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Abstract

Decisions are increasingly taken by both humans and ma-
chine learning models. However, machine learning models
are currently trained for full automation—they are not aware
that some of the decisions may still be taken by humans. In
this paper, we take a first step towards the development of
machine learning models that are optimized to operate under
different automation levels. More specifically, we first intro-
duce the problem of ridge regression under human assistance
and show that it is NP-hard. Then, we derive an alternative
representation of the corresponding objective function as a
difference of nondecreasing submodular functions. Building
on this representation, we further show that the objective is
nondecreasing and satisfies α-submodularity, a recently in-
troduced notion of approximate submodularity. These pro-
perties allow a simple and efficient greedy algorithm to en-
joy approximation guarantees at solving the problem. Expe-
riments on synthetic and real-world data from two important
applications—medical diagnosis and content moderation—
demonstrate that the greedy algorithm beats several competi-
tive baselines.

1 Introduction

In a wide range of critical applications, societies rely on
the judgement of human experts to take consequential
decisions—decisions which have significant consequences.
Unfortunately, the timeliness and quality of the decisions are
often compromised due to the large number of decisions to
be taken and a shortage of human experts. For example, in
certain medical specialties, patients in most countries need
to wait for months to be diagnosed by a specialist. In con-
tent moderation, online publishers often stop hosting com-
ments sections because their staff is unable to moderate the
myriad of comments they receive. In software development,
bugs may be sometimes overlooked by software developers
who spend long hours on code reviews for large software
projects.

In this context, there is a widespread discussion on the
possibility of letting machine learning models take deci-
sions in these high-stake tasks, where they have matched,
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or even surpassed, the average performance of human ex-
perts (Topol 2019; Cheng, Danescu-Niculescu-Mizil, and
Leskovec 2015; Pradel and Sen 2018). Currently, these mo-
dels are mostly trained for full automation—they assume
they will take all the decisions. However, their decisions are
still worse than those by human experts on some instances,
where they make far more errors than average (Raghu et al.
2019a). Motivated by this observation, our goal is to develop
machine learning models that are optimized to operate under
different automation levels. In other words, these models are
optimized to take decisions for a given fraction of the in-
stances and leave the remaining ones to humans.

More specifically, we focus on ridge regression and intro-
duce a novel problem formulation that allows for different
automation levels. Based on this formulation, we make the
following contributions:

I. We show that the problem is NP-hard. This is due to its
combinatorial nature—for each potential meta-decision
about which instances the machine will decide upon, there
is an optimal set of parameters for the regression model,
however, the meta-decision is also something we seek to
optimize.

II. We derive an alternative representation of the objec-
tive function as a difference of nondecreasing submodular
functions. This representation enables us to use a recent
iterative algorithm (Iyer and Bilmes 2012) to solve the
problem, however, this algorithm does not enjoy approxi-
mation guarantees.

III. Building on the above representation, we further show
that the objective function is nondecreasing and satisfies
α-submodularity, a notion of approximate submodular-
ity (Gatmiry and Gomez-Rodriguez 2019). These prop-
erties allow a simple and efficient greedy algorithm (refer
to Algorithm 1) to enjoy approximation guarantees.

Here, we would like to acknowledge that our contributions
are just a first step towards designing machine learning mo-
dels that are optimized to operate under different automation
levels. It would be very interesting to extend our work to
more sophisticated machine learning models and other ma-
chine learning tasks (e.g., classification).

Finally, we experiment with synthetic and real-world data
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from two important applications—medical diagnosis and
content moderation. Our results show that the greedy algo-
rithm beats several competitive algorithms, including the it-
erative algorithm for maximization of a difference of sub-
modular functions mentioned above, and is able to identify
and outsource to humans those samples where their exper-
tise is required. To facilitate research in this area, we are
releasing an open source implementation of our method1.
Related work. The work most closely related to ours is
by Raghu et al. (2019a), in which a classifier can outsource
samples to humans. However, in contrast to our work, their
classifier is trained to predict the labels of all samples in
the training set, as in full automation, and the proposed
algorithm does not enjoy theoretical guarantees. As a re-
sult, a natural extension of their algorithm to ridge regre-
ssion achieves a significantly lower performance than ours,
as shown in Figure 4.

There is a rapidly increasing line of work devoted to de-
signing classifiers that are able to defer decisions (Bartlett
and Wegkamp 2008; Cortes, DeSalvo, and Mohri 2016;
Geifman, Uziel, and El-Yaniv 2018; Geifman and El-Yaniv
2019; Raghu et al. 2019b; Ramaswamy et al. 2018; Thu-
lasidasan et al. 2019; Liu et al. 2019). Here, the classifiers
learn to defer either by considering the defer action as an
additional label value or by training an independent classi-
fier to decide about deferred decisions. However, there are
two fundamental differences between this work and ours.
First, they do not consider there is a human decision maker,
with a human error model, who takes a decision whenever
the classifiers defer it. Second, the classifiers are trained to
predict the labels of all samples in the training set, as in full
automation.

