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Abstract

A core interest in building Artificial Intelligence (Al) agents
is to let them interact with and assist humans. One exam-
ple is Dynamic Search (DS), which models the process that
a human works with a search engine agent to accomplish a
complex and goal-oriented task. Early DS agents using Rein-
forcement Learning (RL) have only achieved limited success
for (1) their lack of direct control over which documents to
return and (2) the difficulty to recover from wrong search tra-
jectories. In this paper, we present a novel corpus-level end-
to-end exploration (CE3) method to address these issues. In
our method, an entire text corpus is compressed into a global
low-dimensional representation, which enables the agent to
gain access to the full state and action spaces, including the
under-explored areas. We also propose a new form of retrieval
function, whose linear approximation allows end-to-end ma-
nipulation of documents. Experiments on the Text REtrieval
Conference (TREC) Dynamic Domain (DD) Track show that
CE3 outperforms the state-of-the-art DS systems.

1 Introduction

Retrieval-based interactive systems, including multi-turn
Question Answering (QA) (Reddy, Chen, and Manning
2019), dialogue systems (Sankar et al. 2019), and dynamic
search systems (Yang, Sloan, and Wang 2016), study the
interaction between a human user and an intelligent agent
when they work together to accomplish a goal-oriented task.
Reinforcement Learning (RL) becomes a natural solution
to these interactive systems (Yang, Sloan, and Wang 2016;
Li, Resnick, and Mei 2016; Hu et al. 2018) for its empha-
sis on adaptation and exploration. Prior work on this topic
has investigated bandits-based (Li, Resnick, and Mei 2016),
value-based (Luo, Zhang, and Yang 2014), and policy-based
(Hu et al. 2018) RL methods. In these approaches, often-
times, a repository of documents (or knowledge) and in-
puts from a human user, are treated as the learning envi-
ronment for the AI agent; and the agent’s actions usually
take two steps — first, reformulating queries (or questions)
based on user responses; second, retrieving relevant infor-
mation to fulfill those queries via some off-the-shelf retrieval
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tools. Such a pipeline is a convenient use of existing Infor-
mation Retrieval (IR) techniques; however, it comes with a
few drawbacks.

First, most existing retrieval functions are optimized over
precision at top ranks, which is demanded by the limited
cognitive load a human user could afford when examining
the results. This bias is engraved in all ready-to-use retrieval
tools. The consequence is that results that are good but not
as optimal would have little chance to show up. It might
be ideal when there is only one run of retrieval, such as
in single-turn QA or ad-hoc document retrieval. In multi-
turn interactions, however, early triage of lower-ranked doc-
uments would lead to long-term loss that can not be eas-
ily recovered. Classic works on exploratory search (White
and Roth 2009) and information seeking (Marchionini 2006)
named this phenomenon “berry picking” — which depicts a
tortuous search trajectory where only very limited useful in-
formation can be obtained at each single step because the
search space is so restricted by the top results. This makes
the RL agent’s learning very challenging because the agent
is not able to “explicitly consider the whole problem of a
goal-oriented” process (Sutton and Barto 2018).

Second, widely-used retrieval functions, including TF-
IDF (Salton and Buckley 1988) and BM25 (Robert-
son, Zaragoza, and others 2009), are non-differentiable.
Common functions to reformulate queries (Huang and
Efthimiadis 2009) are non-differentiable, too. These non-
differentiable functions prevent a gradient-based RL method
from updating its gradient through; thus a user’s feedback
would not have real control over which documents to re-
turn. Consequently, the retrieval results could look random.
Nonetheless, these functions remain quite popular due to
their readiness.

In this paper, using dynamic search as an illustrating ex-
ample, we propose a different solution to retrieval-based in-
teractive agents. In our corpus-level end-to-end exploration
algorithm (CE3), at each time step, we compress a text cor-
pus into a single global representation and used to support
the agent’s full exploration in the state and action spaces. In
addition, we propose a novel differentiable retrieval function
that allows an RL agent to directly manipulate documents.
Experiments on the Text REtrieval Conference (TREC) Dy-



namic Domain 2017 Tracks demonstrate that our method
significantly outperforms previous DS approaches. It also
shows that our method is able to quickly adjust the search
trajectories and recover from losses in early interactions.
Given the fundamental issues it addresses, we believe CE3’s
success can be extended to other interactive Al systems if
they access information using retrieval functions.

