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Abstract

We study the complexity of computing the Shapley value
in games with externalities. We focus on two representa-
tions based on marginal contribution nets (embedded MC-
nets and weighted MC-nets) and five extensions of the Shap-
ley value to games with externalities. Our results show that
while weighted MC-nets are more concise than embedded
MC-nets, they have slightly worse computational properties
when it comes to computing the Shapley value: two out of
five extensions can be computed in polynomial time for em-
bedded MC-nets and only one for weighted MC-nets.

Introduction

Coalitional games are a standard model of cooperation in
multi-agent systems (Chalkiadakis, Elkind, and Wooldridge
2011). In the classic form the profit of a coalition is as-
sumed to be independent of the coalitions formed by the
other players. However, this simplifying assumption does
not hold in many settings. For example, if agents in a sys-
tem have conflicted goals or limited resources, then coali-
tions naturally affect each other (Dunne 2005). There are
also examples of externalities in economics, in oligopolis-
tic markets in particular, where cooperation of some com-
panies affect the profits of the competitors (Yi 2003). That
is why, in the last decade coalitional games with external-
ities have gained attention both in economic (Kóczy 2018;
Abe and Funaki 2017) and AI literature (Rahwan et al. 2012;
Michalak et al. 2010a).

Externalities present new challenges both conceptually
and computationally. On the conceptual side, it is unclear
how to extend most solution concepts to games with ex-
ternalities. In particular, there are several non-equivalent
well-established methods of extending the Shapley value to
games with externalities proposed by Pham Do and Norde
(2007) (EF-value), McQuillin (2009) (MQ-value), Hu and
Yang (2010) (HY-value), Feldman (1996) (SS-value) and
Myerson (1977b) (MY-value). On the computational side,
externalities highly increase the size of the game itself.

To cope with the extensive space requirement of games
with externalities, three different representations were pro-
posed in the literature. The first two, called embedded MC-
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Embedded MC-nets Weighted MC-nets
MQ-value in P (∗) in P (Th.6)
EF-value in P (Th.8) #P-complete (Th.9)
HY-value #P-complete (Th.10) #P-complete (Th.10)
SS-value #P-complete (Th.13) #P-complete (Th.13)
MY-value #P-complete (Th.14) #P-complete (Th.14)

Table 1: Summary of complexity results for computing ex-
tended Shapley value in games represented as embedded and
weighted MC-nets. (∗) Proved by Michalak et al. (2010a).

nets (Michalak et al. 2010a) and weighted MC-nets (Micha-
lak et al. 2010b), are extensions of the well-known logic-
based representation: marginal contribution nets (Ieong and
Shoham 2005). For the former representation, Michalak et
al. (2010a) proved that one extension of the Shapley value
can be computed in polynomial time. For the latter one,
only partial results (polynomial results under restrictive ad-
ditional assumptions) have been proposed for three exten-
sions. More recently, Skibski et al. (2020) proposed a new
representation, partition decision trees, and proved that all
five extensions of the Shapley value listed above can be com-
puted in polynomial time under this representation.

In this paper, we fill a gap in the literature by determining
what is the complexity of computing all the five extensions
of the Shapley value in games represented as embedded and
weighted MC-nets. Specifically, we show that only two out
of five extensions can be computed in polynomial time for
embedded MC-nets and only one can be computed in poly-
nomial time for weighted MC-nets (unless P = NP). For all
other values we show that computation is #P-complete (see
Table 1).

Interestingly, our results are strongly based on graph the-
ory techniques. Specifically, we show that every embed-
ded/weighted MC-nets rule can be represented as (one or
more) graphs and that each extended Shapley value can be
expressed as the weighted sum over all proper vertex color-
ing in these graphs. Building upon these general results, for
each value we analyze the resulting weighted sum. That is,
we show the MQ-value is a weighted sum over 2-colorings
and EF-value—over independent sets in a part of the graph.
In turn, SS-value under some assumptions is proved to be
equal to the number of matchings in a bipartite graph.
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Preliminaries
In this section, we introduce basic notation and definitions.

Coalitional games with externalities

Let N = {1, . . . , n} be a set of n players, which will be
fixed throughout the paper. A coalition is any nonempty sub-
set of N . The set of all possible partition of N is denoted by
P and the set of all embedded coalitions, i.e., coalitions in
partitions, by EC: EC = {(S, P ) : P ∈ P, S ∈ P}.

In this paper, by game we mean a coalitional game with
externalities in a partition function form: formally, for a
fixed set of players, a game is a function that assigns a real
value to every embedded coalition: g : EC → R. We say
that a game has no externalities if the value of every coalition
does not depend on the partition, i.e., g(S, P ) = g(S, P ′) for
every coalition S ⊆ N and (S, P ), (S, P ′) ∈ EC.

A value of a player in a game is a real number that repre-
sents player’s importance or expected outcome. The Shapley
value (Shapley 1953) is defined for games without external-
ities. Assume g is such a game, i.e., there exists ĝ : 2N → R

such that g(S, P ) = ĝ(S) for every (S, P ) ∈ EC and
ĝ(∅) = 0. Now, the Shapley value is defined as follows:

SVi(ĝ) =
∑
S⊆N

ζiS · ĝ(S),

where ζiS = (|S| − 1)!(n − |S|)!/n! if i ∈ S, and ζiS =
−|S|!(n− |S| − 1)!/n!, otherwise.