Our work is also related to active learning (Cohn, Ghahra-
mani, and Jordan 1995; Hoi et al. 2006; Willett, Nowak, and
Castro 2006; Sugiyama 2006; Guo and Schuurmans 2008;
Sabato and Munos 2014; Chen and Price 2017; Hashemi
et al. 2019), robust linear regression (Bhatia et al. 2017;
Suggala et al. 2019; Tsakonas et al. 2014; Wright and Ma
2010) and robust logistic regression (Feng et al. 2014). In
active learning, the goal is to to determine which subset of
training samples one should label so that a supervised ma-
chine learning model, trained on these samples, generalizes
well across the entire feature space during test. In contrast,
our trained model only needs to accurately predict samples
which are close to the samples assigned to the machine dur-
ing training time and rely on humans to predict the remain-
ing samples. In robust linear regression and robust logistic
regression, the (implicit) assumption is that a constant frac-
tion of the output variables are corrupted by an unbounded
noise. Then, the goal is to find a consistent estimator of the
model parameters which ignores the samples whose output
variables are noisy. In contrast, in our work, we do not as-
sume any noise model for the output variables but rather a
human error per sample and find a estimator of the model
parameters that outsources some of the samples to humans.

1https://github.com/Networks-Learning/regression-under-
assistance

2 Problem Formulation

In this section, we formally state the problem of ridge regres-
sion under human assistance, where some of the predictions
can be outsourced to humans.

Given a set of training samples {(xi, yi)}i∈V and a human
error per sample c(xi, yi), we can outsource a subset S ⊆
V of the training samples to humans, with |S| ≤ n. Then,
ridge regression under human assistance seeks to minimize
the overall training error, including the outsourced samples,
i.e.,

minimize
w,S

�(w,S) subject to |S| ≤ n, (1)

with

�(w,S) =
∑
i∈S

c(xi, yi) +
∑
j∈Sc

[
(yj − x�

j w)2 + λ||w||22
]
,

where the first term accounts for the human error, the second
term accounts the machine error, and λ is a given regulariza-
tion parameter for the machine.

Moreover, if we define y = [y1, y2, · · · , yN ]� and X =
[x1,x2, · · · ,xN ], we can rewrite the above objective func-
tion as

�(w,S) =
∑
i∈S

c(xi, yi)

+ (ySc −X�
Scw)�(ySc −X�

Scw) + λ||w||22 · |Sc|,

where ySc is the subvector of y indexed by Sc and XSc

is the submatrix formed by columns of X that are indexed
by Sc. Then, whenever S ⊂ V , it readily follows that the
optimal parameter w∗ = w∗(S) is given by

w∗(S) =
(
λ|Sc|I+XScX�

Sc

)−1
XScySc .

If we plug in the above equation into Eq. 1, we can rewrite
the ridge regression problem under human assistance as a set
function maximization problem, i.e.,

maximize
S

− log �(w∗(S),S) subject to |S| ≤ n, (2)

where �(w∗(S),S) is given by⎧⎪⎨
⎪⎩
∑

i∈S c(xi, yi) + y�
ScySc

−y�
ScX�

Sc

(
λ|Sc|I+XScX�

Sc

)−1
XScySc if S ⊂ V,∑

i∈S c(xi, yi) if S = V.

Unfortunately, due to its combinatorial nature, the above
problem formulation is difficult to solve, as formalized by
the following Theorem:

Theorem 1 The problem of ridge regression under human
assistance defined in Eq. 1 is NP-hard.

Proof Consider a particular instance of the problem with
c(xi, yi) = 0 for all i ∈ V and λ = 0. Moreover, assume the
response variables y are generated as follows:

y = X�w∗ + b∗, (3)

where b∗ is a n-sparse vector which takes non-zero values on
at most n corrupted sampless, and a zero elsewhere. Then,
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the problem can be just viewed as a robust least square re-
gression (RLSR) problem (Studer et al. 2011), i.e.,

minimize
w,S

∑
i∈S

(yi − x�
i w)2 subject to |S| = |V| − n,

which has been shown to be NP-hard (Bhatia et al. 2017).
This concludes the proof.
However, in the next section, we will show that, perhaps sur-
prisingly, a simple greedy algorithm enjoys approximation
guarantees. In the remainder of the paper, to ease the nota-
tion, we will use �(S) = �(w∗(S),S).
Remarks. Once the model is trained, given a new un-
labeled sample x, we outsource the sample to a human
if the nearest neighbor in the set V belongs to S∗, i.e.,
argmini∈V ||xi − x|| ∈ S∗, where S∗ is the solution to the
above maximization problem, and pass it on to the machine,
i.e., ŷi = x�

i w
∗(S∗), otherwise. Here, note that, as long as

the feature distribution does not change during test, this pro-
cedure guarantees that the fraction of samples outsourced to
humans during training and test time will be similar. The
following proposition formalizes this result:
Proposition 2 Let {xi}i∈V be a set of training samples,
{x′

j}j∈V′ a set of test samples, and n and n′ the number
of training and test samples outsourced to humans, respec-
tively. If xi,xj ∼ P(x) for all i ∈ V, j ∈ V ′, then, it holds
that E[n′]/|V ′| = n/|V|.