2 Related Work

The work closest to ours is perhaps KB-InfoBot (Dhingra et
al. 2017). It is a dialogue system to find movies from a large
movie knowledge base (KB). Similar to us, KB-InfoBot
used a global representation for all movies in its database
to represent the states. To do so, it estimated a global distri-
bution over the entire set of movie entities, conditioned on
user utterances. The distribution was fed into a deep neu-
ral network to learn the agent’s action. Also similar to us,
KB-InfoBot used a differentiable lookup function to support
end-to-end manipulation of data entities. The two works dif-
fer in that their dialogue agent ran on a structured database
and completed a task by iteratively filling the missing slots,
while ours is for unstructured free text and accomplishes a
task by iteratively retrieving documents that is relevant to
the search task.

Knowing a global model that oversees the entire text col-
lection has shown to be beneficial to retrieval in conventional
IR research. For instance, Liu and Croft proposed to de-
velop corpus-level clusters by K-means and then used them
to smooth out multinomial language models. Wei and Croft
also used Latent Dirichlet Allocation (LDA) to obtain global
topic hierarchies to improve retrieval performance. In this
paper, we encode the corpus and the user’s search history
for a global state representation.

Another related area to our work is dimension reduction.
Many breakthroughs in neural models for Natural Language
Processing (NLP) are built upon word2vec (Mikolov et al.
2013) and its derivation doc2vec (Le and Mikolov 2014).
Doc2vec is able to transform a high-dimensional discrete
text representation into low-dimensional continuous vec-
tors. Unfortunately, however, doc2vec cannot solve a prob-
lem known as crowding (Cook et al. 2007). It refers to the
situation where multiple high-dimensional data points are
collapsed into one after dimension reduction and two data
points belonging to different classes are then inseparable. In
our case, each data point represents either a relevant or irrel-
evant document. We choose to use the t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) method (Maaten and Hin-
ton 2008). It was used to support data visualization for high-
dimensional images (Maaten and Hinton 2008), network pa-
rameters (Mnih et al. 2015) and word vectors (Li et al. 2016).
By assuming a t-distribution for the post-reduction distribu-
tion, t-SNE provides more space to scatter data points that
were supposed to be collapsed and the dimensions can be
reduced from thousands to as low as 2 or 3. Our experiments
(Section 5) shows that t-SNE outperforms doc2vec for us.
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3 Dynamic Search Background

Dynamic search (DS) systems are multi-turn interactive
agents that assist human users for goal-oriented information
seeking (Yang, Sloan, and Wang 2016). DS shares similar
traits with its sister Al applications such as task-oriented di-
alogue systems and multi-turn QA systems. These traits in-
clude (1) a goal-oriented task and (2) the interactions with
a human user. They exhibit different forms of interactions,
though. In DS, the form of interaction is querying and re-
trieving documents. In dialogue systems, it is generating nat-
ural language responses. In multi-turn QA, it is questioning
and finding answers.

DS is backed up by a long line of prior research in in-
formation science, library science, and information retrieval
(IR). It is originated from Information Seeking (IS) (Belkin
and others 1993). Most IS research has focused on study-
ing user behaviors (Daronnat et al. 2019). Luo, Zhang, and
Yang simplified IS into DS by separating the modeling on
the system side from that on the user side and emphasized
on the first. In DS, a human user either becomes part of the
environment (Luo, Dong, and Yang 2015) or another agent
who also interacts with the environment.

RL offers natural solutions to DS. The RL agent, a.k.a.
the search engine, observes state at time ¢ (s;) from the
environment (the user and the document collection) and
takes actions (a;) to retrieve documents to show to the
user. An immediate reward 7; is encapsulated in the user’s
feedback, which expresses how much the retrieved docu-
ments would satisfy the user’s informational need. The re-
trieved documents could also change the states and transi-
tion from the old state to a new one: s; — s;1. This pro-
cess may continue for many iterations until the search task
is accomplished or the user decides to abandon it. Model-
based RL approaches, such as Markov Decision Processes
(MDPs) and Partially Observable Markov Decision Pro-
cesses (POMDPs), and policy-based RL approaches have
been explored in the past (Yang, Sloan, and Wang 2016).

