. During searching,
we conduct the experiments on the NTU RGB+D Joint data
to find the optimal architecture. We share the searched archi-
tecture for all the aforementioned datasets to keep consistent
with the state-of-the-art methods.

For the training process, a stochastic gradient descent
(SGD) with Nesterov momentum (0.9) is applied as the op-
timization algorithm for the network. The cross-entropy loss
is selected as the loss function for the recognition task. The
weight decay is set to 0.0001 and 0.0006 for searching and
training, respectively. For the NTU RGB+D dataset, there
are at most two people in each sample. If the number of bod-
ies in the sample is less than 2, we pad the second body with
0. The max number of frames in each sample is 300. For
samples with less than 300 frames, we repeat the samples
until it reaches 300 frames. The learning rate is set as 0.1

"https://github.com/xiaoiker/GCN-NAS
*These two SOTA methods mentioned in the paper that there
are nine GCN blocks while the released codes show there are ten.

2674

Table 1: Searched modules at each layer. Here, each row
refers to a block layer. There are eight modules, includ-
ing dynamic graph modules (M(S), M(T), M(ST)) with
various spatial-temporal cues and Chebshev approximation
with different orders (L, L*n,L* L3, L?). The modules
marked with v* represent modules selected by CEIM.

L L'n L* [P L2 M(S) M(T) M(ST)

NN RN
SRR

SENENENEN
\

N N NN NN

and is divided by 10 at the 30th, 45th, and 60th epoch. The
training process is ended at the 70th epoch.

Architecture search analysis

We conduct 70 epochs for searching. For the first 20 epochs,
we randomly update each module in the network without
evaluating any architectures. After that, we sample N = 50
architectures and update the architecture distribution with
our CEIM algorithm. When the searching is done, we choose
the module M, if its & > 0.1. Like (Shi et al. 2019), a com-
plementary dynamic graph is added, as we do not weight
module with its « in the final architecture. The searched ar-
chitecture is listed in Table 1. The result shows that differ-
ent layers prefer different mechanisms to generate graphs,
which is consistent with our expectation since high level rep-
resentation contains more semantic information. Concretely,
as in Table 1, the lower layers, like layer K to K4, count in
all dynamic function modules to capture richer information.
For higher layers, the temporal representation correlations
are more preferred. It is interesting that temporal graph mod-
ule M(T) is selected through the entire network while the
spatial function module M(.S) is only chose by the lower
layers, which proves the effectiveness of the proposed tem-
poral function module. For the higher-order connections, we
found that 2-order hop connection is much welcomed than
any other one. And surprisingly we found the L, which en-
codes the physical structure of the skeleton data, is not in-
volved at any layer. This founding gives us a new inspiration
about how to build a GCN.

Ablation Study

Here, we explore the effectiveness of the graph modules
and also our searched GCN. Therefore, we perform the
following experiments on NTU RGB+D with the bench-
mark of cross-view. Here we compare with six baselines,
which are with different mechanism to build the dynamic
graphs. Specifically, the modules used to generate graph
are based on: 1) Structure representation correlations (S,
here it is 2S-ACGN (Shi et al. 2019)); 2) Temporal repre-
sentation correlations (Ours(T)); 3) Spatial-Temporal repre-
sentation correlations(Ours(ST)); 4) Temporal correlations

Table 2: Ablation Study. Performance comparison on NTU
RGB+D with CV evaluation.

Methods Joint(%) Bone(%) Combine(%)
2S-AGCN (Shi et al. 2019) 93.7 93.2 95.1
Ours(T) 93.8 93.7 95.1
Ours(ST) 94.0 93.8 95.2
Ours(T+Cheb) 94.0 93.9 95.2
Ours(ST+Cheb) 94.2 93.9 95.3
Ours(S+T+ST+Cheb) 93.9 93.6 95.1
Ours(NAS) 94.6 94.7 95.7