3 An Algorithm With

Approximation Guarantees

In this section, we first show that the objective function in
Eq. 2 can be represented as a difference of nondecreasing
submodular functions. Then, we build on this representa-
tion to show that the objective function is nondecreasing and
satisfies α-submodularity (Gatmiry and Gomez-Rodriguez
2019), a recently introduced notion of approximate submod-
ularity. Finally, we present an efficient greedy algorithm
that, due to the α-submodularity of the objective function,
enjoys approximation guarantees.
Difference of submodular functions. We first start by
rewriting the objective function log �(S) using the following
Lemma, which states a well-known property of the Schur
complement of a block matrix:

Lemma 3 Let Z =

[
A B
C D

]
. If D is invertible, then

det(Z) = det(D) · det(A−BD−1C).
More specifically, consider A =

∑
i∈S c(xi, yi) + y�

ScySc ,
B = C� = y�

ScX�
Sc and D = λ|Sc|I + XScX�

Sc in the
above lemma. Then, for S ⊂ V , it readily follows that:

log �(S) = f(S)− g(S) (4)

where f(S) is given by

log det

[ ∑
i∈S c(xi, yi) + y�

ScySc y�
ScX�

Sc

XScySc λ|Sc|I+XScX�
Sc

]
and g(S) is given by,

g(S) = log det[λ|Sc|I+XScX�
Sc ].

In the above, note that, for S = V , the functions f and g are
not defined. As it will become clearer later, for S = V , it
will be useful to define their values as follows:

f(S) = min
k1,k2

{
f(V\k1) + f(V\k2)− f(V\{k1, k2}),

g(V\k1) + g(V\k2)− g(V\{k1, k2})

+ log
∑
i∈V

c(xi, yi)
}
,

g(S) = f(S)− log
∑
i∈V

c(xi, yi),

where note that these values also satisfy Eq. 4. Next, we
show that, under mild technical conditions, the above func-
tions are nonincreasing and satisfy a natural diminishing
property called submodularity2.

Theorem 4 Assume c(xk, yk) ≤ γy2k and λ ≥
γ

1−γmax
i∈V
||xi||22 with 0 ≤ γ < 1, then, f and g are non-

increasing and submodular.

Proof We start by showing that f is submodular, i.e., f(S ∪
k) − f(S) ≥ f(T ∪ k) − f(T ) for all S ⊆ T ⊂ V and
k ∈ V . First, define

M(S) =
[

y�
ScySc +

∑
i∈S c(xi, yi) y�

ScX�
Sc

XScySc λ|Sc|I+XScX�
Sc

]
.

and observe that

M(S ∪ k) = M(S)−
[

y2k − c(xk, yk) ykx
�
k

xkyk λI+ xkx
�
k

]
Then, it follows from Proposition 10 (refer to Appendix B)
that M(S) −M(S ∪ k) � 0 Hence, we have a Cholesky
decomposition M(S)−M(S ∪k) = QkQ

�
k Similarly, we

have that M(T ∪ k) = M(T )−QkQ
�
k , and hence

M(T ) = M(S)−
∑

i∈T \S
QiQ

�
i (5)

Now, for T ∪ k ⊂ V , a few steps of calculation shows that:
f(S ∪ k)− f(S)− f(T ∪ k) + f(T ) equals to

log
det(I−Q�

k M
−1(S)Qk)

det(I−Q�
k M

−1(T )Qk)

Moreover, Eq. 5 indicates that M(S) � M(T ) � 0.
Therefore M−1(T ) � M−1(S) and hence I −
Q�

k M
−1(S)Qk � I − Q�

k M
−1(T )Qk. In addition, we

also note that M(T ) − QkQ
�
k � 0. This, together with

Lemma 3, we have that I − Q�
k M

−1(T )Qk � 0. Hence,
due to Proposition 11 (refer to Appendix B), we have det(I−
Q�

k M
−1(S)Qk) ≥ det(I − Q�

k M
−1(T )Qk. Finally, for

T ∪ k = V , we have that

f(S ∪ k1)− f(S) ≥f(V\k2)− f(V\{k1, k2}) (6)
≥f(V)− f(V\{k1}), (7)

2A set function f(·) is submodular iff it satisfies that f(S ∪
{k}) − f(S) ≥ f(T ∪ {k}) − f(T ) for all S ⊆ T ⊂ V and
k ∈ V , where V is the ground set.
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where the first inequality follows from the proof of submod-
ularity for T ∪ k ⊂ V and the second inequality comes from
the definition of f(S) for S = V . This concludes the proof
of submodularity of f .

Next, we show that f is nonincreasing. First, recall that,
for |S| < |V| − 1, we have that

f(S ∪ k)− f(S) = log
det(M(S)−QkQ

�
k )

det(M(S)) (8)

Then, note that M(S) − QkQ
�
k � M(S) and M(S) −

QkQ
�
k � 0. Hence, using Proposition 11 (refer to

Appendix B), it follows that det(M(S) − QkQ
�
k ) ≤

det(M(S)), which proves f is nonincreasing for |S| <
|V| − 1. Finally, for |S| = |V| − 1, it readily follows from
Eq. 7 that

f(V)− f(V\{k1}) ≤ f(V\k2)− f(V\{k1, k2}) (9)
Now f(V\k2) − f(V\{k1, k2}) ≤ 0 since we have proved
that f(S) is nonincreasing for |S| < |V|−1. This concludes
the proof of monotonicity of f .

