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Abstract

In many social systems in which individuals and organiza-
tions interact with each other, there can be no easy laws to
govern the rules of the environment, and agents’ payoffs are
often influenced by other agents’ actions. We examine such
a social system in the setting of sponsored search auctions
and tackle the search engine’s dynamic pricing problem by
combining the tools from both mechanism design and the Al
domain. In this setting, the environment not only changes over
time, but also behaves strategically. Over repeated interactions
with bidders, the search engine can dynamically change the
reserve prices and determine the optimal strategy that maxi-
mizes the profit. We first train a buyer behavior model, with a
real bidding data set from a major search engine, that predicts
bids given information disclosed by the search engine and
the bidders’ performance data from previous rounds. We then
formulate the dynamic pricing problem as an MDP and apply
a reinforcement-based algorithm that optimizes reserve prices
over time. Experiments demonstrate that our model outper-
forms static optimization strategies including the ones that are
currently in use as well as several other dynamic ones.

Introduction

Selling advertisements online through sponsored search auc-
tions is a proven profit model for Internet search engine
companies such as Google and Baidu. When a user submits a
query in such a search engine, it displays, in the result page, a
few advertisements alongside the organic results, both related
to the query. In the backend, the keyword search triggers an
auction mechanism among all advertisers who are interested
in the keyword. The advertisers submit bids to compete for
advertising positions on the result page. The search engine
then ranks the advertisements on the result page according to
the advertisers’ bids and charges them only when someone
clicks on the advertisement.
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The gold-standard mechanism in sponsored search is the
well-known generalized second price (GSP) auction (Edel-
man, Ostrovsky, and Schwarz 2007; Varian 2007). The auc-
tions allocate the best slots to the advertisers who submit the
highest bids, second best slots to the ones with the second
highest bids, and so on; and charge them based on the bids
one slot below them (or the lowest price for them to main-
tain the current slot). Major search engines all adopt some
variants of the GSP auction.

A problem with the vanilla GSP auction is that it is not
revenue optimal, according the seminal theory attributed to
Myerson (1981). It is known that, under standard game theory
assumptions, a revenue-optimal auction does not necessarily
allocate the slots by the rank of their bids. It is also known
that in an optimal auction, there exists a vector of advertiser-
specific reserve prices that filter low bids. Over the years, a
large body of literature at the interface of the economics and
computer science has focused on revenue optimization of
GSP auctions by incorporating insights (ranking and reserve
price) from Myerson’s theory (Lahaie and Pennock 2007;
Roberts et al. 2013; Ostrovsky and Schwarz 2011; Thompson
and Leyton-Brown 2013).

However, most revenue optimization theories depend cru-
cially on the assumptions about the bidders’ rational behav-
iors. Recently, it has been shown that such assumptions may
not hold in reality. Therefore, an emerging line of works has
started to focus on settings where the bidders use a certain
learning algorithm (Nekipelov, Syrgkanis, and Tardos 2015;
Balseiro and Gur 2017; Nazerzadeh et al. 2016). However,
most of these models do not give a specific and detailed
description of the bidders’ actual behaviors. Also, the differ-
ent rationality levels of the heterogeneous bidder population
cannot be easily captured.

Our approach: reinforcement mechanism design

Instead of applying the mechanism design theory or machine
learning techniques in isolation, we propose a hybrid ap-
proach that combines insights from both domains to examine
how a social system with human players can be better de-
signed. First, we follow the mechanism design theory and
describe our mechanism with a set of parameters. Then we
apply optimization algorithms to search for the optimal pa-



rameters. Meanwhile, in order to tackle the so-called “second-
order” effect (bidders have different behaviors under different
mechanisms), we use machine learning algorithms to build
a precise bidder behavior model that explicitly takes mecha-
nism parameters as inputs. Our framework takes into account
both machine learning and strategic bidder behaviors.

The first part of this paper tries to solve the problems
mentioned above by building an end-to-end neural network
based bidder behavior model. Our model consists of both
a public feature set and a private feature set, and directly
predicts a bidder’s bidding behaviors using the features that
are observable by the bidder. Our model scales well with
extremely large dataset and can also handle heterogeneous
bidders due to the great flexibility of neural networks. We
formulate our bidder behavior model mathematically as a
Markov model.

In the second part of the paper, enabled by the Markov
model formulation, we can view the dynamic mechanism
design problem as a Markov decision process (MDP). We
then solve the MDP with reinforcement learning techniques.
Specifically, our objective is to design an optimal mechanism
so the performance of the system can be improved through
the change of some policy parameters even in the presence of
strategic players in the system. This modification of the set-
ting creates several significant challenges. First, the system is
not static any more. In each round, the algorithm will attempt
to change some policy parameter for optimal mechanism
design. This changes the environment for the players. Sec-
ond, at the same time when the rule is changing, the players’
strategies change too. They can adopt complex strategies to
react to changing rules. This moving-target nature of the set-
ting makes it difficult to implement the optimization. Third,
as in the traditional setting, reinforcement learning requires
large amount of feedbacks for the training, but tweaking the
environment is usually very costly.

