
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Querying to Find a Safe Policy under
Uncertain Safety Constraints in Markov Decision Processes

Shun Zhang, Edmund H. Durfee, Satinder Singh
Computer Science and Engineering, University of Michigan

{shunzh, durfee, baveja}@umich.edu

Abstract

An autonomous agent acting on behalf of a human user has
the potential of causing side-effects that surprise the user
in unsafe ways. When the agent cannot formulate a policy
with only side-effects it knows are safe, it needs to selec-
tively query the user about whether other useful side-effects
are safe. Our goal is an algorithm that queries about as few
potential side-effects as possible to find a safe policy, or to
prove that none exists. We extend prior work on irreducible
infeasible sets to also handle our problem’s complication that
a constraint to avoid a side-effect cannot be relaxed without
user permission. By proving that our objectives are also adap-
tive submodular, we devise a querying algorithm that we em-
pirically show finds nearly-optimal queries with much less
computation than a guaranteed-optimal approach, and outper-
forms competing approximate approaches.

Introduction

We consider a setting where an autonomous agent (called
the “robot”) takes actions in a domain on behalf of a hu-
man user (called the “human”). The human specifies a goal
or a reward function for the robot to optimize. However, in
practice, she might overlook specifying some preferences, or
purposely leave out details she (possibly incorrectly) thinks
are irrelevant or already known by the robot.

For example, Figure 1 shows a robot navigation domain
modified from our prior work (Zhang, Durfee, and Singh
2018). The human asks the robot to turn off a switch in the
top-right corner. After planning, the robot could follow sev-
eral possible policies. It could traverse the carpet (π1), but
get the carpet dirty. It could enter the room through door d1
and then move away box b1 or b2, open door d2, and go
to the switch (π2 or π3 respectively). However, the robot is
only told to change (turn off) the switch. Dirtying a carpet,
moving boxes, or opening a door may be changes that neg-
atively surprise the human, and thus executing any of these
policies is potentially not safe. That is, because the robot
might be new to this building, it may be uncertain about the
safety constraints and human preferences here.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We can see that in this example, without communicating
with the human, the robot could not find a safe policy since
all the paths that reach the switch side effect some other ob-
jects. So we allow the robot to ask clarifying queries (for
example, “Can I move box b1 away?”). The robot finds a
policy that is known to be safe when it queries and is explic-
itly told that the carpet can be dirty, or b1 is movable and
d2 can be opened, etc. Our main focus is on how the robot
should ask the minimum number of queries in expectation to
either find a safe policy or prove that no safe policy exists.

The literature has explored the problem of avoiding neg-
ative side-effects (Amodei et al. 2016; Leike et al. 2017;
Turner, Hadfield-Menell, and Tadepalli 2019). Our prior
work (Zhang, Durfee, and Singh 2018) considered a simi-
lar problem, with the major difference being that we there
assumed the robot initially knows a safe policy (to reach the
switch without side effecting any objects other than ones it
knows it can) and queries to find a maximally better safe
policy. In our problem here, since no initial safe policy is
known, our prior algorithm cannot be applied. This paper’s
contribution thus is to answer the question of how the robot
should query to find a safe policy or prove that no safe poli-
cies actually exist when initially no safe policies are known.
Essentially, our problem is to query to satisfy safety con-
straints rather than to optimize a policy under safety con-
straints, which requires a very different approach despite the
setting being similar. Note that once the robot has found a
safe policy, if it can still ask more queries then it can use the
prior algorithms to pose queries to improve the policy.

In this paper, we make the following contributions: 1) We
formulate the problem of finding an initial safe policy in a
factored Markov decision process. 2) We design a query al-
gorithm that makes novel use of prior work on irreducible in-
feasible sets and adaptive submodularity. 3) Empirically, we

Figure 1: The robot navigation domain.

2552

show that our algorithm finds nearly-optimal queries with
much less computation than a guaranteed-optimal approach,
and outperforms some computationally cheaper alternatives.

Problem Statement

Similar to our prior work (Zhang, Durfee, and Singh 2018)
(hereafter referred to as ZDS in this paper), we model the
domain as a factored Markov decision process (Boutilier,
Dean, and Hanks 1999). A finite Markov decision process
(Sutton and Barto 2018) is a tuple 〈S,A, T, r, s0, γ〉, with fi-
nite state space S, finite action set A, and transition function
T where T (s, a, s′) is the probability of reaching state s′ by
taking action a in s. r(s, a) is the reward of taking action a
in s. s0 is the initial state and γ is the discount factor. In a
factored MDP, a state is described in terms of values of var-
ious features (e.g., the robot’s location, cleanliness of each
carpet, etc.), so the state space S is the cross-product of the
values the features can take. We will consistently use φ to
denote one feature and Φ to denote a set of features.

We assume that the robot can partition the features into
the following sets, exactly as we did in ZDS:

• ΦRF : The (known-to-be-)free features. The robot knows
these features are freely changeable (e.g., its location).

• ΦRL : The (known-to-be-)locked features. The robot knows
it should never change any of these features.

• ΦR? : The unknown features. These are features that the
robot does not know whether the user considers freely
changeable or locked.

The human partitions features into two sets, ΦHL and ΦHF .
Per ZDS, the robot’s knowledge is consistent with that of
the human, that is, ΦRF ⊆ ΦHF and ΦRL ⊆ ΦHL . In general, the
robot may not know the categories of all features (ΦR? �= ∅).