Shapley (1953) famously proved that the Shapley value is
a unique value that satisfies four simple axioms: Efficiency,
Symmetry, Additivity and Null-Player. In games with exter-
nalities, however, these classic axioms are too weak to guar-
antee uniqueness. Hence, numerous extensions of the Shap-
ley value to games with externalities have been proposed
(see (Kóczy 2018) for a recent overview), most of the form:

ESV ω
i (g) =

∑
(S,P )∈EC

ωi(S, P ) · g(S, P ) (1)

for some weights ω : EC ×N → R.
We will focus on five such extensions. Four of them can

be obtained as the composition of two functions: the first one
maps a game with externalities to a game without externali-
ties and the second one applies the original Shapley value. In
the simplest definitions, the mapping is obtained by simply
taking a value of each coalition from one specific partition:
McQuillin value (MQ-value) (McQuillin 2009) is defined

as MQi(g) = ESV ω
i (g) for ωi(S, P ) = ζiS · [|P | ≤ 2].

Externality-free value (EF-value) (Pham Do and Norde
2007) is defined as EFi(g) = ESV ω

i (g) for ωi(S, P ) =
ζiS · [|P | − 1 = n− |S|].

Here, we used Iverson brackets: [ϕ] = 1 if statement ϕ is
true, and [ϕ] = 0, otherwise. EF-value was independently
proposed by De Clippel and Serrano (2008).

MQ-value and EF-value ignore values of a coalition in
most partitions. In turn, HY-value and SS-value for every
coalition take a weighted average over all partitions it is in;
the difference is HY-value assigns greater weights to par-
titions with more coalitions, while SS-value—to partitions
with larger coalitions:

[4] [3,1] [2,2] [2,1,1] [1,1,1,1] ×
MQ 1 0 0 0 0 1/30
EF 0 0 0 0 1 1/30
HY 5 10 10 17 26 1/6090
SS 6 2 1 1 1 1/720
MY 10 -6 -5 9 -24 1/30

Table 2: Weights ωi(S, P ) for different extended Shapley
values with |N | = 6, |S| = 2 and i ∈ S. Columns are la-
beled with the integer partitions corresponding to sizes of
coalitions in P \ {S}. For each value, the last column con-
tains a common multiplier (e.g., for HY-value and P \{S} of
the form {{j, k}, {l}, {m}} it holds wi(S, P ) = 17/6090).
Cells most important in our complexity results are marked.

Hu-Yang value (HY-value) (Hu and Yang 2010) is defined
as HYi(g) = ESV ω

i (g) for ωi(S, P ) = ζiS ·θ(S, P )/|P|,
where θ(S, P ) = |{P ′∈P : {T \S : T ∈P ′}=P \{S}}|.

Stochastic Shapley value (SS-value) (Feldman 1996)
is defined as SSi(g) = ESV ω

i (g) for ωi(S, P ) = ζiS ·
(
∏

T∈P\{S}(|T | − 1)!)/(n− |S|)!.
SS-value was also studied by Macho-Stadler, Pérez-
Castrillo, and Wettstein (2007) and Skibski, Michalak, and
Wooldridge (2018).

Finally, Myerson (1977b) studied how the Null-player ax-
iom can be strengthen in order to obtain unique characteriza-
tion. His analysis led to a value which cannot be interpreted
as a composition of two functions mentioned above.
Myerson value (MY-value) (Myerson 1977b)

is defined as MYi(g) = ESV ω
i (g) for ωi(S, P ) =

(−1)|P |((
∑

T∈P\{S},i �∈T
(|P |−2)!
(n−|T |) )− (|P |−1)!

n )

See Table 2 for an illustration of ω weights.

Representations

Game represented as a single rule γ is denoted by gγ and as
the set of rules Γ = {γ1, . . . , γk} by gΓ.

MC-nets (Ieong and Shoham 2005)
Marginal contribution nets (MC-nets) are a representation
for games without externalities. The game is represented as
a set of MC-nets rules of the form: (α → c). Here, c ∈ R is
the weight of a rule and α is a boolean expression over N of
the form:

(a+1 ∧ · · · ∧ a+m ∧ ¬a−1 ∧ · · · ∧ ¬a−l ), (2)

where a+1 , . . . , a
+
m ∈ N are called positive literals and

a−1 , . . . , a
−
l ∈ N are called negative literals. We denote sets

of positive and negative literals by ⊕(α) and 	(α), respec-
tively, and assume ⊕(α) ∩ 	(α) = ∅ and ⊕(α) �= ∅.1 A
coalition S satisfies α if it contains all positive literals and
does not contain any negative literal, i.e., ⊕(α) ⊆ S and
	(α) ∩ S = ∅. Now, in a game represented as a set of MC-
nets rules the value of coalition S is the sum of weights of
all satisfied rules.

1Ieong and Shoham (2005) allows rules without positive literals
which entails that the empty coalition may have non-zero value. As
standard in the literature, we do not allow such situations.
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Embedded MC-nets (Michalak et al. 2010a)
An embedded MC-nets rule is of the form:

(α1|α2, α3, . . . , αk) → c,

where c ∈ R is the weight of a rule and α1, . . . , αk are
boolean expressions as in Eq. (2). An embedded coalition
(S, P ) satisfies the rule if S satisfies α1 and for every αi

with i > 1 there exists a coalition T ∈ P \ {S} that satisfies
it. Now, in a game represented as a set of embedded MC-
nets rules the value of embedded coalition (S, P ) is the sum
of weights of all satisfied rules.