Our approach is also clearly different from classic mecha-
nism design theory. We relax some unrealistic assumptions
such as quasi-linear utility and bidders’ rationality. Instead,
we utilize machine learning to learn bidder behaviors.

We solve these problems in the setting of sponsored search
auctions and explore the use of an Al-driven mechanism
so that search engines can dynamically set minimum bid
prices and use the data generated in the process to maximize
the profit. The proposed algorithm can be generalized and
applied to other settings to improve system design.

Our contributions
We make two major contributions in this paper:

e We propose a neural network based bidder behavior model.
Our model follows the rich research literature of behavioral
economics (Wright and Leyton-Brown 2017; 2014). Our
choice of RNN is commonly used to deal with time series
data. Based on this, we also provide a Markov behavior
interpretation, which enables us to use tools from other
domains to search for a dynamic mechanism with good
enough performance.

e Based on the above bidder behavior model, we model the
dynamic mechanism design problem as a Markov decision
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process, and use the Monte-Carlo Tree Search algorithm
to find a dynamic mechanism that has much better perfor-
mance than the current one online.

A version of our framework has already been implemented
in the online ad auction system in Baidu, and has been proven
to be able to significantly increase the revenue (see Baidu’s
Financial Report of Q1 2018 (2018)).

Related works

In the Al community, a recent, interesting line of works aims
to tackle the revenue optimization problem from a learning
perspective. For example, Duetting et al. (2019) and Shen,
Tang, and Zuo (2019) aim to learn optimal mechanisms via
neural networks. In the dynamic auction literature, Mohri and
Medina (2015) and Mohri and Medina (2016) apply learning
algorithms to exploit past auctions and user features. Their
algorithms rely on the implicit assumption that buyers do not
change their behaviors over time. Mohri and Munoz (2015)
and Mohri and Munoz (2014) aim to maximize revenue with
strategic buyers and give desirable regret bounds on online
pricing algorithms. These works assume that each buyer has
an underlying bid or value distribution and it does not change
over time. There are also a series of works that optimize
the revenue in dynamic auctions with the so-called “bank
account” mechanisms (Mirrokni et al. 2016a; 2016b; Shen,
Wang, and Zuo 2018).

Battaglini (2005) study the Markovian consumer model
in a long-term contract setting. Their results show that even
when the types at different times are highly persistent, the
optimal contract is far from a static one. He et al. (2013) and
Tian et al. (2014) also assume that buyers have the Markov
property and the goal of Tian et al. (2014) is to find the best
static mechanism.

One objective of works in the literature of sponsored search
auctions is to improve the revenue of GSP auctions (La-
haie and Pennock 2007; Thompson and Leyton-Brown 2013;
Shen and Tang 2017). When designing and analyzing these
auctions, most of these works make the standard game-
theoretical assumption that advertisers have a single param-
eter called fype that indicates their maximum willingness-
to-pay for a single click-through. During evaluation, these
works also assume that advertisers are rational and will play
according to some equilibrium.

While these works shed lights on how to design sponsored
search auctions in theory, the assumptions they make do not
generally hold in practice. Most advertisers have complex pri-
vate information, such as budget constraints (Xu et al. 2013;
Balseiro and Gur 2017), multi-dimensional valuation, and
negative externalities (Jehiel, Moldovanu, and Stacchetti
1996; Deng and Pekec 2011). Furthermore, private infor-
mation such as budget may change dynamically over time
and advertisers may not be able to observe all configuration
parameters of the auction.

There are a few exceptions in the literature that take the
initiative to design and evaluate sponsored auctions by get-
ting rid of these assumptions. Ostrovsky and Schwarz (2011)
conduct large field experiments by manually setting different
levels of reserve prices. They show that by incorporating



discounted Myerson’s reserve prices, the search engine can
improve its revenue. However, it remains unclear about the
long-term performance of these auctions since all these auc-
tions are assumed to be static. It is also unclear how the ad hoc
selection of the reserve prices can be improved. Nekipelov,
Syrgkanis, and Tardos (2015) investigate the problem of esti-
mating the valuations of the bidders from their bids. They get
rid of the assumption that the bidders bid according to some
equilibrium and make a milder assumption that bidders play
according to some no-regret learning strategy.