As in our work in ZDS, to guarantee safety, the robot
should never change features in ΦHL . However, the robot
only has partial information about this set. So, like in ZDS,
we require that the robot should not change any features in
ΦRL or ΦR? (Requirement 1). That is, it can only change fea-
tures that are known to be free (in ΦRF).

Only requiring that the robot not change these features
may not lead to satisfactory policies. For example, in Fig-
ure 1, the robot can simply stay in place to avoid changing
any unknown features. Though safe, this behavior receives
no positive rewards, and we do not want the robot to follow
such a trivially safe policy. Hence, we require that the robot
occupy some goal states, denoted by SG: The robot must
eventually occupy goal states (SG) with occupancy at least
δG (Requirement 2). The robot knows both SG and δG. We
will define occupancy later in Eq. 1.

We refer to policies satisfying both requirements above
as safe policies, in that they do not negatively surprise the
human with unwanted side-effects or by not achieving the
goal. Initially, the robot may not have a safe policy, as in Fig-
ure 1 where the carpet, boxes, and doors are unknown fea-
tures. We allow the robot to pose iterative queries, following
the convention in the literature (Regan and Boutilier 2009;
Akrour, Schoenauer, and Sebag 2012; Le et al. 2018). Sim-
ilar to feature queries in Cakmak and Thomaz (2012), the

robot can query about an unknown feature φ ∈ ΦR? , then
receive the human’s response (φ ∈ ΦHF or φ ∈ ΦHL), and
move the queried feature from ΦR? to ΦRF or ΦRL . As needed,
it can then repeat this process. In this paper, we assume that
the feature representation is given to the robot and under-
stood by the human (in our example, the state of a carpet,
the position of a box, etc.).

The robot stops querying when it reaches one of the fol-
lowing two possible outcomes. Outcome 1 (denoted by �):
The robot is able to find one or more safe policies after
querying. Then it would follow an optimal safe policy. This
happens when it knows enough features are free (for exam-
ple, in Figure 1, if carpet is free or b1 and d2 are free). Out-
come 2 (denoted by ⊥): The robot determines that no safe
policy exists. This happens when it knows enough features
are locked (for example, in Figure 1, carpet and d2 are both
locked). Then the robot should terminate and inform the hu-
man that it cannot achieve the goal safely.

Note that given enough queries, the robot would eventu-
ally reach one of the two outcomes. The worst case would
be that it queries about all unknown features, in which case
it recovers ΦHF and ΦHL . However, to reduce the human’s
cognitive load, the robot wants to ask about the fewest
unknown features possible to reach either outcome. As is
common in the literature (Ramachandran and Amir 2007;
Mindermann et al. 2018), we assume that the robot has a
prior over the human’s preferences. It knows the probabil-
ity of any unknown feature φ ∈ ΦR? being free, denoted
by pF (φ). The probability that φ is locked is pL(φ) =
1−pF (φ). The robot’s objective is to minimize the number of
queries in expectation to either find a safe policy (reaching
�) or determine that no safe policy exists (reaching ⊥).

In this paper, we explain how finding the exact op-
timal query policy (that maps a partition of features to
the optimal feature to query about) is computationally in-
tractable, while some straightforward heuristics that select
myopically-greedy queries can perform poorly under some
circumstances. Our contribution is to identify and exploit
set-cover subproblems within our problem to design an al-
gorithm that uses superior heuristics in a myopically-greedy
way.

Background

In this section, we first explain how to find safely-optimal
policies given a partition of features. Then we describe dom-
inating policies and relevant features that we will use in our
algorithm.

Finding Safely-Optimal Policies

Given a partition of features (ΦRL , ΦRF and ΦR?), the robot
wants to decide if a safe policy exists, and if it does, the
robot wants to find a safely-optimal policy. A safely-optimal
policy is a safe policy (satisfying Requirements 1 and 2) that
has the optimal value, depending on the partition of features.
It is easier to use linear programming (de Farias and Van Roy
2003) than dynamic programming methods like value itera-
tion to find a safely-optimal policy because we can easily
add constraints to it. The following LP problem finds the

2553

occupancy measure of the optimal policy, where occupancy
measure, x(s, a), is the expected number of times state swill
be reached and action a will be taken in state s.

max
x

∑

s,a

x(s, a)r(s, a) (1)

s.t.
∑

a′
x(s′, a′) = γ

∑

s,a

x(s, a)T (s, a, s′) + 1[s′=s0], ∀s′ ∈ S

∑

s∈SG,a∈A

x(s, a) ≥ δG

∑

s∈Sφ,a∈A

x(s, a) = 0, φ ∈ ΦR
L ∪ ΦR

?

where Sφ = {s : φ(s) �= φ(s0)} is the set of states whose
value for feature φ differs from the initial state. The first
constraint is a flow-conservation constraint that encodes the
transition function. The second constraint makes sure that
the robot reaches SG with occupancy at least δG. The third
constraint prevents the robot from changing any known-
to-be-locked or unknown features. The safely-optimal pol-
icy is π(s, a) = x(s, a)/

∑
a′∈A x(s, a

′) for states where∑
a′∈A x(s, a

′) > 0 (de Farias and Van Roy 2003). Other
states are not visited by the safely-optimal policy so the ac-
tions to take in those states are not defined. In this paper, we
require the robot to guarantee to never change any known-to-
be-locked or unknown features. If we want to instead upper
bound the robot’s occupancy on unsafe states (for example,
when the transitions are stochastic), we can change the third
constraint accordingly.