Weighted MC-nets (Michalak et al. 2010b)
A weighted MC-nets rule is of the form:
(α1

1→c11) . . . (α
1
k1
→c1k1

)| . . . |(αm
1 →cm1 ) . . . (αm

km
→cmkm

),

where (αi
j → cij) for every i ∈ {1, . . . ,m} and j ∈

{1, . . . , ki} is an MC-nets rule. A partition P satisfies the
rule if it can be partitioned into m disjoint subsets P =
P1∪̇ . . . ∪̇Pm such that for every i ∈ {1, . . . ,m} and j ∈
{1, . . . , ki} rule (αi

j → cij) is satisfied by some coalition
from Pi. Now, in a game represented as a set of weighted
MC-nets rules the value of embedded coalition (S, P ) is the
sum of weights of all MC-nets rules (α → c) that S satisfies
in all (weighted MC-nets) rules satisfied by P .

Graphs

A graph is a pair (V,E) where V is the set of nodes and E
is the set of undirected edges, i.e., subsets of nodes of size 2.

Two nodes are adjacent if there is an edge connecting
them. A clique is a subset of nodes every two of which are
adjacent. An independent set is a subset of nodes no two of
which are adjacent.

A (proper vertex) k-coloring of a graph is a function, f :
V → {1, . . . , k}, that assigns colors {1, . . . , k} to nodes in a
way that every two adjacent nodes have different colors, i.e.,
f(v) �= f(u) for every {v, u} ∈ E. In other words, nodes
colored with the same color are an independent set. The set
of all k-colorings of a graph G is denoted by Ck(G).

A k-coloring f results in the partition of nodes:
Pf = {f−1(i) : i ∈ {1, . . . , k}, f−1(i) �= ∅}.

A set in Pf that contains node vi is denoted by Si
f . We say

that f uses exactly p colors if |Pf | = p. Finally, we will
denote by θ(f) the number of all k-colorings that result in
the partition Pf ; note that θ(f) = k(k−1) · · · (k−|Pf |+1).

We will consider graphs labeled with subsets of players:
l : V → 2N . We will denote the label of node v by l(v) and
define l(U) =

⋃
v∈U l(v) for a subset of nodes U ⊆ V and

l(P ) = {l(U) : U ∈ P} for a partition P of nodes V .
Example 1. Figure 1 presents an example graph G =
(V,E) and a 4-coloring f . Coloring f results in the follow-
ing partition of nodes: Pf = {{v1, v4}, {v2}, {v3}} (there
are θ(f) = 4 · 3 · 2 different 4-colorings that result in this
partition). We have S1

f = {v1, v4}.
Note that labels of nodes in G form a partition of the set

of players N = {1, . . . , 6}: {l(v1), l(v2), l(v3), l(v4)} ∈ P .
Hence, also l(Pf ) is a partition of N and (l(S1

f ), l(Pf )) =

({1, 2, 6},{{1, 2, 6}, {3, 5}, {4}}) is an embedded coalition.

1,2v1

3,5v2

4v3

6v4

Figure 1: Graph G = (V,E) and a 4-coloring f with
colors: 1 (blue/striped), 2 (yellow/checked), 3 (red/plain),
4 (green/dotted). Note that color 2 is not used.

Mapping MC-Nets into Graphs
The goal of this section is to show that (1) every embedded
and weighted MC-nets rule can be represented as (one or
more) graphs, and (2) a game represented as embedded and
weighted MC-nets can be defined based on (proper vertex)
colorings in such graphs.

To this end, we begin by introducing a subclass of
weighted MC-nets rules under the name hybrid rules. The
name comes from the fact that hybrid rules, while they are
formally weighted MC-nets rules, have a form almost iden-
tical to embedded MC-nets rules.
Definition 1. (Hybrid rules) A hybrid rule is a weighted
MC-nets rule with m = 1 of the form:

γ = (α1 → c)(α2 → 0) . . . (αk → 0),

with ⊕(αi) ∩ ⊕(αj) = ∅ for i, j ∈ {1, . . . , k}, i �= j and⋃k
i=1 ⊕(αi) = N . We will call c ∈ R the weight of rule γ.
Note that for every hybrid rule {⊕(α1), . . . ,⊕(αk)} is a

partition of N . Based on the definition of weighted MC-nets,
embedded coalition (S, P ) satisfies hybrid rule γ if S satis-
fies α1 and for every αi with i > 1 there exists a coalition
in P that satisfies it (note that, unlike embedded MC-nets, S
may also satisfy αi for i > 1).

In Lemma 1, we show that every weighted MC-nets rule
can be expressed using polynomially many hybrid rules.
Lemma 1. Every weighted MC-nets rule of size S is equiv-
alent to a set of hybrid rules of size poly(n, S).