The Dynamic Domain (DD) Tracks held at the Text RE-
trieval Conference (TREC) from 2015 to 2017 (Yang, Tang,
and Soboroff 2017) are campaigns that evaluate DS systems.
In the DD Tracks, human users are replaced with a simulator
to provide feedback to the DS agents. The simulator’s feed-
back includes ratings to documents returned by the agent and
which passages in those documents are relevant. It was cre-
ated based on ground truth assessment done by third-party
human annotators.

Dozens of teams participated in the DD Tracks. Their
methods ranged from results diversification (Moraes, San-
tos, and Ziviani 2016), relevance feedback (Buccio and
Melucci 2016), imitation learning (Xue et al. 2014), to the
focus of this paper, reinforcement learning (Tang and Yang
2017; Aissa, Soulier, and Denoyer 2018).

4 The Approach

Most RL-based DS approaches can be summarized by a gen-
eral formulation. It takes two steps. First, a new, temporary
query is generated by the RL agent’s policy 7:

q < h(as, o)

(D



where a; = (s, 6;) is the action generated by policy 7 for
state s; at time ¢ and 7 is parameterized by 6;. We call h
the query reformulation function, which constructs the new
query ¢’ based on 7 and heuristics o. Note that ¢ does not
depend on ¢. h is a non-differentiable function.

Second, the newly formulated query ¢’ is sent to

f(qla dia (b) (2)

to obtain documents that are, hopefully, relevant to ¢'. We
call f the retrieval function. It is usually an existing retrieval
method, such as BM25 or Language Modelling, which is
non-differentiable. f returns a score to quantify the rele-
vance between ¢’ and (a document) d;. f is parameterized
by ¢, which is a variable of the retrieval method and inde-
pendent of ¢.

Overall, at each search iteration ¢, the RL agent assigns a
ranking score to the i*" document d;:

Score; s = f(h(n(s¢,60:),0),di, ¢) (3)

and then all documents are ranked and retrieved based on
this scoring.

The first issue of this formulation is that the retrieval func-
tion f only finds the top relevant documents for query ¢’. At
any time, the agent is not aware of the global picture of the
state space. This is different from how an RL agent is treated
in Al, where the agent is always aware of the global status of
the environment, e.g. AlphaGo knows the game board. This
inadequate knowledge of the global picture hampers the RL
agent to make longer-term plans for better decision-making.

The second issue in this formulation is that neither A nor f
is differentiable. This prevents a gradient-based RL method
from correctly updating its gradient. The RL agent is thus
unable to effectively adjust the retrieval results based on
user feedback. In addition, folding together multiple non-
differentiable functions makes it very difficult to diagnose
an failed action, which could result from a bad policy , a
sloppy o, or an ineffective ¢.

In this paper, we propose to convert and compress a col-
lection of documents into a global representation. We also
introduce a novel differentiable ranking function that can be
easily incorporated into a gradient-based RL method (Schul-
man et al. 2017) to perform dynamic search.

Algorithm Overview

Our framework is based on a state-of-the-art Monte
Carlo policy-gradient method, Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017). The RL agent consists of
two networks, a value network and a policy network. Given
the current state s;, the policy network outputs action a? and
the value network outputs state-value V' (s;). Both networks
are composed of a few layers of Convolutional Neural Net-
works (CNNs) and a Multi-Layer Perceptron (MLP). They
share the same network structure but use different parameter
settings. Figure 1 illustrates the system architecture.
Algorithm 1 describes the proposed CE3 method. It starts
by sampling actions by the RL agent. The documents are
then ranked by their estimated relevance scores calculated
based on the action vectors. The top-ranked ones are shown
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Figure 1: System architecture.

Initialize 6;

for iteration = 1, 2, ... do

fort=1,2,..., T do

read in the global representation s;;

sample action af = 7(sy, 6;);

for i=1,2,..., Cdo
estimate a relevance score for document d;:
score;; = f(a?,d;) (Eq. 13)

end

rank the documents by score, ; and return the
top-ranked documents D;;

compute r; based on Eq. 14;

mark returned documents as visited, generate
next state Sy41;

Compute advantage A;

end
Optimize L(0) (Eq. 4) w.r.t. 0;

end
Algorithm 1: CE3.