Dominating Policies and Relevant Features

We use some concepts from ZDS to help understand which
policies and features we potentially need to consider. First,
we compute the set of policies that the robot may consider
following under any partitions of features. We call these
policies dominating policies, denoted by Γ.
Definition 1. (ZDS) A dominating policy is a safely-
optimal policy for the circumstance where for some Φ ⊆
ΦR? , Φ are locked features and ΦR? \ Φ are free features.
To find all dominating policies, we could enumerate all
Φ ⊆ ΦR? , find the safely-optimal policy when Φ ∪ ΦRL are
locked features and, if it exists, add it to the set of domi-
nating policies. Instead we use an algorithm (DomPolicies)
from ZDS that is more efficient than this brute-force way to
find dominating policies.

In ZDS, we further refer to the unknown features changed
by a dominating policy as relevant features:
Definition 2. (ZDS) The relevant features of policy π is
the set of initially unknown features changed by π, denoted
Φrel(π).

The set of all relevant features is the union of the relevant
features of all dominating policies, Φrel = ∪π∈ΓΦrel(π).
As we observed in ZDS, the robot only needs to consider
querying about relevant features.
Example 1. In Figure 2, a robot is tasked to turn off a
switch. It changes any feature it visits. Illustrated in (a),

Figure 2: Example with 4 unknown features (3 of which
are relevant). In (a) we show relevant features of dominat-
ing policies. In (b) we show IISs. In (c) is an optimal query
policy for the setting in Example 2. ‘F’ means the queried
feature is free and ‘L’ means the queried feature is locked.

there are two dominating policies. π1 (the upper path)
changes φ1, φ2; π2 (the lower path) changes φ1, φ3. So
Φrel(π1) = {φ1, φ2}; Φrel(π2) = {φ1, φ3}.

Φrel = {φ1, φ2, φ3}. So φ4 is not a relevant feature,
which means that knowing φ4 is free does not help us to
find a safe policy, and knowing φ4 is locked does not help us
to prove that no safe policy exists.

Querying to Find a Safe Policy

In this section, we consider algorithms for query selection.
We first consider some candidate algorithms, including com-
puting the optimal query policy and straightforward heuris-
tics that myopically select queries. Then we describe our
main contribution, a set-cover approach for query selection.

We use (ΦRL ,Φ
R
F ,Φ

R
?) to refer to the robot’s partition of

features. When we want to be precise about the updated par-
tition of features during the query process, we use ψ to de-
note the current partition of features: ψ = (ΦψL,Φ

ψ
F ,Φ

ψ
?).

Let ψ0 be the initial partition. Clearly, ΦψL ⊇ Φψ0

L ; ΦψF ⊇
Φψ0

F for all ψ reached by any query policy. We denote by πq
a query policy. Given a partition ψ, πq(ψ) is an unknown
feature that it queries about next, or � or ⊥ when it knows
that safe policies exist or not. A query policy can be illus-
trated as a decision tree (for example, Figure 2 (c)). Suppose
we want to find the optimal query policy by considering all
possible query policies (enumerating all possible decision
trees as illustrated). The number of possible query policies is
exponential in the number of relevant features. So we would
prefer not to exhaustively evaluate all possible queries to find
the optimal one.

Myopic Query Selection

Although finding the provably-optimal query policy is in-
tractable, we can take advantage of the fact that we do not
need to find a complete query policy before posing a query.
We can instead myopically select a feature to query about,
and then decide on the next feature (if any) to query about

2554

Algorithm 1 Myopic Query Selection
1: given query selection criterion h, initial partitions

Φψ0

F ,Φψ0

L ,Φψ0

?
2: ψ ← ψ0

3: while not (� or ⊥) do
4: choose φq according to h based on partition ψ
5: query the human about φq
6: Φψ

′
? ← Φψ? \ {φq}

7: if φq is free then

8: Φψ
′

F ← ΦψF ∪ {φq}
9: else � φq is locked

10: Φψ
′

L ← ΦψL ∪ {φq}
11: end if
12: ψ ← ψ′
13: update � or ⊥ based on the new partition
14: end while
15: if � is true then
16: return safely-optimal policy under ψ by solving

Eq. 1
17: else � ⊥ is true
18: return “No safe policy exists.”
19: end if

depending on the human’s response. Algorithm 1 gives the
skeleton of this myopic querying procedure. The robot starts
with its initial partitions of features and a query selection cri-
terion h as input. Until it reaches one outcome or the other,
it selects a feature to query about using h, and updates its
partition of features based on the human’s response.

We can use Eq. 1 in Line 13 to update the truth values of�
and⊥. If Eq. 1 has a feasible solution under the new partition
of features, then the robot finds a safe policy. If Eq. 1 does
not have a solution even if Φψ? are all free features, then the
robot knows that no safe policy exists.