In turn, in Lemma 2, we show that embedded MC-nets
rules are equivalent to a subset of hybrid rules. We will use
a notion of compatibility: we say that expressions αi, αj

are compatible, denoted by comp(αi, αj), if there exists a
coalition that satisfies both of them, i.e., if (⊕(αi)∪⊕(αj))∩
(	(αi) ∪ 	(αj)) = ∅.
Lemma 2. Every embedded MC-nets rule of size S is equiv-
alent to a hybrid rule of size poly(n, S) satisfying:

∀1<i,j≤k((comp(α1, αi) ∧ comp(α1, αj)) →
(comp(αi, αj) ∧ (|⊕(αi)| = |⊕(αj)| = 1)). (∗)

Moreover, every hybrid rule of size S satisfying (∗) is equiv-
alent to an embedded MC-nets rule of size poly(n, S).

Lemmas 1 and 2 will be crucial in our complexity analysis
as they allow us to focus on hybrid rules.

So far, we have shown the mapping from weighted MC-
nets and embedded MC-nets rules to hybrid rules. In what
follows, we show that every hybrid rule can be represented
as a graph.
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Definition 2. (Graph Gγ) For a hybrid rule γ, graph
Gγ = (V,E) is a graph where nodes represent expressions
α1, . . . , αk and are labeled with sets ⊕(α1), . . . ,⊕(αk) and
edges connect incompatible expressions αi, αj :

• V = {v1, . . . , vk} with l(vi) = ⊕(αi) for every vi ∈ V ;
• E = {{vi, vj} ⊆ V : ¬comp(αi, αj)}.

We note that a similar construction of a graph for the right-
hand side part of the embedded MC-nets was proposed by
Skibski et al. (2016).

Example 2. Consider a hybrid rule γ = (α1 → 1)(α2 →
0)(α3 → 0)(α4 → 0) with:

α1 = (1 ∧ 2 ∧ ¬3), α2 = (3 ∧ 5),
α3 = (4 ∧ ¬1 ∧ ¬3 ∧ ¬6), α4 = (6 ∧ ¬5).

Note that comp(α1, α4) and ¬comp(αi, αj) for other i, j ∈
{1, . . . , 4}, i �= j. Graph Gγ is depicted in Figure 1.

Since α4 is the only expression compatible with α1 (other
than α1 itself) and |⊕(α4)| = 1, we get that γ satisfies con-
dition (∗). Hence, from Lemma 2 we know that it is equiv-
alent to some embedded MC-nets rule. One such a rule is:
(1 ∧ 2)|(3 ∧ 5 ∧ ¬6)(4 ∧ ¬3 ∧ ¬6) → 1.

Definition 2 shows that every hybrid rule can be repre-
sented as a graph in which labels of nodes form a partition of
players. The natural question arises: does every such graph
represent some hybrid rule? The answer is “yes”, which we
prove in the following lemma.

Lemma 3. For a graph G = (V,E) with labels l there exists
a hybrid rule γ such that G = Gγ if and only if {l(v) : v ∈
V } is a partition of N of size |V |.

The next lemma states the necessary and sufficient con-
ditions for the graph to represent a hybrid rule that satisfies
condition (∗).
Lemma 4. For a graph G = (V,E) with labels l there exists
a hybrid rule γ satisfying condition (∗) such that G = Gγ if
and only if:

(i) {l(v) : v ∈ V } is a partition of N of size |V |;
(ii) {u ∈ V \ {v1} : {v1, u} �∈ E} (nodes not adjacent to

v1) form an independent set; and
(iii) |l(u)| = 1 for every node u not adjacent to v1 (u �= v1).

Based on Lemmas 1–4 we know that every weighted MC-
nets rule can be represented as (one or more) graphs and
every embedded MC-nets rule can be represented as a graph
satisfying conditions (i)–(iii).

Let us now explain how a game represented as a hybrid
rule γ can be defined based on graph Gγ . Fix a hybrid rule γ
and consider a partition P that satisfies it. Since every node
in graph Gγ is labeled with a set of players which is equal to
the set of positive literals in some expression αi, it is clear
that all these players must appear in the same coalition in P .
This observation combined with the fact that every player
appears in exactly one node implies that P can be associated
with a partition of nodes in graph Gγ .

Consider partition P ∗ of nodes that correspond to P . Note
that two adjacent nodes cannot belong to the same coalition
in P ∗, because they represent incompatible expressions that
cannot be satisfied by one coalition. Hence, every set in P ∗

is an independent set. In result, we get that P ∗ corresponds
to some coloring of a graph.

This analysis is formalized in the following lemma.

Lemma 5. Partition P satisfies a hybrid rule γ if and only
if there exists k-coloring f ∈ Ck(G

γ) such that P = l(Pf ).
Moreover:

gγ(S, P ) = c · [∃f∈Ck(Gγ)(P = l(Pf ) ∧ S = l(S1
f ))]. (3)

Example 3. Consider a hybrid rule γ from Example 2 with
graph Gγ depicted in Figure 1. Let us discuss all possible
4-colorings of Gγ :

– There are no colorings of Gγ that use 2 or 3 colors.
– There are 24 colorings that use 3 colors: f(v1) = f(v4) =

a, f(v2) = b and f(v3) = c where a, b, c ∈ {1, . . . , 4}
are different colors. Note that for every such coloring f
we have: Pf = {{1, 2, 6}, {3, 5}, {4}}.

– There are 24 colorings that use 4 colors; in these colorings
all nodes have different colors. For every such coloring f
we get: Pf = {{1, 2}, {3, 5}, {4}, {6}}

Overall, 48 colorings results in two partitions of players.
Now, from Lemma 5, game gγ is defined as follows:

gγ({1, 2, 6}, {{1, 2, 6}, {3, 5}, {4}}) = 1,
gγ({1, 2}, {{1, 2}, {3, 5}, {4}, {6}}) = 1,

and gγ(S, P ) = 0 for the remaining embedded coalitions.