Proceeding similarly, it can be proven that g is also non-
decreasing and submodular.
We would like to highlight that, in the above, the technical
conditions have a natural interpretation—the first condition
is satisfied if the human error is not greater than a fraction√
γ of the true response variable and the second condition is

satisfied if the regularization parameter is not too small.
In our experiments, the above result will enable us to use

a series of recent heuristic iterative algorithms for maximiz-
ing the difference of submodular functions (Iyer and Bilmes
2012) as baselines. However, these algorithms do not enjoy
approximation guarantees—they only guarantee to mono-
tonically reduce the objective function at every step.
Monotonicity. We first start by analyzing the monotonicity
of log �(S) whenever S = V\k, for any k ∈ V in the fol-
lowing Lemma (proven in Appendix A):
Lemma 5 Assume c(xk, yk) < γy2k and λ >
γ

1−γ maxi∈V ||xi||22 with 0 ≤ γ < 1. Then, it holds
that log �(V)− log �(V\k) < 0 for all k ∈ V .
Then, building on the above lemma, we have the following
Theorem, which shows that log �(S) is a strictly nonincreas-
ing function (proven in Appendix A):
Theorem 6 Assume c(xk, yk) < γy2k and λ >
γ

1−γ maxi∈V ||xi||22 with 0 ≤ γ < 1, then, the function
log �(S) is strictly nonincreasing, i.e.,

log �(S ∪ k)− log �(S) < 0

for all S ∈ V and k ∈ V .
Finally, note that the above result does not imply that the

human error c(xk, yk) is always smaller than the machine
error (yk − x�

k w
∗(k))2, where w∗(k) is optimal parameter

for S = {k}, as formalized by the following Proposition
(proven in Appendix A):
Proposition 7 Assume ρ2y2k < c(xk, yk) < γy2k and
γ

1−γ maxi∈V ||xi||22 < λ < ρ
1−ρ maxi∈V ||xi||22 with γ <

ρ <
√
γ and 0 ≤ γ < 1, then, it holds that

c(xk, yk) > (yk − x�
k w

∗(k))2.

Algorithm 1 Greedy algorithm

Input: Ground set V , set of training samples {(xi, yi)}i∈V ,
parameters n and λ.

Output: Set of items S
1: S ← ∅

2: while |S| < n do
3: % Find best sample
4: k∗ ← argmaxk∈V\S − log �(S ∪ k) + log �(S)
5: % Sample is outsourced to humans
6: S ← S ∪ {k∗}
7: end while
8: return S

α-submodularity. Given the above results, we are now
ready to present and prove our main result, which charac-
terizes the objective function of the optimization problem
defined in Eq. 2:

Theorem 8 Assume c(xk, yk)<γ y2k, λ> γ
1−γ max

i∈V
||xi||22

with 0 ≤ γ < 1, and
∑

i∈V c(xi, yi) ≥ 13. Then, the func-
tion − log �(S) is a nondecreasing α-submodular function4

and the parameter α satisfies that

α ≤ α∗ = 1−min
{ (1− κ�) log �(V)
maxk1,k2 f(V\{k1, k2})− f(V\{k1})

,

(1− κ�) log �(V)
maxk log �(V\k)− log �(V)

}
(10)

with, κ� =
log [�(∅)−mink(�(V\k)− �(V))]

log �(∅)

Proof Using that
∑

i∈V c(xi, yi) > 1 and the function �
is nonincreasing, we can conclude that 1 < �(V) < �(S).
Then, it readily follows from the proof of Theorem 6 that

1 < �(S ∪ k) <�(S)− (�(V\k)− �(V)) (11)

Hence we have,

log �(S ∪ k)

log �(S) ≤
log
(
�(S)− (�(V\k)− �(V))

)
log �(S)

(a)
=

log
(
�(∅)− (�(V\k)− �(V))

)
log �(∅)

≤ κ� (12)

where equality (a) follows from Theorem 6, which implies

3Note that we can always rescale the data to satisfy this last
condition.

4A function f(·) is α-submodular (Gatmiry and Gomez-
Rodriguez 2019) iff it satisfies that f(S ∪ {k}) − f(S) ≥ (1 −
α) [f(T ∪ {k})− f(T )] for all S ⊆ T ⊂ V and k ∈ V , where
V is the ground set and α is the generalized curvature (Lehmann,
Lehmann, and Nisan 2006; Bogunovic, Zhao, and Cevher 2018;
Hashemi et al. 2019).
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Figure 1: Solution (w∗(S∗),S∗) provided by our greedy algorithm for a gaussian and logistic response variable distribution
and different number of outsourced samples n. In all cases, we used d = 1 and σ2 = 0.01. For the logistic distribution, as
n increases, the greedy algorithm let the machine to focus on the samples where the relationship between features and the
response variables is more linear and outsource the remaining points to humans. For the gaussian distribution, as n increases,
the greedy algorithm outsources samples on the tails of the distribution to humans.

that �max = �(∅). Then, we have that

1− α = min
k,S⊆T ⊆V

log �(S)− log �(S ∪ k)

log �(T )− log �(T ∪ k)

≥ min
{

min
k,S⊆T :|T |≤|V|−2

log �(S)− log �(S ∪ k)

log �(T )− log �(T ∪ k)
,

min
S,k

log �(S)− log �(S ∪ k)

log �(V\k)− log �(V)

}
(13)

Next, we bound the first term as follows:

min
k,S⊆T :|T |≤|V|−2

log �(S)− log �(S ∪ k)

log �(T )− log �(T ∪ k)

(a)

≥ min
k,S⊆T :|T |≤|V|−2

(1− κ�) log �(S)
log �(T )− log �(T ∪ k)

(b)

≥ min
k,|T |≤|V|−2

(1− κ�) log �(V)
log �(T )− log �(T ∪ k)