to the user. The user then examines the documents and sub-
mits feedback, which is used to derive the immediate reward
r¢. As a Monte Carlo algorithm, CE3 generates search tra-
jectories by sampling actions based on the current policy.
Given enough trajectory samples, the following objective
function is optimized w.r.t. the network parameter 6:

L(6) = By[Ly " (0) — e LY “"“(0) + c2S[mo] (s1)] A
“)
where c; is the weight for the value network and c3 is the co-
efficient for the policy’s entropy, which encourages the agent
to explore all areas in the action space.
Learning of the value network is done by minimizing
LY e Tt is the mean squared error between the estimated

state value Vp(s,) and the targeted state value V,;'*"? in the
sampled trajectories at time ¢:
L{*(8) = Ba[(Vo(s:) = Vi"?)?) 5)

Learning of the policy network is done by minimizing
LFelicy Tt is a pessimistic bound of the effectiveness of the
policy network at time ¢:



Loy (9) = By [min(pe(0) Ar, clip(pe(8),1 — €, 1+ €)A;)]  (6)

where At is the advantage function (Sutton and Barto 2018).

Certain actions may increase the return in extreme situa-
tions but may not work in general. To avoid such situation,
the algorithm adopts a surrogate clip function and discards
actions when their rates-to-change are larger than e:

. A min 0),1+e)Ar A >0
clip(pe(0),1 — €1+ ) A :{ max((ﬂ;t(( 0))7 s _62) Ao
@)

_ _me(a|st)
T Moy (atlst)

The algorithm employs stochastic gradient ascent (SGA)
to optimize both the policy network and the value network.
The process continues until no better policy is found.

This PPO-based method alone can be used in other ap-
plications. However, for the reasons motivating this paper,
we think it should be used in combination with what we will
present next — corpus-level document representation and dif-
ferentiable ranking function.

where p;(0) is the change rate of actions.

Build a Global Representation

In this paper, we propose to compress an entire text corpus
into a global low-dimensional representation and keep it at
all time. Our goal is to enable a DS agent to always gain
access to the full state space. We believe it is essential for
a DS agent because not being able to reach documents in
under-explored areas would mean not being able to recover
from early bad decisions.

We summarize the procedure of creating global repre-
sentation into three steps. First, each document is split into
topic-coherent segments. The latest advances in Neural In-
formation Retrieval (NeulR) have demonstrated the effec-
tiveness of using topical structures for NeulR (Tang and
Yang 2019; Fan et al. 2018). In this work, we follow (Tang
and Yang 2019) for segmenting and standardizing docu-
ments. Each document is split into a fixed B number of seg-
ments (B is empirically set to 20). Within each segment, the
content is expected to be topic-coherent since the segmen-
tation is done based on Tilebars. Tilebars (Hearst 1995) is
a classical text visualisation work and has been proven to
be very effective in helping identify relevant documents by
visualizing the term matches.

Second, bag-of-Words (BoW) is used as the feature vec-
tor for a segment and is of a size equal to the vocabu-
lary’s size W. This dimension is usually quite high and
could easily reach millions in natural language tasks. There-
fore, we compress each segment into a much manageable
lower-dimension n (n < W). One challenge is that af-
ter the compression the relevant and irrelevant documents
would be crowed together and difficult to be separated apart.
To address this issue, We employ t-SNE (Maaten and Hin-
ton 2008) for dimension reduction. The idea is based on
Barnes-Hut approximation (Barnes and Hut 1986). Assume
the high-dimensional input «, € R" follows Gaussian dis-
tribution. The probability that two random data points x; and

2530

Doc 1
Doc 2
Doc 3

Doc 4
Doc5

Topical
segmentation & compress segments

Standardize documents Stack segmented
documents

Figure 2: Global representation of a toy corpus (of 5 docu-
ments): Documents are segmented and standardized follow-
ing (Tang and Yang 2019). Similar colors suggest similar
contents. Document 2 is darkened after being visited. Docu-
ment 4 is currently selected by the RL agent and highlighted
with white.

x; are neighboring to each other is

__eap(=lmi — w,]?/20”)
S cap(ller — mi|F/20%)

The algorithm then maps these data points in the high di-
mensional space to points y, in a much lower dimensional
space R"™. Suppose x; and x; project into the lower dimen-
sion as y; and y;. The probability that y; and y; are still
neighboring to each other is

eyl
DL+ lye —wi[#) 71

To establish the mapping between x and y, the points” KL
divergence

Lisne(yllz) = Z Zp(wi7 ;) log
v g

p(xi, x;) (8)

(Y, y;) )

p(whwj)

(10)
(¥, y;)
is minimized. The solution to the new projection can be
achieved step by step via gradient descent.