One may easily come up with straightforward heuris-
tics for h used in Line 4. For example, the robot can
focus on the policy that is most likely to be safe and
query about its relevant features that are still unknown.
Concretely, the robot first finds all dominating policies.
Then it finds the policy that is most likely to be safe:
argmaxπ∈Γ

∏
φ∈Φrel(π)

pF (φ). Then it queries about that
policy’s relevant (unknown) feature that has the largest value
of pF (·). We refer to this heuristic as most-likely-policy. We
see in the following example that it does not always find the
optimal query policy.
Example 2. In Figure 2, let pF (φ1) = 0.5, pF (φ2) =
pF (φ3) = 0.6. Aiming to find a safe policy, the most-likely-
policy heuristic would first query about φ2 or φ3 since its pF
value is higher. However, it is easy to verify that an optimal
query policy would start with querying about φ1 first. The
optimal query policy, illustrated in Figure 2 (c), in expec-
tation asks about 1.7 features, while using the most-likely-
policy asks about 2.24.

We will describe other heuristics in the Empirical Evalua-
tion section as possible candidates, but in the following sub-
sections, we first introduce our main contribution: we reveal

a set-cover structure in the problem and exploit the structural
properties to select better queries.

Set Cover Formulation

In this subsection, we first show that reaching � and ⊥ are
each equivalent to a set cover problem.
Non-existence of safe policies. It is easy to see that the robot
finds a safe policy if the relevant features of a dominating
policy are all known to be free. Formally, � ⇐⇒ ∃π ∈
Γ,ΦRF ⊇ Φrel(π). This is not a set cover problem and does
not give us insights on which feature to query about. But we
can use this observation to make the following claim about
when safe policies do not exist. The robot knows that no
safe policy exists if the relevant features of all dominating
policies contain at least one known-to-be-locked feature. In-
deed, if for all dominating policies, we know some of their
relevant features are locked, then it is impossible to find a
safe policy. Formally, let Srel = {Φrel(π) : π ∈ Γ}. Then

⊥ ⇐⇒ ∀Φ ∈ Srel,ΦRL ∩ Φ �= ∅. (2)

Example 3. In Figure 2 (a), Srel = {{φ1, φ2}, {φ1, φ3}}.
If the robot knows that φ1 is a locked feature, or φ2 and φ3
are both locked features, then a safe policy does not exist.

Existence of safe policies. Relevant features of dominating
policies (Srel) can help us determine non-existence of safe
policies, but they do not directly help in finding a safe pol-
icy. We could focus on one safe policy that is most likely
to be safe, similar to the simple most-likely-policy heuristic
(Example 2). Instead, though, we now show that existence of
safe policies can be mapped to a different set cover problem.

Our crucial insight is recognizing that our problem is sim-
ilar to the maximum feasible set problem in linear program-
ming (LP) (Chinneck 2007): When an LP problem is infea-
sible, the objective is to find the minimum number of con-
straints to remove to make the problem feasible. The anal-
ogy in our problem is that, when initially imposing the con-
straints of all unknown and locked features, the LP problem
(Eq. 1) is infeasible. The key difference is that our objective
is not to find the minimum number of constraints to remove
since the robot cannot arbitrarily remove constraints. It can
only decide which features to query about and remove the
corresponding constraints when they are known to be free.
Nonetheless, we can adapt tools in the literature for finding
maximum feasible sets to our needs.

To identify maximum feasible sets, Chinneck (2007) in-
troduced the concept of an irreducible infeasible set (IIS) .
We adopt the IIS concept in our context as follows.

Definition 3. A subset of unknown features Φ ⊆ ΦR? is an
irreducible infeasible set (IIS) if 1) safe policies do not ex-
ist if Φ are locked features and ΦR? \ Φ are free features; 2)
once any feature φ ∈ Φ is known to be free (that is, Φ \ {φ}
are locked features and ΦR? \Φ∪ {φ} are free features), the
robot can find a safe policy.

We observe that the robot can find a safe policy if there
exists at least one known-to-be-free feature in all IISs. Oth-
erwise, if there are any IISs that only contain unknown or
known-to-be-locked features, the robot has not yet found a

2555

safe policy. Define SIIS to be the set of IISs induced by all
relevant unknown features. Formally,

� ⇐⇒ ∀Φ ∈ SIIS ,ΦRF ∩ Φ �= ∅. (3)

Example 4. In Figure 2(b), SIIS = {{φ1}, {φ2, φ3}}. If
the robot knows that φ1 is a free feature, and at least one of
φ2 or φ3 is a free feature, then a safe policy must exist.

To compute SIIS and Srel, we use Algorithm DomPoli-
cies from ZDS to first find dominating policies and their rel-
evant features, Srel (with the computational complexity of
O(2Φrel) in the worst case). Then to compute SIIS , we ob-
serve that in our problem, SIIS = {Φ ⊆ Φrel : |Φ ∩ Φ′| =
1, ∀Φ′ ∈ Srel}. By the definition of IIS, if Φ ∈ SIIS are
locked features (and ΦR? \ Φ are free), no safe policy exists
because every dominating policy has a relevant feature that
is locked. If any φ ∈ Φ is free, we can find a safe policy
because for some dominating policies, the only presumed
locked feature is now free.