= min
k,|T |≤|V|−2

(1− κ�) log �(V)
f(T )− f(T ∪ k)− (g(T )− g(T ∪ k))

(c)

≥ min
k,|T |≤|V|−2

(1− κ�) log �(V)
f(T )− f(T ∪ k)

(d)

≥ (1− κl) log �(V )

maxk1,k2(f(V\{k1, k2})− f(V\k1))
,

where inequality (a) follows from Eq. 12, inequality (b) fol-
lows from the monotonicity of log �(S), and inequalities (c)
and (d) follows from Theorem 4. Finally, we use the mono-
tonicity of log �(S) and Eq. 12 to bound the second term in
Eq. 13 is always greater than (1−κ�) log �(V)

maxk log �(V\k)−log �(V) , which
concludes the proof.
A greedy algorithm. The greedy algorithm proceeds itera-
tively and, at each step, it assigns to the humans the sample

(xk, yk) that provides the highest marginal gain among the
set of samples which are currently assigned to the machine.
Algorithm 1 summarizes the greedy algorithm.

Since the objective function in Eq. 2 is α-submodular, it
readily follows from Theorem 9 in Khashayar and Gomez-
Rodriguez (Gatmiry and Gomez-Rodriguez 2019) that the
above greedy algorithm enjoys an approximation guarantee.
More specifically, we have the following Theorem:

Theorem 9 The greedy algorithm returns a set S such that
− log �(S) ≥ (1 + 1/(1 − α))−1OPT , where OPT is the
optimal value and α ≤ α∗ with α∗ defined in Eq. 10.

In the above, note that, due to Theorem 6, the actual (regu-
larized) loss function is strictly nonincreasing and thus the
greedy algorithm always goes until |S| = n, however, the
overall accuracy may be higher for some values of |S| < n
as shown in Figure 6. In the next section, we will demon-
strate that, in addition to enjoying the above approximation
guarantees, the above greedy algorithm performs better in
practice than several competitive baselines.

4 Experiments on Synthetic Data

In this section, we experiment with a variety of synthetic
examples. First, we look into the solution (w∗(S∗),S∗) pro-
vided by the greedy algorithm. Then, we compare the per-
formance of the greedy algorithm with several competitive
baselines. Finally, we investigate how the performance of
the greedy algorithm varies with respect to the amount of
human error.
Experimental setup. For each sample (x, y), we first gen-
erate each dimension of the feature vector x ∈ R

d uni-
formly at random, i.e., xi ∼ U(−1, 1) and then sample
the response variable y from either (i) a Gaussian distri-
bution N (1�x/d, σ2

1) or (ii) a logistic distribution 1/(1 +
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Figure 2: Mean squared error (MSE) against number of
outsourced samples n for the proposed greedy algorithm,
DS (Iyer and Bilmes 2012), distorted greedy (Harshaw et al.
2019) and Triage (Raghu et al. 2019a) on synthetic data. In
all cases, we used d = 5 and σ2 = 10−3. In panel (a), we set
λ = 5 ·10−3 and, in panel (b), we set λ = 10−3. The greedy
algorithm consistently outperforms the baselines across the
entire range of automation levels.

exp(−1�x/d)). Moreover, we sample the associated hu-
man error from a Gaussian distribution, i.e., c(x, y) ∼
N (0, σ2

2). In each experiment, we use |V| = 500 training
samples and we compare the performance of the greedy al-
gorithm with three competitive baselines:
— An iterative heuristic algorithm (DS) for maximizing
the difference of submodular functions by Iyer and Bilmes
(2012).
— A greedy algorithm (Distorted greedy) for maximizing
γ-weakly submodular functions by Harshaw et al. (2019)5.
— A natural extension of the algorithm (Triage) by Raghu
et al. (2019a), originally developed for classification under
human assistance, where we first solve the standard ridge
regression problem for the entire training set, then we map
each test sample to the nearest neighbor training sample and
finally outsource to humans the top n samples sorted in de-
creasing order of the difference between machine and human
error of the assigned training sample.
Results. We first look into the solution (w∗(S∗),S∗) pro-
vided by the greedy algorithm both for the Gaussian and
logistic distributions and a different number of outsourced
samples n. Figure 1 summarizes the results, which reveal
several interesting insights. For the logistic distribution, as
n increases, the greedy algorithm let the machine to focus
on the samples where the relationship between features and
the response variables is more linear and outsource the re-
maining points to humans. For the Gaussian distribution, as
n increases, the greedy algorithm outsources samples on the
tails of the distribution to humans.

Then, we compare the performance of the greedy algo-
rithm in terms of mean squared error (MSE) on a held-out
set against the three competitive baselines. Figure 2 summa-
rizes the results, which show that the greedy algorithm con-
sistently outperforms the baselines across the entire range of
automation levels. Finally, we investigate how the perfor-
mance of our greedy algorithm varies with respect to the
amount of human error. Figure 3 summarizes the results,
which shows that, for low levels of human error, the overall
mean squared error decreases monotonically with respect to

5Note that any α-submodular function is γ-weakly submodu-
lar (Gatmiry and Gomez-Rodriguez 2019).
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Figure 3: Mean squared error (MSE) achieved by the pro-
posed greedy algorithm against the number of outsourced
samples n for different levels of human error (σ2) on syn-
thetic data. In all cases, we used d = 5. In panel (a), we
set λ = 5 · 10−3 and, in panel (b), we set λ = 10−3. For
low levels of human error, the overall mean squared error
decreases monotonically with respect to the number of out-
sourced samples. In contrast, for high levels of human error,
it is not beneficial to outsource samples to humans.

the number of outsourced samples to humans. In contrast,
for high levels of human error, it is not beneficial to out-
source samples.