In the following section, we consider computing extended
Shapley values in games defined with Eq. (3).

Computing extended Shapley values

From Eq. (1) we know that all extended Shapley values
considered by us satisfy linearity, i.e., ESV (g + g′) =
ESV (g) + ESV (g′) and ESV (c · g) = c · ESV (g) for
every two games g, g′ and c ∈ R. Thus, in our computa-
tional analysis we can focus on games represented as a sin-
gle rule and, based on Lemmas 1 and 2, as a single hybrid
rule. Moreover, we can assume the weight of this rule is 1
(i.e., c = 1). Hence, from now on, we will assume that game
is represented as a hybrid rule with weight 1.

Fix such a hybrid rule γ. In Lemma 5, we showed that
the value of an embedded coalition (S, P ) is non-zero if
and only if there exists a coloring f in graph Gγ such that
P = Pf . Since there are θ(f) colorings that results in the
same partition as f , from Lemma 5 and Eq. (1) we get the
following formula for extended Shapley values:

ESVi(g
γ) =

∑
f∈Ck(Gγ)

ωi(l(S
1
f ), l(Pf ))/θ(f). (4)

To put it in words, extended Shapley value in game gγ is a
weighted sum over all colorings in graph Gγ . Weights de-
pend on l(Pf ) (partition of players resulting from the color-
ing f ), l(S1

f ) (union of labels of all nodes colored with the
same color as node v1), and player i ∈ N .

More generally, we can consider the following counting
problem that we name WEIGHTED COLORING COUNTING.
The problem is parametrized with weights ω∗ : Ck(G) → R

that for each coloring assigns some real value.
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Definition 3. ω∗-WEIGHTED COLORING COUNTING
Input: graph G = (V,E), labels l : V → 2N s.t. {l(v) : v ∈
V } is a partition of players N
Output:

∑
f∈C|V |(G) ω

∗(f).

This problem in general is computationally challenging, as
it generalizes the problem of counting all k-colorings which
is #P-complete and allows us to determine whether a graph
is 3-colorable which is NP-complete.

Based on Eq. (4), computing each extended Shapley value
for a fixed player can be considered a special case of
WEIGHTED COLORING COUNTING. In the following sec-
tions, we analyze these problems one by one. Values are or-
dered in ascending order by the complexity of their formula:
• First two values, MQ-value and EF-value, take into ac-

count only one partition P for every coalition S; hence,
they can be computed by traversing all subsets, not all
partitions of players.

• In HY-value, considered third, the weight of an embed-
ded coalition (S, P ) depends solely on |S| and |P |; this
allows us to group all colorings that use the same number
of colors.

• Finally, in the last two values, SS-value and MY-value,
weights depend on sizes of all coalitions in a partition.
Before we move to the next section, let us roughly explain

a technique that we use in the proofs of Theorem 9, 10 and
14. This technique was used in several complexity results for
the Shapley value in games without externalities (see, e.g.,
(Aziz et al. 2009; Michalak et al. 2013)).

Assume we want to compute x1, . . . , xk and we have an
algorithm that computes the sum f(j) =

∑k
m=1 aj,mxm

for some weights a that depend on m and some external
parameter j ∈ {1, . . . , k}. To this end, we can construct a
system of linear equations with the following matrix form:

⎡
⎢⎢⎣

a1,1 a1,2 . . . a1,k
a2,1 a2,2 . . . a2,k

...
...

. . .
...

ak,1 ak,2 . . . ak,k

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x1

x2

...
xk

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f(1)
f(2)

...
f(k)

⎤
⎥⎥⎦ (5)

Now, if the matrix (aj,m)1≤j,m≤k has non-zero determinant,
then it is invertible. Hence, if we know f(1), . . . , f(k), then
using Gaussian elimination we can compute x1, . . . , xk.

In our case, f(j) will be an extended Shapley value and
xm will be the number of independent sets of size m (The-
orem 9), k-colorings that use m colors (Theorem 10) or
matchings in a bipartite graph of size m (Theorem 14).
Hence, based on the fact that computing

∑k
m=1 xm is #P-

hard we will get that computing EF-value, HY-value and
MY-value is also #P-hard.

Note that based on Eq. (4) each extended Shapley value
is a sum over exponentially many colorings and, in general,
two colorings that result in different partitions of nodes may
have different weights. Hence, the main challenge with this
approach is to (1) express an extended Shapley value as a
weighted sum over polynomial number of elements and (2)
creating a system of linear equations that results in a matrix
which is invertible.

Computing MQ-value

We begin with the analysis of MQ-value. Consider Eq. (4)
for weights of MQ-value:

MQi(g
γ) =

∑
f∈Ck(Gγ)

ζi
l(S1

f )

θ(f)
· [|l(Pf ) ≤ 2].