Set-Cover-Based Algorithm

Our set-cover-based algorithm specializes Algorithm 1 by
using query responses to not only update the partition of fea-
tures, but to also update SIIS and Srel. Denote the two sets
under partition ψ by SψIIS ,Sψrel. Specifically, it initially com-
putes Sψ0

IIS and Sψ0

rel under the initial partition ψ0. It needs
to maintain these two sets in the query process. Suppose the
robot has partition ψ and queries about feature φq . If φq is
free, then the sets in SψIIS that contain φq are covered, so
they are removed from SψIIS . Also, since φq is free, it cannot
be used to cover sets in Sψrel. We remove it from the sets in
Sψrel, meaning that the sets originally containing φq need to
be covered by some other feature. Formally,

Sψ′
IIS ← SψIIS \ {Φ ∈ SψIIS : φq ∈ Φ}; (4)

Sψ′
rel ← {Φ \ {φq} : Φ ∈ Sψrel}. (5)

Similarly, if φq is locked, we update both sets as follows.

Sψ′
rel ← Sψrel \ {Φ ∈ Sψrel : φq ∈ Φ}; (6)

Sψ′
IIS ← {Φ \ {φq} : Φ ∈ SψIIS}. (7)

Finally, for the set-cover-based version of Algorithm 1, in
Line 13, we can avoid the expense of solving Eq. 1, because
� (or ⊥) is true simply if SψIIS (or Sψrel) has become empty,
meaning it is fully covered.

We can also use SψIIS and Sψrel to compute better heuris-
tics h for Line 4. To describe how, we first show that our
objectives are adaptive submodular.
Adaptive submodularity. While we have shown � and
⊥ are each equivalent to a set cover problem, we should
again note that they differ from classic set cover problems
(Williamson and Shmoys 2011) because the robot cannot
simply assign a feature to be free or locked (in Figure 2,
it cannot assert φ1 is a locked feature so that it can cover
Srel using just one query). It can only choose which feature
to query about, and update the feature’s category based on
the human’s response.

Let fIIS , frel be the current coverage under partition ψ:

fIIS(ψ) = |{Φ ∈ Sψ0

IIS : ΦψF ∩ Φ �= ∅}| (8)

frel(ψ) = |{Φ ∈ Sψ0

rel : Φ
ψ
L ∩ Φ �= ∅}| (9)

We further define the one-step gain in coverage as follows,
similar to Δ in Golovin and Krause (2011) (referred to
as GK from here on): ΔIIS(φ|ψ) = pF (φ) · |SψIIS [φ]|,
where SψIIS [φ] is the number of sets in SψIIS that contain
φ; Δrel(φ|ψ) = pL(φ) · |Sψrel[φ]|, where Sψrel[φ] is de-
fined similarly. We now show that fIIS and frel are adap-
tive submodular functions (GK) based on the subset relation:
ψ ⊆ ψ′ ⇐⇒ (ΦψF ⊆ Φψ

′
F ∧ ΦψL ⊆ Φψ

′
L).

Theorem 1. fIIS and frel are both adaptive submodular
functions under ⊆.

Proof Sketch. Take fIIS for example. It is sufficient to show
that for any ψ,ψ′ where ψ ⊆ ψ′ and any feature φ,
ΔIIS(φ|ψ) ≥ ΔIIS(φ|ψ′). We observe that ΔIIS(φ|ψ) =
pF (φ)|SψIIS [φ]| if φ ∈ Φψ? , and is 0 otherwise. Since ψ ⊆
ψ′, Φψ? ⊇ Φψ

′
? , that is, unknown features monotonically van-

ish over time. We can verify that ΔIIS(φ|ψ) ≥ ΔIIS(φ|ψ′),
which completes the proof.

One benefit of this result is the following. GK im-
plied that if the robot knows that it can cover SIIS , it
is approximately-optimal to choose argmaxφΔIIS(φ|ψ).
Similarly, if it knows that it can cover Srel, the robot should
choose argmaxφΔrel(φ|ψ). However, in our problem, the
robot does not know which outcome (� or ⊥) is true before
it finishes querying. So we need our algorithm to balance
between two possible objectives.

The rest of this section describes two query-selection
heuristics. The first (set-cover heuristic) is more straightfor-
ward and easier to compute. The second (inverse-coverage-
ratio heuristic) is comparatively more expensive to compute.
We will empirically test to see if the second one finds a bet-
ter query that is worth the extra computation in the Empirical
Evaluation section.
Set-cover heuristic (hSC). One simple way of combining
two objectives is the sum of both, weighted by the inverse of
the number of sets remaining to cover.

φq = argmax
φ

hSC(φ;ψ) (10)

hSC(φ;ψ) =
ΔIIS(φ|ψ)
|SψIIS |

+
Δrel(φ|ψ)
|Sψrel|

(11)

We can expect this heuristic to have approximately-optimal
performance when pF for all unknown features approaches
0 or 1. In these cases, it would focus on covering SIIS (or
Srel) by maximizing ΔIIS (or Δrel), which GK show to be
approximately-optimal. When the probabilities of change-
ability vary, we no longer have a pure set cover problem and
it is difficult to provide a theoretical guarantee. The robot’s
strategy is to query the feature that makes the most progress
(in expectation) in both set cover problems at once. We see in
the following example that hSC does find an optimal query
policy in the example in Figure 2.