Deep reinforcement learning methods have successfully
produced Al agents that can beat human players (Mnih et
al. 2015; Silver et al. 2016). A recent paper by Racaniere
et al. (2017) proposes “imagination-augmented agents” and
applies the method to a Sokoban game where the player
needs to move boxes to given target locations. With a pre-
trained model based on simple levels, the Al agent can solve
more difficult levels, demonstrating interesting learning capa-
bilities. Deep reinforcement learning also showed powerful
potential of developing control policies in physical systems.
For example, Tai, Paolo, and Liu (2017) report that mod-
els trained in a simulator can be adopted by real robots. In
all these settings, the environment is given and the agents’
payoffs are easily determined based on the rules of the en-
vironment. Beyond these applications, deep reinforcement
learning has also been applied to other economic settings
such as e-commerce platforms (Cai et al. 2018).

Preliminaries
Sponsored search auction and Baidu’s design

We consider an auction design problem in the sponsored
search setting. When a user types a keyword query in a search
engine, the search engine (called the seller hereafter) displays,
in the result page, a few advertisements related to the key-
word. We consider auctions of a single keyword, with NV
bidders competing for K slots. Each bidder ¢ reports a bid b;
to the seller. A bid profile is denoted by b = (by,ba,...,bn).
We slightly abuse notations and use b; to refer to both bidder
1 and his bid.

In a standard game-theoretical model, there is a single-
dimensional type for each bidder that denotes the maximum
amount of money that the bidder is willing to pay. How-
ever, we do not explicitly emphasize such a value in our
model. The reason is two-fold: first, our model does not
assume that the bidders are fully rational or rational accord-
ing to some metric. Second, there are many factors that
may affect bidders’ bidding behavior, so explicitly define
one such parameter that we cannot observe does not help
much in end-to-end training. These are also the reasons why
our bidder behavior model is defined over, instead of their
private information, the bidders’ observations and past bid-
ding data. In fact, this kind of data-driven model is not un-
common in the literature (He et al. 2013; Xu et al. 2013;
Pin and Key 2011).

In this paper, we attempt to relax the unrealistic assump-
tions and consider an environment in which bidders can have
arbitrarily complex private information and arbitrary rational-
ity levels that can change dynamically over time. Our goal
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is to design dynamic mechanisms that yield competitive rev-
enue in practice in the long run. While the framework and
algorithms proposed in this paper are applicable to search
engines in general, we focus on the sponsored search auction
design of Baidu, the largest search engine in China. We use
Baidu as a running example throughout the paper, calibrating
our model with its data.

Baidu sells 3 ad slots for most keywords and like other
major search engines, Baidu runs a type of randomized, GSP-
like auction mechanism to sell the slots. The bidding data
yielded by the randomness of the mechanism provides a
perfect setting for us to learn how bidders react to different
choices of reserve prices and the number of impressions, and
the induced click-through-rates (CTRs).

The GSP mechanism

Upon receiving a search query, the seller needs to determine
a slot allocation and payment vector. Formally, a mechanism
consists of two functions M = (z, p), where the allocation
rule z is a function z : RY — [0,1]", which takes as
input the bid profile and outputs an /N-dimensional vector
indicating the quantity of items allocated to each bidder;
and the payment rule p is a function p : RN — R¥ that
maps the bid profile to an N-dimensional non-negative vector
specifying the payment of each bidder.

We consider the GSP (generalized second price) auction
that are widely adopted by major search engines. Suppose
there are NV bidders competing for K advertising slots. The K
slots have different effects of attracting user clicks (described
by their CTRs). Denote by ¢; the CTR of the k-th slot and
assume that ¢, is non-increasing with respect to the position
of the slot, i.e. ¢1 > g2 > --- > gx > 0. Upon receiving
a keyword query, the seller first collects the bid profile b
from the bidders. Usually, each bidder is associated with a
reserve price r;, which is the minimum quantity that bidder
i needs to bid in order to enter the auction. Denote by b(;)
the ¢-th highest bid among those above the reserve prices.
The seller then sequentially allocates the ¢-th slot to bidder
b(s), until either the slots or the bidders run out. When bidder
b(;y’s advertisement is clicked by a user, the seller charges
the bidder according to the following rule:

max {

Pu) =
T'(i)
The reserve price profile r can significantly affect the rev-
enue of the advertising platform. In this paper, we view the re-
serve price profile r as the main parameters of the mechanism.

The seller’s goal is to set reserve price profiles dynamically
to maximize its revenue.

Qi+1b(iy1)
. )

e r(i)} if b(;y1) exists;

otherwise.

Bidder behavior model

The mechanism design theory relies crucially on how the
bidders behave. Classical game theoretical analysis depends
on the following assumptions:

e the bidders have quasi-linear utility;

e the bidders have unlimited information access and compu-
tational power to compute a Nash equilibrium.