As we can see, only colorings that use 1 or 2 colors have
non-zero weights. It is easy to verify that instead of going
through all k-colorings it is enough to consider 2-colorings
of a graph. Using the fact that for every 2-coloring f we have
θ(f) = 2, we get:

MQi(g
γ) =

1

2

∑
f∈C2(Gγ)

ζil(S1
f )
. (6)

While in a connected graph there are at most two 2-
colorings, in a disconnected graph it can be exponentially
many. Nevertheless, in Theorem 6, we show that this sum
can be computed in polynomial time for every graph.
Theorem 6. For a game represented as weighted MC-nets,
MQ-value can be computed in polynomial time.

Sketch of proof. From Lemma 1 and linearity of MQ-value
we can focus on hybrid rules with weight 1. Fix such a hy-
brid rule γ. We will focus on the simplest case: i ∈ l(v1).
Let us define a table T [1. . .n] as follows: T [s] = |{f ∈
C2(G

γ) : |l(S1
f )| = s}|. To put it in words, T [s] is the

number of 2-colorings of Gγ in which there are s players in
nodes colored with the same color as node v1. From Eq. (6)
we have:

MQi(g
γ) =

∑n
s=1(s− 1)!(n− s)!/(2n!) · T [s].

Thus, it is enough to compute table T .
Table T can be computed with the following dynamic

programming algorithm. Assume T is filled with zeros at
the beginning. Let A1, . . . , Am be connected components
of graph Gγ , and let {Bj , Cj} be a unique partition of Aj

into two independent sets. Components and partitions can be
found by performing several breadth-first searches. If par-
tition {Bj , Cj} does not exist for at least one component
Aj , then the calculation is complete (T is a zero table). As-
sume otherwise and assume v1 ∈ B1. We begin by assigning
T [|l(B1)|] = 2, since there are two 2-colorings of A1. Now,
we consider components A2, . . . , Am, one by one, and for
each component consider two cases: either Bj or Cj is col-
ored with the same color as node v1. Thus, in each step, we
update table T by replacing it with a new table T ′ defined
as follows: T ′[s] = T [s− |l(Bj)|] + T [s− |l(Cj)|] for 1 ≤
s ≤ n (assuming T [s] = 0 for s ≤ 0). After the m-th step,
the calculation is complete.

Theorem 6 implies polynomial computation also for em-
bedded MC-nets.
Corollary 7. For a game represented as embedded MC-
nets, MQ-value can be computed in polynomial time.

Proof. Directly from Theorem 6. This result was also
proved by (Michalak et al. 2010a).
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Computing EF-value

EF-value, considered by us next, is complementary to MQ-
value. Consider Eq. (4) for weights of EF-value:

EFi(g
γ) =

∑
f∈Ck(Gγ)

[|Pf | − 1 = n− |l(S1
f )|] · ζil(S1

f )
/θ(f).

Note that condition |Pf |− 1 = n−|l(S1
f )| holds if and only

if every player i ∈ N \ l(S1
f ) form a singleton coalition {i}

in l(Pf ), i.e., node v such that i ∈ l(v) has a label of size
one and is colored with a different color than all other nodes.
Hence, Pf is uniquely defined by set S1

f .
Let us analyze the conditions on set S1

f . Let V ∗ be the set
of nodes with non-singleton labels. For an arbitrary set of
nodes S ⊆ V , there exists a coloring f with non-zero weight
such that S = S1

f if and only if: (1) S is an independent
set; (2) S contains node v1; and (3) S contains set V ∗. This
implies that if V ∗ ∪ {v1} does not form an independent set,
then the formula evaluates to zero. Assume otherwise.

We get that S is the union of V ∗∪{v1} and an independent
set of nodes which are not adjacent to V ∗ ∪ {v1}. Let us
denote these nodes by U (formally, U = {u ∈ V \ (V ∗ ∪
{v1}) : {u,w} ∈ E → w �∈ V ∗ ∪ {v1}}). Also, if S = S1

f

for some coloring f , then there are θ(f) colorings with the
same set S1

f . Hence, we get the following formula for EF-
value:

EFi(g
γ) =

∑
S∈I(Gγ):S⊆U

ζil(S∪V ∗∪{v1}) (7)

where I(Gγ) is the set of all independent sets in graph Gγ .
In the following two theorems, we show that this sum is

hard to compute in general, but it is easy to compute if graph
satisfies condition stated in Lemma 4.
Theorem 8. For a game represented as embedded MC-nets,
EF-value can be computed in polynomial time.

Sketch of proof. From Lemma 2 it is enough to consider hy-
brid rules that satisfy condition (∗) with weight 1. Fix such
a hybrid rule γ and consider Gγ . If V ∗ \ {v1} �= ∅, i.e.,
there exists a node, other than v1, with the size of a label
larger than one, then from Lemma 4 it must be adjacent to
v1; hence, EFi(g

γ) = 0 for every i ∈ N . Assume other-
wise. We get that V ∗ ∪ {v1} = {v1}, and U is the set of
nodes not adjacent to v1. From Lemma 4 we know that U
is an independent set. Thus, EFi(g

γ) =
∑

S⊆U ζil(S∪{v1})
which can be computed in polynomial time.

Theorem 9. For a game represented as weighted MC-nets,
computing EF-value is #P-complete.

Sketch of proof. To show that the problem is #P-complete,
we use a Turing reduction from the problem of counting all
independent sets in a graph which is #P-complete (Valiant
1979). We use a technique described at the beginning of the
section (see Eq. (5)). Specifically, for an arbitrary graph G =
(V,E), we label each node with one player and add a new
node, v1, labeled with j+1 new players. We get that U = V
and for i ∈ l(v1) Eq. (7) iterates over independent sets in G
and weights depends only their size and parameter j.