5 Experiments on Real Data

In this section, we experiment with four real-world datasets
from two important applications, medical diagnosis and con-
tent moderation, and show that the greedy algorithm beats
several competitive baselines. Moreover, we also look at the
samples that the greedy algorithm outsources to humans and
show that, for different distributions of human error, the out-
sourced samples are those that humans are able to predict
more accurately.
Experimental setup. We experiment with one dataset for
content moderation and three datasets for medical diagnosis,
which are publicly available (Davidson et al. ; Decencière et
al. 2014; Hoover, Kouznetsova, and Goldbaum 2000). More
specifically:

(i) Hatespeech: It consists of ∼1000 tweets6 containing
words, phrases and lexicons used in hate speech. Each
tweet is given several scores by three to five annotators
from Crowdflower, which measure the severity of hate
speech.

(ii) Stare-H: It consists of∼400 retinal images. Each image
is given a score by one single expert, on a five point scale,
which measures the severity of a retinal hemorrhage.

(iii) Stare-D: It contains the same set of images from Stare-
H. However, in this dataset, each image is given a score
by a single expert, on a six point scale, which measures
the severity of the Drusen disease.

(iv) Messidor: It contains 500 eye images. Each image is
given score by one single expert, on a three point scale,
which measures the severity of an edema.

6The original Hatespeech dataset consists of ∼25000 tweets,
however, we report results on a randomly chosen subset of 1000
tweets because the distorted greedy and DS algorithms did not
scale in the original dataset. We found similar results in other ran-
dom subsets.
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Figure 4: Mean squared error (MSE) against number of outsourced samples n for the proposed greedy algorithm, DS (Iyer and
Bilmes 2012), distorted greedy (Harshaw et al. 2019) and triage (Raghu et al. 2019a) on four real-world datasets. In Panels
(b-d), we set the parameter p = 0.90. The greedy algorithm outperforms the baselines across a majority of automation levels.
The only exceptions are high automation levels, where the distorted greedy and the triage algorithms sometimes achieve slightly
better performance.

(a) Easy sample (b) Difficult sample

Figure 5: An easy and a difficult sample image from the
Stare-D dataset. Both images are given a score of severity
zero for the Drusen disease, which is characterized by patho-
logical yellow spots. The easy sample does not contain yel-
low spots and thus it is easy to predict its score. In contrast,
the difficult sample contains yellow spots, which are mani-
fested not from Drusen, but diabetic retinopathy, and thus it
is challenging to accurately predict its score. As a result, the
greedy algorithm decides to outsource the difficult sample to
humans, whereas it lets the machine decide about the easy
one.

We first generate a 100 dimensional feature vector using
fasttext (Joulin et al. 2016) for each sample in the Hate-
speech dataset and a 1000 dimensional feature vector using
Resnet (He et al. 2016) for each sample in the Stare-H, Stare-
D, and Messidor datasets. Then, we use the top 50 features,
as identified by PCA, as x in our experiments. For the image
datasets, the response variable y is just the available score
by a single expert and the human predictions are sampled
from a categorical distribution s ∼ Cat(px), where px are
the probabilities of each potential score value s for a sample
with features x. More specifically, if the response variable
takes values on a t point scale, we consider:

px(k) =

⎧⎪⎪⎨
⎪⎪⎩
p if k = y
1−p
2 if k ∈ {y − 1, y + 1} and 1 < y < t

1− p if k = y − 1 and y = t

1− p if k = y + 1 and y = 1,

where p is a parameter that controls the human accuracy. For
the Hatespeech dataset, the response variable y is the mean
of the scores provided by the annotators and the human pre-
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Figure 6: Mean squared error (MSE) achieved by the pro-
posed greedy algorithm against the number of outsourced
samples n under different distributions of human errors on
two real-world datasets. Under each distribution of human
error, human error is low (c(x, y) = 10−4) for a fractions ρc
of the samples and high (c(x, y) = 0.5) for the remaining
fraction 1−ρc. As long as there are samples that humans can
predict with low error, the greedy algorithm does outsource
them to humans and thus the overall performance improves.
However, whenever the fraction of outsourced samples is
higher than the fraction of samples with low human error,
the performance degrades. This results in a characteristic U-
shaped curve.

dictions are picked uniformly at random from the available
individual scores given by each annotator. In each dataset,
we compute the human error as c(x, y) = E(y − s)2 for
each sample (x, y) and set the same value of λ across all
competitive methods. Finally, in each experiment, we use
80% samples for training and 20% samples for testing.
Results. We first compare the performance of the greedy al-
gorithm in terms of mean squared error (MSE) on a held-out
set against the same competitive baselines used in the exper-
iments on synthetic data, i.e., DS (Iyer and Bilmes 2012),
distorted greedy (Harshaw et al. 2019), and triage (Raghu
et al. 2019a). Figure 4 summarizes the results, which show
that the greedy algorithm outperforms the baselines across a
majority of automation levels. The only exceptions are high
automation levels, where the distorted greedy and the triage
algorithms sometimes achieve slightly better performance.