with 4-order Chebyshev approximation (Ours(T+Cheb)); 5)
Spatial-Temporal representation correlations with 4-order
Chebyshev approximation (Ours(ST+Cheb)); and 6) Com-
bine all aforementioned modules(Ours(S+T+ST+Cheb)).
Inspired by (Shi et al. 2019), we evaluate these mod-
els on both joints and the bones (the second order infor-
mation of skeleton joints) data, thus a fusion result from
score-level is also reported. For these six methods, the same
block is shared through the whole network. Instead, our
searched method explores the best modules for different
layers. The comparison results are listed in the Table 2. It
shows that temporal information do helps for GCN (Ours(T)
and Ours(ST)) and involving all modules can not make
sure a better performance (Ours(S+T+ST+Cheb)). Besides,
higher-order also helps for GCN (Ours(+Cheb)).The su-
perior performance of the NAS-based GCN (Ours(NAS))
proves the effectiveness of our method. When compared to
the current best result (Shi et al. 2019), shows in the first
row, we improve the accuracy 0.9%, 1.5%, and 0.6% on the
Joint, Bone and Combine, respectively. This verifies the ef-
fectiveness of our method.

Comparison with State-of-the-arts (SOTA)

To evaluate the performance of our searched model, we com-
pared it with 14 SOTA skeleton-based action recognition ap-
proaches, including hand-crafted method (Hu et al. 2015),
CNN-based methods (Kim and Reiter 2017; Liu, Liu, and
Chen 2017), LSTM-based methods (Shahroudy et al. 2016;
Song et al. 2017; Zhang et al. 2017; Si et al. 2018), rein-
forcement learning based method (Tang et al. 2018), and
current promising GCN-based methods (Li et al. 2018;
Yan, Xiong, and Lin 2018; Li et al. 2019a; Gao et al. 2019;
Li et al. 2019b; Shi et al. 2019), on NTU RGB+D and
Kinetics-Skeleton datasets. Tables 3 and 4 show the re-
sults on these two datasets, respectively. We report the
best result after performing the score-level fusion on joints
and bones. It can be seen from Table 3 and 4 that the
searched model achieves the best performance on both of
the two datasets in terms of all evaluation metrics. Specifi-
cally, for the NTU RGB+D dataset, under the CV protocol,
the searched model improves the current best result 95.1%
to 95.7%. Our method also overcomes current best result
by 0.9% uncer the CS protocol. Besides, we also get the
best Top-1(37.1%) and Top-5(60.1%) on Kinetics-Skeleton
dataset. All these prove the effectiveness of our method.

2675

Table 3: Performance comparison on NTU RGB+D with 14
state-of-the-art methods.

Methods CS(%) CV(%) Conference
Joint (Hu et al. 2015) 60.2 65.2 CVPR2015
P-LSTM (Shahroudy et al. 2016) 62.9 70.3 CVPR2016
STA-LSTM (Song et al. 2017) 73.4 81.2 AAAI2017
TCN (Kim and Reiter 2017) 74.3 83.1 CVPRW2017
VA-LSTM (Zhang et al. 2017) 79.2 87.7 CVPR2017
SynCNN (Liu, Liu, and Chen 2017) 80.0 87.2 PR2017(Jou.)
Deep STGCK (Li et al. 2018) 74.9 86.3 AAAI2018
ST-GCN (Yan et al. 2018) 81.5 88.3 AAAI2018
DPRL (Tang et al. 2018) 83.5 89.8 CVPR2018
SR-TSL (Si et al. 2018) 84.8 92.4 ECCV2018
STGR-GCN (Li et al. 2019a) 86.9 92.3 AAAI2019
GR-GCN (Gao et al. 2019) 87.5 94.3 ACMM2019
AS-GCN (Li et al. 2019b) 86.8 94.2 CVPR2019
2S-AGCN (Shi et al. 2019) 88.5 95.1 CVPR2019
Ours(Joint+Bone) 89.4 95.7

Table 4: Performance comparison on Kinetics-skeleton with
eight state-of-the-art methods.