Computing HY-value

HY-value is the first value considered by us with non-zero
weights of every embedded coalition. Let us recall these
weights: ωi(S, P ) = ζiS · θ(S, P )/|P|, where θ(S, P ) =
|{P ′ ∈ P : {T \ S : T ∈ P ′} = P \ {S}}|. To put it in
words, θ(S, P ) is the number of partitions that can be ob-
tained from P \ {S} by inserting players from S.

Let us introduce a notion of Bell numbers. The n-th Bell
number, denoted Bn, is the number of all possible partitions
of n elements. Now, r-Bell numbers are a generalization of
Bell numbers: Bn,r is the number of partitions of n + r
elements such that the first r elements are in distinct sub-
sets (Mezo 2011). In particular, Bn,0 = Bn = Bn−1,1.

Now, observe that θ(S, P ) = B|S|,|P |−1. Thus, HY-value
weights combined with Eq. (4) yields:

HYi(g
γ) =

1

Bn

∑
f∈Ck(Gγ)

ζi
l(S1

f )

θ(f)
·B|l(S1

f )|,|l(Pf )|−1. (8)

Thus, for a fixed player i and size of l(S1
f ), the weight of a

coloring depends solely on the number of colors it uses (see
Table 2 for an illustration).

We will prove that computing this sum is #P-complete.
Theorem 10. For a game represented as embedded MC-
nets or weighted MC-nets, computing HY-value is #P-
complete.

Sketch of proof. To show that the problem is #P-complete,
we use the (Turing) reduction from the chromatic polyno-
mial problem, i.e., counting m-colorings in a graph, which
is #P-complete (Jaeger, Vertigan, and Welsh 1990).

Let G = (V,E) be an arbitrary graph and cm be the
number of k-colorings that use exactly m colors. For every
j ∈ {1, . . . , k} we construct a graph Gγj = (V ∪ {v1}, E ∪
{{v1, vi} : vi ∈ V }) with l(vi) = {i} for vi ∈ V and
l(v1) = {1} ∪ {k + 2, . . . , k + j}. Since node v1 is con-
nected to all other nodes we know that Gγj satisfies condi-
tions from Lemma 4 and from Lemma 2 there exists a hybrid
rule γj equivalent to some embedded MC-nets rule such that
Gγj is the corresponding graph. Now, it can be shown that

HY1(g
γj ) =

(j − 1)!

(k + j)!Bk+j

k∑
m=1

(k −m)!Bj,mcm.

In result, we get a system of linear equations from Eq. (5)
where aj,m = (k −m)!Bj,m, xm = cm and f(j) = ((k +
j)!/(j − 1)!)Bk+jHY1(g

γj ).
To show that the determinant of A = (aj,m)1≤j,m≤k is

non-zero we first prove a general formula for r-Bell numbers
(Lemma 11) and then, using this formula, we prove that the
determinant of matrix (Bj,m)1≤j,m≤k is equal to the known
determinant of matrix (Bj+m)1≤j,m≤k (Lemma 12).

Lemma 11. For every n, r ∈ N, Bn+r =
∑r

i=1{r, i}Bn,i,
where {r, i} is the Stirling number of the second kind, i.e.,
the number of partitions of r elements into i subsets.

Lemma 12. The determinant of matrix B=(Bj,m)1≤j,m≤k

equals (
∏k

i=0 i!) · (
∑k

i=0 1/i!).

This concludes the proof.
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Computing SS-value

SS-value, considered next, is probably the most popular ex-
tended Shapley value. Weights of SS-value combined with
Eq. (4) yields:

SSi(g
γ) =

∑
f∈Ck(Gγ)

ζi
l(S1

f )

θ(f)

∏
T∈Pf\{S1

f}(|l(T )| − 1)!

(n− |l(S1
f )|)!

.

In what follows, let us focus on graphs in which every
node is labeled with a single player: |l(v)| = 1 for every
v ∈ V . In such a case, we have n = k = |V | and |l(T )| =
|T |. Under this assumption, formula for SS-value of player
i ∈ l(v1) is as follows:

SSi(g
γ) =

∑
f∈Ck(Gγ)

∏
T∈Pf

(|T | − 1)!

θ(f) · n! . (9)

For a fixed partition P ∈ P , value
∏

T∈P (|T | − 1)! is the
number of permutations in which P is the partition obtained
from a cycle decomposition (for a permutation h : N → N
such partition is defined as follows: {{i, h(i), h(h(i)), . . . } :
i ∈ N}). Hence, Eq. (9) is the probability that the partition
obtained from a cycle decomposition of a random permuta-
tion corresponds to a (proper vertex) coloring in graph Gγ .

Let us consider a complement of graph Gγ = (V,E):
Gγ = (V, {{v, u} : v, u ∈ V, v �= u} \ E).

For every coloring f ∈ Ck(G
γ), sets of nodes in Pf are in-

dependent sets in Gγ . Hence, they are cliques in Gγ . As a
consequence, we get that SSi(g

γ) from Eq. (9) is equiva-
lently a weighted sum over clique covers (i.e., partitions of
the nodes in a graph into cliques):

SSi(g
γ) =

1

n!