Next, we look at the samples that the greedy algorithm
outsources to humans and those that leaves to machines. In-
tuitively, human assistance should be required for those sam-

2617



ples which are difficult (easy) for a machine (a human) to
decide about. Figure 5 provides an illustrative example of
an easy and a difficult sample image. While both sample im-
ages are given a score of severity zero for the Drusen disease,
one of them contains yellow spots, which are often a sign of
Drusen disease7, and is therefore difficult to predict. In this
particular case, the greedy algorithm outsourced the difficult
sample to humans and let the machine decide about the easy
one. Does this intuitive assignment happen consistently? To
answer this question, we run our greedy algorithm on the
Stare-H and Stare-D datasets under different distributions of
human error and assess to which extent the greedy algorithm
outsources to humans those samples they can predict more
accurately.

More specifically, we sample the human predictions from
a non-uniform categorical distribution under which human
error is low (c(x, y) = 10−4) for a fraction ρc of the sam-
ples and high (c(x, y) = 0.5) for the remaining fraction
1 − ρc. Figure 6 shows the performance of the greedy al-
gorithm for different ρc values. We observe that, as long as
there are samples that humans can predict with low error,
the greedy algorithm outsources them to humans and thus
the overall performance improves. However, whenever the
fraction of outsourced samples is higher than the fraction of
samples with low human error, the performance degrades.
This results in a characteristic U-shaped curve.

6 Conclusions

In this paper, we have initiated the development of machine
learning models that are optimized to operate under different
automation levels. We have focused on ridge regression un-
der human assistance and shown that a simple greedy algo-
rithm is able to find a solution with nontrivial approximation
guarantees. Moreover, using both synthetic and real-world
data, we have shown that this greedy algorithm beats several
competitive baselines and is able to identify and outsource
to humans those samples they can predict more accurately.

Our work also opens many interesting venues for future
work. For example, it would be very interesting to advance
the development of other more sophisticated machine learn-
ing models, both for regression and classification, under dif-
ferent automation levels. It would be valuable to find tighter
lower bounds on the parameter α, which better characterize
the good empirical performance. It would be very interesting
to study sequential decision making scenarios under human
assistance, e.g., autonomous driving under different automa-
tion levels. Finally, we have assumed that we can measure
the human error for every training sample. It would be inter-
esting to tackle the problem under uncertainty.

A Proofs

Proof of Proposition 2. Let the feature space be F . More-
over we denote that X = {xi}i∈V and X ′ = {x′

j}j∈V′ .
Then we denote that

Hxi = ∩k∈V{x ∈ F|||xi − x|| ≤ ||xk − x||}. (14)

7In this particular case, the patient suffered diabetic retinopathy,
which is also characterized by yellow spots.

Hence, the set of test samples, which are nearest to xi,
is denoted as X ′ ∩ Hxi . Since the features in X and X ′

are i.i.d random variables, |X ′ ∩ Hxi
| are also i.i.d ran-

dom variables for different realizations of X and X ′. Let
us define ϑ = E[|X ′ ∩ Hxi

|]. Hence we have, E[n′] =∑
i∈S E[|X ′ ∩Hxi

|] = nϑ and E[|V ′| − n′] = (|V| − n)ϑ,
which leads to the required result.

Proof of Lemma 5. By definition, we have that

�(w∗(V),V) =
∑
i∈S

c(xi, yi) + c(xk, yk)

�(w∗(V\k),V\k) = y2k − y2kx
�
k (λI+ xkx

�
k )

−1xk

+
∑
i∈S

c(xi, yi)

Moreover, note that it is enough to prove that �(w∗(V),V)−
�(w∗(V\k),V\k) < 0, without the logarithms, to prove the
result. Then, we have that

�(w∗(V),V)− �(w∗(V\k),V\k)
= c(xk, yk)− y2k + y2kx

�
k (λI+ xkx

�
k )

−1xk

(a)
= c(xk, yk)− y2k + y2kx

�
k

(
1

λ
I− 1

λ2

xkx
�
k

1 +
x�

k xk

λ

)
xk

= c(xk, yk)− y2k + y2k
x�
k xk

λ

(
1− x�

k xk

λ+ x�
k xk

)

< y2k

(
x�
k xk

λ+ x�
k xk

− (1− γ)

)
(b)
< y2k

⎛
⎝ x�

k xk

γx�
k xk

1−γ + x�
k xk

− (1− γ)

⎞
⎠ = 0,

where equality (a) follows from Lemma 12 and inequality
(b) follows from the lower bound on λ.

Proof of Theorem 6. Define Λ0 = λ|Sc|I + XScX�
Sc ,

Λ1 = λ|Sc|I+XScX�
Sc−λI−xkx

�
k and Θ = λI+xkx

�
k .