Third, segments from all documents are stacked together
to form a global representation. The global representation is
denoted by C and its dimensions are C' x B x n. Here C'
is the number of documents, B is the number of segments
per document, and n is the reduced feature dimension. In
our work, n is empirically set to 3. In this global represen-
tation C, each row represents a document and each column
represents a segment at a certain position in the documents.
Each row unfolds the segments horizontally, with their orig-
inal order in a document preserved. For generality, we make
no assumption about the stacking order of documents. The
RL agent is expected to complete the search task even when
dealing with randomly ordered documents. Figure 2 illus-
trates the global representation of a toy corpus.



This global representation constructs the states. Our state
at time ¢, s¢, has two parts, C and the retrieval history of
documents from time 1 to ¢ — 1:

St :S(C,Dl UDQU...Di...UDt_l) (11)

where D; is the set of documents retrieved at time .

In Algorithm 1, already-retrieved documents are marked
as visited. In the global representation, it is done by assign-
ing a reserved value to those documents’ feature vectors.
When the 7t document is visited, the feature vectors of all
its segments, i.e. v;4, are changed to the reserved value. Such
change explicitly shows past search history and exploration
status at the corpus level.

Retrieve using a Differentiable Ranking Function

It is crucial for an RL agent to employ a differentiable rank-
ing function as its action so that it can perform end-to-end
retrieval. Unfortunately, most existing DS approaches still
use ranking functions that are non-differentiable.

The existing approaches’ formulation is shown in Eq. 3
Score; = f(h(m(s4,0),0),d;, ¢). It is is clearly a non-
differentiable function. This prevents the RL agent from di-
rectly manipulating documents based on user feedback. We
propose to omit query reformulation & completely, includ-
ing its heuristic o. Since our RL agent would not use any
conventional retrieval model, their heuristic parameter ¢ is
gone, too. The ranking function then becomes:

score;, = f(n(se,0:),d;) (12)

We then focus on making f differentiable. It is achieved
by using a linear formulation for f. In our formulation, f
approximates a document d; ’s relevance as a linear function
over the segments belonging to d;:

B
score; = f(af, d;) = Zy,] -ato (13)
j=1

where af = 7(s;, 0;) is the action that is generated by pol-
icy 7(s¢, 0;) and y;; is the feature vector of the j* segment
in d; after compression. The action vector a? can be sam-
pled by the RL agent at each time step. When it gets updated,
the new action a? 1 allows the agent to retrieve and explore

a different set of documents.

Get Reward based on User Feedback

In TREC DD (Yang, Tang, and Soboroff 2017), the rele-
vance ratings are provided by the simulated user. We de-
fine the immediate reward as the accumulated relevance rat-
ings (without discounting) for the retrieved documents. Du-
plicated results are excluded. The immediate reward is:

(14)

Ty =

rel(d;)
d; €D \(D1UD2U...UDy_1)

where rel(x) is a rating given by the simulator. The rating
can be a positive number rel € (0, 4o00) for a relevant docu-
ment (d; € R™), or 0 for an irrelevant document (d; € R 7).
The larger the rating, the better the retrieved document.
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Topic (DD17-10)

Subtopic 1 (id: 321)
Subtopic 2 (id: 319)
Subtopic 3 (id: 320)
Subtopic 4 (id: 318)

Leaning Towers of Pisa Repairs

Tourism impact of repairs/closing
Repairs and plans
Goals for future of the tower
Closing of tower

Table 1: Example Search Topic.

5 Experiments
Experimental Settings

The Text REtrieval Conference (TREC) Dynamic Domain
(DD) Tracks 2015 - 2017 (Yang, Tang, and Soboroff 2017)
provides a standard testbed for DS. A simulated user' is-
sues a starting query, and then provides feedback for all the
subsequent runs of retrievals. The feedback includes graded
document-level and passage-level relevance judgments in
the scale of -1 to 4.