2556

Example 5. We consider again the domain in Figure 2.
pF (φ1) = 0.5, pF (φ2) = pF (φ3) = 0.6. Consider the first
query to pose, hSC(φ1;ψ0) = 0.5 · 1/2 + 0.5 · 2/2 = 0.75.
hSC(φ2;ψ0) = hSC(φ3;ψ0) = 0.6 · 1/2 + 0.4 · 1/2 = 0.5.
Higher heuristic values mean more coverage. So the algo-
rithm would query about φ1. We can verify that hSC finds
the optimal query policy (same as Figure 1 (c)).
Inverse-coverage-ratio heuristic (hICR). The heuristic we
describe below uses some properties of fIIS and frel (Eqs. 8
and 9). We first describe a theorem adapted from GK. Let
c(π∗

q |ψ) be the expected number of features queried by an
optimal query policy π∗

q starting from ψ.
Theorem 2. (Adapted from Lemma A.9 in Golovin and
Krause (2011)) Starting from partition ψ, the optimal query
policy π∗

q has the following property,

c(π∗
q |ψ) ≥

ΔIIS(π
∗
q |ψ)

maxφΔIIS(φ|ψ) . (12)

where ΔIIS(π
∗
q |ψ) is the number of IISs π∗

q can cover in ex-
pectation. Clearly, ΔIIS(π

∗
q |ψ) ≥ P[�;ψ] · |SψIIS |. P[�;ψ]

is the probability that safe policies exist starting from par-
tition ψ, which is computed by considering all partitions of
Φψ? into locked and free features, and checking if a safe pol-
icy exists under each partition. This is to say, with proba-
bility P[�;ψ], π∗

q needs to cover all sets in SIIS (because a
safe policy indeed exists). Combining this with Eq. 12,

ICRIIS(ψ) :=
P[�;ψ] · |SψIIS |
maxφΔIIS(φ|ψ) ≤ c(π

∗
q |ψ). (13)

We call the left-hand-side the inverse coverage ratio
for SIIS . Intuitively, the inequality says the follow-
ing. Using one query, we can greedily-optimally cover
maxφΔIIS(φ|ψ) sets in SIIS in expectation. Optimisti-
cally, we may cover the same number of sets in the follow-
ing queries as well, but not more than this number because
of adaptive submodularity. So to cover all the sets that it will
cover, at least ΔIIS(π

∗
q |ψ)/maxφΔIIS(φ|ψ) queries need

to be asked in expectation. This is an optimistic estimation,
which serves as a lower bound for c(π∗

q |ψ).
We define ICRrel similarly, which has a similar property.

ICRrel(ψ) :=
P[⊥;ψ] · |Sψrel|
maxφΔrel(φ|ψ) ≤ c(π

∗
q |ψ) (14)

The inverse coverage ratio is defined as the sum of the two.

ICR(ψ) = ICRIIS(ψ) + ICRrel(ψ) (15)

Note that ICR is not necessarily a lower bound, but intu-
itively it serves as an estimate of how many queries need to
be asked starting from ψ, considering how many queries are
needed when safe policies exist (ICRIIS) and when safe
policies do not exist (ICRrel). The query selection criterion
is hence the following.

φq =argmin
φ
hICR(φ;ψ) (16)

hICR(φ;ψ) =pF (φ)ICR(ψ|φ ∈ ΦRF)

+ pL(φ)ICR(ψ|φ ∈ ΦRL) (17)

where ψ|φ ∈ ΦRF is the partition of features that, starting
from partition ψ, the robot queries about φ and confirms that
it is a free feature. ψ|φ ∈ ΦRL is defined similarly. It consid-
ers the probability that a feature φ is free or locked, and uses
ICR to estimate the number of queries needed under the
partition where φ is free or locked. This is more expensive
to compute compared with hSC since we need to compute
P[�;ψ] and P[⊥;ψ]. We will empirically test if hICR finds
better queries than hSC so it is worth the computation. In
the following example, hICR finds the optimal query while
hSC does not.

Example 6. In Figure 2, let pF (φ1) = 0.9, pF (φ2) =
pF (φ3) = 0.1. hSC(φ1) = .9 ∗ 1/2 + .1 ∗ 2/2 = .55;
hSC(φ2) = hSC(φ3) = .1 ∗ 1/2 + .9 ∗ 1/2 = .5. So hSC
would first query about φ1. However, since safe policies are
unlikely to exist, by computing P[�] and P[⊥], hICR would
query about φ2 and (if it’s locked) then φ3 aiming to prove
that no safe policy exists, which asks fewer queries in ex-
pectation. In expectation, hSC asks about 2.71 features and
hICR asks about 2.09 features.

Empirical Evaluation

Here we empirically answer the following three questions:
Q1: Are queries found by hSC or hICR close to the optimal
query, while computationally much cheaper?
Q2: Are queries found by hSC or hICR better than queries
based on simpler and cheaper heuristics?
Q3: Is the additional cost of hICR over hSC worth it?

We consider a variation of our earlier (ZDS) robot nav-
igation domain for evaluation, illustrated in Figure 3 (left).
The size of the domain is 6× 6, with 5 randomly-generated
walls which the robot cannot move through so we have vari-
ous different dynamics. The robot starts from the bottom-left
corner and is asked to turn off a switch in the top-right cor-
ner. It can move in all cardinal directions to its adjacent cell
in a time step, unless blocked by a wall or border of the do-
main. The reward is 1 if the robot turns off the switch and
0 in all other states, and the robot is required to turn of the
switch (SG are the states where the switch is off; δG = 0.1).
γ = 0.9. There are carpets randomly placed in this environ-
ment. When the robot traverses a carpet, it makes the carpet
dirty. For each carpet, whether the robot is allowed to make
it dirty is unknown to the robot. So each carpet corresponds
to an unknown feature. All carpets are initially clean and the
number of carpets varies in different experiments.