Moreover, note that

Λ1 = Λ0 −Θ and Λ−1
1

(a)
= Λ−1

0 + (Λ0Θ
−1Λ0 −Λ0)︸ ︷︷ ︸

Define as Ω

−1

where equality (a) follows from Proposition 13. Then, it fol-
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lows that
�(S ∪ k) =

∑
i∈S

c(xi, yi) + c(xk, yk) + y�
ScySc − y2k

− (y�
ScX�

Sc − ykx
�
k )Λ

−1
1 (XScySc − ykxk)

(a)
=
∑
i∈S

c(xi, yi) + c(xk, yk) + y�
ScySc − y2k

− y�
ScX�

ScΛ−1
0 XScySc − y�

ScX�
ScΩ−1XScySc

+ 2yky
�
ScX�

ScΛ−1
1 x�

k − y2kx
�
k Λ

−1
1 xk

= �(S) + c(xk, yk)− y2k −
[
y�
ScX�

Sc ykx
�
k

][
Ω−1 −Λ−1

1

−Λ−1
1 Λ−1

1 ΩΛ−1
1

] [
XScySc

ykxk

]
− y2kx

�
k (Λ

−1
1 −Λ−1

1 ΩΛ−1
1 )xk

(b)

≤ �(S) + c(xk, yk)− y2k − y2kx
�
k (Λ

−1
1 −Λ−1

1 ΩΛ−1
1 )xk

(c)
= �(S) + c(xk, yk)− y2k + y2kx

�
k (λI+ xkx

�
k )

−1xk

(d)
= �(S) + �(V)− �(V\k),

where equality (a) follows from Proposition 13, inequality

(b) uses that
[

Ω−1 −Λ−1
1

−Λ−1
1 Λ−1

1 ΩΛ−1
1

]
� 0, equality (c) fol-

lows from the following observation:
(Λ−1

1 −Λ−1
1 ΩΛ−1

1 )

= (Λ−1
0 +Ω−1)− (Λ−1

0 +Ω−1)Ω(Λ−1
0 +Ω−1)

= −Λ−1
0 ΩΛ−1

0 −Λ−1
0

= −Λ−1
0 (Λ0Θ

−1Λ0 −Λ0)Λ
−1
0 −Λ−1

0 = −Θ−1,

and inequality (d) follows from Lemma 5.
Proof of Proposition 7.

(yk − x�
k w

∗(k))2

= (yk − x�
k w

∗(k))2 + λ||w∗(k)||2 − λ||w∗(k)||2

= y2
k − y2

kx
�
k (λI+ xkx

�
k )

−1xk − λy2
kx

�
k (λI+ xkx

�
k )

−2xk

= y2
k − y2

k
x�

k xk

λ+ x�
k xk

− λy2
kx

�
k (λI+ xkx

�
k )

−2xk

(a)
=

λy2
k

λ+ x�
k xk

− λy2
kx

�
k

⎛
⎝ 1

λ
I− 1

λ2

xkx
�
k

1 +
x�
k
xk

λ

⎞
⎠

2

xk

=
λy2

k

λ+ x�
k xk

− y2
k

λ
x�

k

(
I− xkx

�
k

λ+ x�
k xk

)2

xk

= y2
k

(
λ

λ+ x�
k xk

)2 (b)

≤ ρ2y2
k,

where equality (a) follows from Lemma 12 and inequal-
ity (b) follows from the assumption λ ≤ ρ

1−ρ maxi ||x2
i ||22.

Finally, since c(xk, yk) > ρ2y2k, we can conclude that
c(xk, yk) > (yk − x�

k w
∗(k))2.

B Auxiliary lemmas and propositions
Proposition 10 Assume c(xk, yk) ≤ γy2k and λ ≥
γ

1−γ ||xk||22. Then,
[

y2k − c(xk, yk) ykx
�
k

xkyk λI+ xkx
�
k

]
� 0

Proof We use Schur complement property for positive-
definiteness (Boyd et al. 1994, Page 8)

on the matrix
[

y2k − c(xk, yk) ykx
�
k

xkyk λI+ xkx
�
k

]

λI+ xkx
�
k − xkx

�
k (y

2
k/(y

2
k − c(xk, yk))) (15)

� λI− γ

1− γ
xkx

�
k . (16)

Given that xkx
�
k is a rank one matrix, it has only one non-

zero eigenvalue. Hence it is same as tr(xkx
�
k ) = ||xk||22,

which along with the assumed bound on λ proves
that λI + xkx

�
k − xkx

�
k (y

2
k/(y

2
k − c(xk, yk))) � 0.

Then from Schur complement method, we have[
y2k − c(xk, yk) ykx

�
k

xkyk λI+ xkx
�
k

]
� 0.

Proposition 11 If A � B and B and A are both positive
definite matrices, then det(A) ≥ det(B).

Proof If A = LL� is the Cholesky factorization and since
A is strictly positive definite, L has an inverse.

A � B =⇒ I � L−1BL−� � 0

=⇒ 1 > eigi(L
−1BL−�) > 0 ∀ eigenvalues eigi

=⇒ 1 >
∏
i

eigi(L
−1BL−�)

=⇒ 1 > det(L−1BL−�) = (1/ det(A))(det(B))

which immediately gives the required result.

Lemma 12 ((Sherman and Morrison 1950)) Assume A is
an invertible matrix. Then, the following equality holds:

(A+ uv�)−1 = A−1 − A−1uv�A−1

1 + v�A−1u
(17)

Proposition 13 Assume A and B are invertible matrices.
Then, the following equality holds:

(A−B)1 = A−1 + (AB−1A−A)−1 (18)

Proof We observe that, (AB−1A − A) =
(AB−1A − A)A−1(A − B) + (A − B). Pre-multiply
by (AB−1A−A)−1 and post-multiply by (A−B)−1 on
both sides to get the result.

Proposition 14 The function t(x) = log(x−a)
log x is increasing

for x > a+ 1.

Proof

dt(x)/dx =
x log x− (x− a) log(x− a)

x(x− a)(log x)2
> 0 (19)
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