Methods Top-1(%) Top-5(%) Conference
Feature (Fernando et al. 2015) 14.9 25.8 CVPR2015
P-LSTM (Shahroudy et al. 2016) 16.4 353 CVPR2016
TCN (Kim and Reiter 2017) 20.3 40.0 CVPRW2017
ST-GCN (Yan et al. 2018) 30.7 52.8 AAAI2018
AS-GCN (Li et al. 2019b) 34.8 56.5 CVPR2019
2S-AGCN(Joint) (Shi et al. 2019) 35.1 57.1 CVPR2019
2S-AGCN(Bone) (Shi et al. 2019) 333 55.7 CVPR2019
2S-AGCN (Shi et al. 2019) 36.1 58.7 CVPR2019
Ours(Joint) 355 57.9

Ours(Bone) 34.9 571
Ours(Joint+Bone) 37.1 60.1

Conclusion

In this paper, we propose to build graph convolutional net-
work for skeleton-based action recognition with NAS. To
enrich the NAS search space, firstly, three dynamic graph
generating modules are constructed on the basis of vari-
ous spatial-temporal correlations of nodes. Secondly, mod-
ules with higher-order connections are introduced to enlarge
the receptive field of GCN convolution. Besides, we devise
a novel search strategy by combining cross-entropy evolu-
tion strategy with importance-mixing (CEIM), which is both
sampling- and memory-efficient. Based on the proposed
NAS method, we explore the optimal GCN architecture
in this space for skeleton action recognition. The searched
model proves the effectiveness of our function modules.
Comprehensive experiments on two very large scale datasets
show its overwhelming performance when compared to the
state-of-the-art approaches.

Acknowledgements

This work was supported by the Academy of Finland ICT
2023 project (Grant No. 313600), Tekes Fidipro program
(Grant No. 1849/31/2015) and Business Finland project
(Grant No. 3116/31/2017), Infotech Oulu, and the Na-
tional Natural Science Foundation of China (Grants No.
61772419). As well, the authors wish to acknowledge CSC-
IT Center for Science, Finland, for computational resources.

References

Angeline, P. J.; Saunders, G. M.; and Pollack, J. B. 1994.
An evolutionary algorithm that constructs recurrent neural
networks. IEEE transactions on Neural Networks 5:54—65.

Cao, Z.; Simon, T.; Wei, S.-E.; and Sheikh, Y. 2017. Re-
altime multi-person 2d pose estimation using part affinity
fields. 2017 IEEE CVPR 7291-7299.

Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In NeurIPS, 3844-3852.

Fernando, B.; Gavves, E.; Oramas, J. M.; Ghodrati, A.; and
Tuytelaars, T. 2015. Modeling video evolution for action
recognition. In /EEE CVPR, 5378-5387.

Gao, X.; Hu, W.; Tang, J.; Liu, J.; and Guo, Z. 2019. Opti-
mized skeleton-based action recognition via sparsified graph
regression. In Proceedings of the 2019 ACM International
Conference on Multimedia. ACM.

H., N. 2016. The cma evolution strategy: A tutorial. arXiv.

Hammond, D. K.; Vandergheynst, P.; and Gribonval, R.
2011. Wavelets on graphs via spectral graph theory. Applied
and Computational Harmonic Analysis 30(2):129-150.

Hu, J.-F.; Zheng, W.-S.; Lai, J.; and Zhang, J. 2015. Jointly
learning heterogeneous features for rgb-d activity recogni-
tion. In IEEE CVPR, 5344-5352.

Kay, W,; C.,J.; S.,,K.;; Z., B.; H,, C.; V., S.; Viola, F.; Green,
T.; Back, T.; Natsev, P.; et al. 2017. The kinetics human
action video dataset. arXiv.

Kim, T. S., and Reiter, A. 2017. Interpretable 3d human
action analysis with temporal convolutional networks. In
2017 IEEE CVPR workshops, 1623-1631.

Kipf, T. N., and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv.
Larranaga, P., and Lozano, J. A. 2001. Estimation of distri-
bution algorithms: A new tool for evolutionary computation,
volume 2. Springer Science & Business Media.

Li, C.; Cui, Z.; Zheng, W.; Xu, C.; and Yang, J. 2018. Spatio-
temporal graph convolution for skeleton based action recog-
nition. In Thirty-Second AAAL

Li, B.; Li, X.; Zhang, Z.; and Wu, F. 2019a. Spatio-temporal
graph routing for skeleton-based action recognition.