We compare several strategies and heuristics for query se-
lection. One, optimal, finds the exact optimal query policy:
Consider a Query-MDP, Mq , where states are partitions of
features. Actions are queries that probabilistically transit be-
tween states (since feature partitions change after querying).
The states where either outcome (� or⊥) is reached have re-
wards of, say, 1, and are terminal. We use dynamic program-
ming to find an optimal policy in Mq , which corresponds to
an optimal query policy. Note that we only need to focus
on deterministic query policies since there exists an optimal
deterministic policy in Mq (Puterman 1994). The complex-
ity is O(3|Φrel|), which is better than evaluating all query
policies in a brute-force way (O(|Φrel|!)).

2557

Figure 3: (Left) The robot navigation domain. Blue tiles are
carpets and dark tiles are walls. The dashed-line policy is
safe if the robot knows that the traversed carpets are free to
change. (Right) Legend for the following figures.

Figure 4: (Left) The number of queried features vs. the
number of unknown features (carpets). (Right) Computation
time per query vs. the number of carpets.

Figure 5: The number of queried features vs. pF . The hori-
zontal axis is the midpoint of the intervals where pF is sam-
pled from ([0, 0.5], [0.1, 0.6], . . .). For clarity, we report a
subset of algorithms in each figure.

Figure 6: The number of queried features vs. pF in a larger
domain.

We also compare to variations of hSC that aim to
cover SIIS and Srel, respectively: hSC-IIS queries
about argmaxφ∈ΦR

?
ΔIIS(φ|ψ)/|SψIIS |. hSC-rel queries

about argmaxφ∈ΦR
?
Δrel(φ|ψ)/|Sψrel|. We have also de-

scribed the most-likely-policy in the simple heuristics
section. Finally, we also compare against the following

heuristics that are based on the probability of exis-
tence of safe policies. probability-maximization-�
finds the feature that, if known be to free, in-
creases the probability of existence of safe policies
the most: argmaxφ∈ΦR

?
pF (φ)P[�; (ψ|φ ∈ ΦRF)].

Similarly, probability-maximization-⊥ finds the
feature that, if known to be locked, decreases the
probability of existence of safe policies the most:
argmaxφ∈ΦR

?
pL(φ)P[⊥; (ψ|φ ∈ ΦRL)]. Lastly,

probability-maximization optimizes the joint objec-
tive of the previous two. argmaxφ∈ΦR

?
pF (φ)P[�; (ψ|φ ∈

ΦRF)] + pL(φ)P[⊥; (ψ|φ ∈ ΦRL)]. We cannot adapt the algo-
rithms in ZDS to this problem because they are designed for
a minimax-regret setting and, crucially, depend on knowing
a safe policy before querying.

We evaluate these selection strategies in the following ex-
periments. We vary the numbers of unknown features (num-
bers of carpets in this example) in the first experiment and
vary the distributions of pF but fix the number of carpets in
the second experiment.
Experiment 1: Varying the number of carpets. We first
consider a uniformly random pF setting with a varying num-
ber of carpets. The values of pF (φ), φ ∈ ΦR? are uniformly
randomly generated between [0, 1]. The numbers of carpets
are 10, 12, 14. We run experiments for 200 trials for each
data point. In each trial, the layout of walls and carpets are
randomly generated. The performance of the heuristics and
their computation times in domains with different numbers
of carpets is shown in Figure 4.

As expected, with more carpets (unknown features), the
robot needs more queries to find a safe policy or prove that
none exists. Both hSC and hICR have performance close to
optimal while their computation is much cheaper than op-
timal (answering Q1). When the carpet number is 14, the
optimal’s computation time per query is 41.41 ± 6.59 sec.,
which is out of the scope of the figure. Both hSC and hICR
find better queries than other candidate heuristics (answer-
ing Q2). We find hICR has performance closer to optimal
compared with hSC while using only slightly more compu-
tation time (answering Q3).
Experiment 2: Varying pF . In reality, it may not be the
case that all unknown features have uniformly random prob-
abilities of being free. In this experiment, we fix the number
of carpets to be 14 and generate pF in small intervals (Fig-
ure 5). The size of intervals are 0.5, that is, the intervals are
[0, 0.5], [0.1, 0.6], and so on.
hICR and hSC still have performance closest to optimal

(answering Q1). They are also robust to different distribu-
tions of pF . Unsurprisingly, hSC-IIS performs well when
pF values are large (so that safe policies are indeed likely to
exist), and hSC-rel performs well when pF values are small.
Thus, the answer to Q2 is more nuanced: cheaper heuris-
tics are competitive under particular narrower conditions.
We also see that although probability-maximization has per-
formance close to hSC in Experiment 1, it actually has much
worse performance under certain pF ranges.