We experiment on the TREC DD 2017 Track for its judge-
ments’ completeness. TREC DD 2017 used LDC New York
Times collections (Sandhaus 2008) as its corpus. The collec-
tion included more than 1.8 million news articles archived
in the past 20 years. The Track released 60 search tasks cre-
ated by human assessors. Each task consisted of multiple
hierarchically-organized subtopics. The subtopics were not
made available to the participating DS systems. Instead of
post-submission pooling, the Track spent a great deal of ef-
forts in obtaining a complete set of relevant passages before
the evaluation started. These answers were used to generate
feedback by the simulator. In total, 194 subtopics and 3,816
relevant documents were curated.

Table 1 shows an example DD search topic DD17-10. In
this example, the search task is to find relevant information
on “ closing of Leaning Tower in Pisa”. Table 2 shows an
example interaction history.

Metrics The evaluation in DS focuses on gaining
relevant information throughout the whole process.
We adopt multiple metrics to evaluate the approaches
from various perspectives. Aspect recall (Lager-
gren and Over 1998) measures subtopic coverage:

# subtopics found
Asepct Recall # subtopics in the topic”

and Recall measure the ratios of correctly retrieved
documents over the retrieved document set or the entire

. .y U, D)NRT
correct set, respectively: Precision = I o )D‘ |, and
=171

n . —+
Recall = % Normalized Session Discounted

Cumulative Gain (nsDCG) evaluates the graded relevance
for a ranked document list, putting heavier weights on
the early retrieved ones (Jarvelin et al. 2008): sDCG =

n . A\ —1
Yo Zd,-eDT; rel(d;) ((1 +log, 7)(1 + logy,, z)) , and

_ sDCG
nsDCG = ideal sDCG"

Precision

Systems We compare CE3 to the most recent DS systems.
They were from the TREC DD 2017 submissions. We pick

"https://github.com/trec-dd/trec-dd-jig



Search DD17-10

User: Leaning Towers of Pisa Repairs

System: Return document 0290537

User: Non-relevant document.

System: Return document 0298897

User: Relevant on subtopic 320 with a rating of 2,
“No one doubts that it will collapse one
day unless preventive measures are taken.”

System: Return document 0984009

User: Relevant on subtopic 318 with a rating of 4,

“The 12th-century tower was closed to
tourists in 1990 for fear it might topple.”

Table 2: Example Interaction History.

the top submitted run from each team to best represent their
approach. The runs are:

Galago (Croft, Metzler, and Strohman 2009):This ap-
proach does not use any user feedback. Documents are re-
peatedly retrieved with the same query (Q at each iteration
by Galago. Documents appeared in previous iterations are
removed from current iteration.

Deep Q-Network (DQN) (Tang and Yang 2017): A
DQN-based algorithm that selects query reformulation ac-
tions such as adding terms and removing terms and uses
Galago to retrieve the documents.

Relevance Feedback (RF) (Rogers and Oard 2017) : The
query @ is used to first retrieve an initial set of documents
using Indri.? Then the documents are re-ranked by their sim-
ilarity to the user feedback in all previous iterations. It is
a variant of the relevance feedback (RF) model (Robertson
and Jones 1976).

Results Diversification (DIV) (Zhang et al. 2017): This
approach expands queries based on previous user feedback.
The documents retrieved with solr? are then re-ranked with
the xQuAD result diversification algorithm (Santos et al.
2010).

CE3: The proposed method in this paper. For compari-
son, we also implement a variant, CE3 (doc2vec), which
uses doc2vec (Le and Mikolov 2014) to compress the fea-
ture vector for each segment. The embeddings are trained on
more than 1.8 million documents. Other settings are identi-
cal between CE3 and CE3 (doc2vec).

Parameters We construct a collection for each search
topic () by mixing relevant documents and irrelevant doc-
uments at a ratio of 1:1 to simulate a common re-ranking
scenario. The corpus size C ranges from tens to thousands.
Among all the parameter combinations, the following con-
figuration yields the best performance: The dimension of t-
SNE’s output n is set to 3. The number of segments per doc-
ument B is set to 20. Coefficients ¢; and ¢ in Eq. 4 are
0.5 and 0, respectively. Both the policy and value networks
have 2 layers of CNNs and 1 MLP. The first CNN consists
of eight 2 x 2 kernels and the second consists of 16. The

2https://www.lemurproject.org/indri/
*http://lucene.apache.org/solr/
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hidden layer of MLP consists of 32 units and is the same for
both networks. The output layer of MLP has 3 units for the
policy network and 1 for the value network.