Li, M.; Chen, S.; Chen, X.; Zhang, Y.; Wang, Y.; and Tian,
Q. 2019b. Actional-structural graph convolutional networks
for skeleton-based action recognition. In IEEE CVPR.

Liu, C.; Chen, L.-C.; Schroff, F.; Adam, H.; Hua, W.; Yuille,
A.; and Fei-Fei, L. 2019. Auto-deeplab: Hierarchical neural
architecture search for semantic image segmentation. arXiv.

Liu, M.; Liu, H.; and Chen, C. 2017. Enhanced skeleton
visualization for view invariant human action recognition.
Pattern Recognition 68:346-362.
Liu, H.; Simonyan, K.; and Yang, Y. 2018. Darts: Differen-
tiable architecture search. arXiv.

Miller, G. F;; Todd, P. M.; and Hegde, S. U. 1989. De-
signing neural networks using genetic algorithms. In ICGA,
volume 89, 379-384.

2676

Monti, F.; Boscaini, D.; Masci, J.; Rodola, E.; Svoboda, J.;
and Bronstein, M. M. 2017. Geometric deep learning on
graphs and manifolds using mixture model cnns. In /EEE
CVPR, 5115-5124.

Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in pytorch.

Peng, W.; Hong, X.; and Zhao, G. 2019. Video action recog-
nition via neural architecture searching. arXiv.

Pham, H.; Guan, M.; Zoph, B.; Le, Q.; and Dean, J. 2018.
Efficient neural architecture search via parameter sharing. In
ICML, 4092-4101.

Pou., A., and S., O. 2019. Cem-rl: Combining evolutionary
and gradient-based methods for policy search. /CLR.

Real, E.; Ag., A.; H, Y.; and Le, Q. V. 2018. Regularized
evolution for image classifier architecture search. arXiv.
Sankar, A.; Wu, Y.; Gou, L.; Zhang, W.; and Yang, H. 2019.
Dynamic graph representation learning via self-attention
networks. ICLRW.

Saxena, S., and Verbeek, J. 2016. Convolutional neural fab-
rics. In NeurIPS, 4053-4061.

Shahroudy, A.; Liu, J.; Ng, T.-T.; and Wang, G. 2016. Ntu
rgb+ d: A large scale dataset for 3d human activity analysis.
In /IEEE CVPR, 1010-1019.

Shi, L.; Zhang, Y.; Cheng, J.; and Lu, H. 2019. Two-stream
adaptive graph convolutional networks for skeleton-based
action recognition. In JEEE CVPR, 12026-12035.

Si, C.; Jing, Y.; Wang, W.; Wang, L.; and Tan, T. 2018.
Skeleton-based action recognition with spatial reasoning
and temporal stack learning. In ECCV, 103-118.

Song, S.; Lan, C.; Xing, J.; Zeng, W.; and Liu, J. 2017.
An end-to-end spatio-temporal attention model for human
action recognition from skeleton data. In Thirty-first AAAL
Tang, Y.; Tian, Y.; Lu, J.; Li, P;; and Zhou, J. 2018. Deep
progressive reinforcement learning for skeleton-based ac-
tion recognition. In IEEE CVPR, 5323-5332.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. In NeurIPS, 5998-6008.

Velickovié, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2018. Graph attention networks. ICLR.
Yan, S.; Xiong, Y.; and Lin, D. 2018. Spatial temporal graph
convolutional networks for skeleton-based action recogni-
tion. In Thirty-Second AAAL

Zhang, P.; Lan, C.; Xing, J.; Zeng, W.; Xue, J.; and Zheng,
N. 2017. View adaptive recurrent neural networks for high
performance human action recognition from skeleton data.
In IEEE ICCV, 2117-2126.

Zoph, B., and Le, Q. V. 2016. Neural architecture search
with reinforcement learning. ArXiv.

Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V.
2018. Learning transferable architectures for scalable im-
age recognition. In /EEE CVPR, 8697-8710.