We also evaluate the heuristics in larger domains. In large
domains, it can be expensive to find all dominating policies

2558

and IISs. Since the robot only needs to decide what is the
next feature to query about, it may not be necessary to com-
pute the exact SIIS and Srel. It computes SIIS ,Srel for a
limited time (5 seconds in our experiments) and stops, then
selects queries based on the possibly incomplete sets (a simi-
lar idea is used in Regan and Boutilier (2010)). To determine
� or ⊥, the robot cannot simply check if SIIS or Srel is
empty as in Algorithm SetCoverQuery (since both sets may
be incomplete), but solves the LP problem in Eq. 1. Since
we cannot afford to compute the optimal query policy, we
use oracle as a baseline: It knows the true partition of the
features and asks the minimum number of features possible
to reach the correct outcome. We evaluate our heuristics in
a 10 × 10 domain with 40 randomly placed carpets and 20
walls (Figure 6). We can see a similar pattern that hICR is
closest to optimal queries.

To summarize, we find both hSC and hICR are robustly
close to the optimal query when we vary the number of un-
known features and distribution of pF , while hICR is closer
to the optimal at the cost of slightly more computation.
When pF is close to 0 or 1, some other candidate heuris-
tics also have good performance (for example, using hSC-
IIS when pF values are large). These are also simpler cases
since we can focus on covering either SIIS or Srel.

Conclusion and Future Work

We have formally defined the problem of querying to find
a safe policy, or proving none exists, in settings where un-
safe side-effects are possible. Through a novel casting of that
problem into a pair of set-cover problems, we have devised
heuristics for a myopically-greedy approach that empirically
perform nearly optimally without excessive computational
costs, and outperform other candidate heuristics.

We have here assumed (as we did in ZDS) that features’
changeabilities are independent and feature values are static
unless changed by the robot. Future work can relax these
assumptions (some ideas were sketched in ZDS), consider
other heuristics (possibly from ZDS), and explore multia-
gent settings (e.g., one user overseeing multiple robots, one
robot answering to multiple users). We also want to derive
a performance bound for our heuristic similar to GK, and
incorporate values of policies, so that the robot can bias its
efforts towards finding safe policies with higher values.
Acknowledgements. Thanks to the anonymous reviewers.
This work was supported in part by the Air Force Office
of Scientific Research under grant FA9550-15-1-0039, and
the Open Philanthropy Project to the Center for Human-
Compatible AI. Any opinions, findings, conclusions, or rec-
ommendations expressed here are those of the authors and
do not necessarily reflect the views of the sponsors.

References

Akrour, R.; Schoenauer, M.; and Sebag, M. 2012. APRIL:
active preference learning-based reinforcement learning. In
J. Eur. Conf. on Machine Learning and Knowledge Discov-
ery in Databases, 116–131.
Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schul-

man, J.; and Mané, D. 2016. Concrete problems in AI safety.
arXiv preprint arXiv:1606.06565.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage. J. of Artificial Intelligence Research (JAIR)
11(1):94.
Cakmak, M., and Thomaz, A. L. 2012. Designing robot
learners that ask good questions. In Proc. 7th Annual
ACM/IEEE Int. Conf. on Human-Robot Interaction, 17–24.
Chinneck, J. W. 2007. Feasibility and Infeasibility in Opti-
mization:: Algorithms and Computational Methods, volume
118. Springer Science & Business Media.
de Farias, D. P., and Van Roy, B. 2003. The linear pro-
gramming approach to approximate dynamic programming.
Operations Research 51(6):850–865.
Golovin, D., and Krause, A. 2011. Adaptive Submodularity:
Theory and Applications in Active Learning and Stochastic
Optimization. J. of Artificial Intelligence Research 42:427–
486.
Le, T.; Tabakhi, A. M.; Tran-Thanh, L.; Yeoh, W.; and Son,
T. C. 2018. Preference Elicitation with Interdependency and
User Bother Cost. In Proc. 17th Int. Conf. on Autonomous
Agents and MultiAgent Systems, 1459–1467.
Leike, J.; Martic, M.; Krakovna, V.; Ortega, P. A.; Everitt,
T.; Lefrancq, A.; Orseau, L.; and Legg, S. 2017. AI safety
gridworlds. arXiv preprint arXiv:1711.09883.
Mindermann, S.; Shah, R.; Gleave, A.; and Hadfield-Menell,
D. 2018. Active Inverse Reward Design. 1st Workshop on
Goal Specifications for Reinforcement Learning co-located
with IJCAI 2018.
Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York, NY,
USA: John Wiley & Sons, Inc., 1st edition.
Ramachandran, D., and Amir, E. 2007. Bayesian inverse
reinforcement learning. In Int. J. Conf. on Artificial Intelli-
gence, 2586–2591.
Regan, K., and Boutilier, C. 2009. Regret-based reward
elicitation for Markov decision processes. In Proc. Conf. on
Uncertainty in Artificial Intelligence (UAI), 444–451.
Regan, K., and Boutilier, C. 2010. Robust policy compu-
tation in reward-uncertain MDPs using nondominated poli-
cies. In Assoc. for Adv. of Artificial Intelligence (AAAI),
1127–1133.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. MIT Press.
Turner, A. M.; Hadfield-Menell, D.; and Tadepalli, P. 2019.
Conservative Agency. In Proceedings of the Workshop on
Artificial Intelligence Safety, 29–36.
Williamson, D. P., and Shmoys, D. B. 2011. The Design of
Approximation Algorithms. Cambridge University Press.
Zhang, S.; Durfee, E.; and Singh, S. 2018. Minimax-
regret querying on side effects for safe optimality in factored
Markov decision processes. In Proc. 27th Int. J. Conf. on Ar-
tificial Intelligence (IJCAI), 4867–4873.

2559