∑

P∈QC(Gγ)

∏
T∈P

(|T | − 1)!, (10)

where QC(G) is the set of all clique covers in graph G.
Now, assume that Gγ is a bipartite graph. In such a case,

there are no cliques of size larger than 2 and each partition
into cliques is equivalent to a matching (not necessary per-
fect or maximal) in this graph. Moreover, for each such a
partition we have

∏
T∈P (|T | − 1)! = 1 (see also Table 2).

Hence, Eq. (10) is equal to the number of matchings in Gγ

divided by n!. We formalize this reasoning in the following
theorem.
Theorem 13. For a game represented as embedded MC-
nets or weighted MC-nets, computing SS-value is #P-
complete.

Sketch of proof. To show that the problem is #P-complete,
we use a reduction from the problem of counting all match-
ings in a bipartite graph which is #P-complete (Valiant
1979). For an arbitrary bipartite graph G = (V,E) we con-
struct a graph Gγ by adding a new node, v1, and we label
each node with one player. Since node v1 does not have any
edges in Gγ , then it is connected to all nodes in Gγ ; hence,
Gγ satisfies conditions of Lemma 4 and from Lemma 2 there
exist a hybrid rule γ equivalent to some embedded MC-nets
rule such that Gγ is the corresponding graph.

Now, from Eq. (10) for i ∈ l(v1) we get that SSi(g
γ)/n!

equals the number of matchings in Gγ , so also in G.

Computing MY-value

The last value that we consider is MY-value which is the first
chronologically proposed extension of the Shapley value.
Eq. (4) for weights of MY-value gives:

MYi(g
γ) =

∑
f∈Ck(Gγ)

(−1)|Pf |(|Pf | − 2)!

θ(f)
· hi(f),

with hi(f) =
(∑

T∈Pf\{S1
f},i �∈l(T )

1
(n−|l(T )|)

)
− |Pf |−1

n .
From Table 2 it is visible that both techniques used for HY-
value and SS-value does not work in this case.

To cope with this problem, we will exploit the fact that
weights of MY-value have a form of a sum over all coali-
tions. Specifically, we will consider a difference between
the MY-value of two players. Let us denote such differ-
ence for players i and j in game g by Δj

i (g): Δj
i (g) =

MYi(g) − MYj(g). Now, for i ∈ l(S1
f ) and j ∈ l(T ) for

some T ∈ Pf \ {S1
f} we get hi(f)− hj(f) = 1/(n− |T |)

and

Δj
i (g

γ) =
∑

f∈Ck(Gγ)

(−1)|Pf |(|Pf | − 2)!

θ(f) · (n− |l(T )|) . (11)

Note that if j is in a label of a node adjacent to all other
nodes, then the weight of a coloring depends solely on the
number of colors it uses. Hence, we can use a technique de-
scribed at the beginning of this section (see Eq. (5)).
Theorem 14. For a game represented as embedded MC-
nets or weighted MC-nets, computing MY-value is #P-
complete.

Sketch of proof. To show that the problem is #P-complete,
again we use the reduction from the problem of counting all
matching in a bipartite graph which is #P-complete (Valiant
1979). With the same reasoning as in SS-value, instead of
considering colorings in graph Gγ we will focus on clique
covers in the complement graph Gγ . For an arbitrary bipar-
tite graph G = (V,E) for j ∈ {1, . . . , k}, we construct
a graph Gγj by adding j + 2 isolated nodes and consider
Δj

i for two players from newly added nodes. In this way,
based on Eq. (11) we build a system of linear equations, as
in Eq. (5).

Conclusions
In this paper, we studied the complexity of computing ex-
tended Shapley value in games represented as embedded
and weighted MC-nets. Our results show that weighted MC-
nets, which are more concise than embedded MC-nets, are
slightly worse when it comes to the Shapley value computa-
tion. Also, combined with the work by Skibski et al. (2020),
we get that computational properties of partition decision
trees are significantly better than both MC-nets representa-
tions.

There are many possible directions of further research.
The extended Shapley value proposed by Bolger (1989), as
well as other solution concepts can be considered. Also, it
would be interesting to analyze hybrid rules and correspond-
ing graphs not as a representation, but as a graph-restriction
scheme for games with externalities (Myerson 1977a).
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Macho-Stadler, I.; Pérez-Castrillo, D.; and Wettstein, D.
2007. Sharing the surplus: An extension of the Shapley
value for environments with externalities. Journal of Eco-
nomic Theory 135(1):339–356.
McQuillin, B. 2009. The extended and generalized Shapley
value: Simultaneous consideration of coalitional externali-
ties and coalitional structure. Journal of Economic Theory
144(2):696–721.
Mezo, I. 2011. The r-Bell numbers. Journal of Integer
Sequences 14(2):3.
Michalak, T. P.; Marciniak, D.; Szamotulski, M.; Rahwan,
T.; Wooldridge, M.; McBurney, P.; and Jennings, N. R.
2010a. A logic-based representation for coalitional games

with externalities. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 125–132.
Michalak, T. P.; Rahwan, T.; Marciniak, D.; Szamotulski,
M.; and Jennings, N. R. 2010b. Computational aspects of
extending the Shapley value to coalitional games with exter-
nalities. In Proceedings of the 19th European Conference on
Artificial Intelligence (ECAI), 197–202.
Michalak, T. P.; Rahwan, T.; Szczepański, P. L.; Skibski, O.;
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