Results

From Figure 3, we observe that CE3 outperforms all others
in recall (Fig. 3c) and aspect recall (Fig. 3c) at all time. It
suggests that our RL agent is able to explore more areas in
the state and action spaces than the rest. While other algo-
rithms also manage to achieve a high aspect recall (> 0.9),
they do not perform as well at recall. It shows that although
traditional diversification methods can find a few relevant
documents for each aspect, it is hard for them to continue the
investigation on a visited aspect. This indicates their less ef-
fective exploration. Instead, CE3’s ranking function enables
end-to-end optimization, which allows the agent to effec-
tively explore at all different directions in the state and action
spaces. It thus works very well on recall-oriented measures.

CE3 performs very impressive in precision (Fig. 3b), too.
As the search episode develops, all other approaches show
declined precision; however, CE3 stays strong at all itera-
tions. We think it is because other methods could not easily
recover from early mistakes while CE3’s global representa-
tion allows it to explore elsewhere for ne opportunities when
a bad decision happens.

Moreover, even not specifically designed for rank-
sensitive metrics, CE3 performs very well on nsDCG, too.
Results (Fig. 3a) reveal that at the beginning CE3 does not
score as high as other methods; however, at the end of the
episode, CE3 largely outperforms the rest. We believe the
initial successes of other methods are caused by that they
are well-tuned to be ranking-sensitive, which is what exist-
ing retrieval functions address. However, they seem not to be
able to adapt well when the number of interactions increases.

In addition, it comes to our attention that CE3 (doc2vec)
is left far behind by CE3. We know that they only differ
in their choices to dimension reduction. In a follow-up in-
vestigation, we discover that CE3 retrieves much less dupli-
cated documents than CE3 (doc2vec) does. Table 3 reports

|Dm(D1U|DD2:T“'UD“1)|, the percentage of duplicate docu-

ments being retrieved, for the two CE3 variants. We believe
it is due to how they compress the feature vectors in a seg-
ment. Doc2vec makes no assumption about the data distribu-
tion after compression. Vectors trained by doc2vec are prob-
ably crowded together and yield more duplicated results. On
the contrary, t-SNE helps CE3 separate relevant documents
from irrelevant documents, which makes it contribution to
CE’s success.

Visualize the Exploration

We are interested in observing the dynamics during a DS
process. Figure 4 illustrates the first 8 steps for a search
task with 3 subtopics. Based on the ground truth, we ar-
range the relevant documents at the top and irrelevant docu-
ments at the bottom. Among the relevant documents, those
belong to the same subtopic are grouped together and placed
in the order of subtopics 1 to 3. The turquoise dotted lines
are added to highlight where each subtopic’s are. The white
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Figure 3: Experiment results in the first 10 search iterations.

Time step t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

CE3 (doc2vec) | 0.0% 11.7% 18.0% 30.0% 35.0% 343% 30.0% 25.0% 25.7% 25.0%
CE3 0.0% 3.0% 1.7% 1.0% 3.0% 0.0% 1.0% 03% 3.0% 0.0%

Table 3: Percentage of duplicate documents.

I p—— e Relevant subtopic 1 6 Conclusion
| — e R . . . . . .
elevant subtopic 2 Using Dynamic Search (DS) as an illustrating example, this
— | . ;
= ] B - Relevant subtopic 3 paper presents a new deqp remfprcement learning frame-
work for retrieval-based interactive Al systems. To allow
Non-Relevant an agent to explore a space fully and freely, we propose
—— to maintain a global representation of the entire corpus at

t=1

[
1i
N
-+
l
A

all time. We achieve corpus-level compression by t-SNE di-
Relevant subtopic 1 mension reduction. We also propose a novel differentiable
ranking function to ensure user feedback can truly control
what documents to return. The experimental results demon-
strate that our method’s performance is superior to state-of-

Relevant subtopic 2

Relevant subtopic 3

Non-Relevant the-art DS systems. Given the fundamental issues we ad-
dress in this paper, we believe CE3’s success can be ex-
t=5 t=6 t=7 t=8 tended to other interactive Al systems.
Figure 4: Visualization of Exploration (Topic DD17-3). Acknowledgements
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