However, these assumptions become problematic in the real
world. First, different bidders may have advertising cam-
paigns with different objectives. For example, a bidder who
wants to increase the awareness of his brand may only care
about the number of impressions, while a budget-constrained
bidder who aims to increase the sales volume may focus on
the number of clicks of his advertisement in a specific slot.
Second, in real advertising platforms, the bidders can only ac-
cess information about their own advertisements. Empirical
evidence has also shown that the above assumptions may not
hold in sponsored search auctions (Edelman and Ostrovsky
2007; Pin and Key 2011).

RNN-based bidder model

In our model, each bidder’s action is his bid distribution.
The reason why the bids forms a distribution is that a bidder
may place different bids for different user characteristics.
Each bidder ¢ is a function g; that takes as input the history
bid distributions and his KPIs (key performance indicators),
and outputs the bidder’s bid distribution of the next time
step. To fit these time series data, we use a standard Long
Short-Term Memory (LSTM) recurrent neural network. The
output of the RNN is further transformed through a common
fully connected with a softmax activation function to ensure
that the final output of the network is a valid probability
distribution. The inputs of the network include KPIs of m
consecutive days, the bid distributions for the bidder and also
some date related features (summarized in Table 1).

Table 1: List of features

Feature

bid distribution
#impressions from
different slots
#clicks
total payment
month of campaign season

day of month
day of week

Representation
100-dimensional vector

tile-coding of logarithm
value

one-hot encoding

To simplify the representation of the bid distribution, we
discretize the with 100 non-overlapping intervals and use
a 100-dimensional vector b to describe a bid distribution.
These 100 intervals are computed according to history data
so that each interval contains roughly the same number of
bids placed by all bidders.

Our choice of KPI statistics for each bidder includes the
number of impressions the bidder obtains from each slot,
the total number of obtained clicks and the total amount of
payment. Our observation in Baidu shows that the bidders
care more about relative changes of their KPIs rather than
absolute changes. For example, an increase of 100 clicks
makes no difference at all for a bidder obtaining 2 million
clicks every day, but can be quite significant for a small
bidder obtaining 200 daily clicks. Therefore, to capture such
relative changes, we use the logarithm value of these KPI
statistics as the input feature in our RNN and encode them
with tile-coding.
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Besides the above private features, we also include a pub-
lic feature set, including date related features such as the
month and the day of the week. All of these features are en-
coded with one-hot encoding. The reason for including these
features is that most advertisers have seasonal advertising
campaigns and may adjust their bidding strategies according
to the current date.

Mathematical formulation: Markov bidder model

Similar to (He et al. 2013; Xu et al. 2013), we adopt the time-
homogeneous Markov model to interpret the RNN-based
bidders” behavior model. Denote by s'” and 1" the bid
distribution of bidder ¢ and the KPIs received by bidder ¢ at
time step ¢. The bidders may adjust their bids dynamically
according to their KPIs. Thus the bid distribution of bidder ¢
at the next time step is a function of previous s;’s and h;’s:

Sz('tﬂ) — g (S§t7m+1:t)’ hl(.tfmjtlzt)) (1)
where sl(.t_mH:t) and hl(t_mH:t) are bidder i’s bid distri-

butions and KPIs of m consecutive time steps, respectively.
Such a Markov model is not uncommon in the literature,
see (He et al. 2013; Battaglini 2005). Our experiences with
Baidu also indicate that the Markov model aligns with the
bidders’ behaviors.

The prediction of our network is quite accurate according
to Figure 2. One might argue that the bidders may be very
“lazy” and do not often change their bids, and in this case,
obtaining an accuracy as shown in Figure 2 is not significant
at all. However, our previous online experiment shows that
the bidders actually change their bids quite frequently. We
also simulated this experiment offline using only our bidder
model and get very similar results as the online experiment
(see the next section for details).

The reinforcement mechanism design
framework
In this section, we describe how we formulate the dynamic
mechanism design problem as a Markov decision process
and describe ways that we solve it.

The bids of the N bidders are drawn from their bid dis-
tributions. We make the assumption that the individual bids
are independent of each other. While such an assumption
loses generality, it is in fact quite widely used in the litera-
ture (Mohri and Medina 2015; He et al. 2013). The joint bid
distribution is

N N
S+ — Hsz(‘tJrl) _ Hgi (Sl(.tferl:t), hl(_tferl:t))
i=1

i=1
=g (S(tfmjtlzt)’ h(tferl:t))

For simplicity, we assume that the number of daily queries
of each keyword is a constant. Thus, the KPI h® is com-
pletely determined by both the bid distribution s*) and the
reserve price profile r(*).

Thus we can formulate the dynamic mechanism design
problem as a Markov decision process, where we view s(*)
as the state of the seller and 7(*) as its action.



Definition 1. The long-term revenue maximization problem
is a Markov decision process (N, S,R,G, REV (s,1),7),
where

o N is the set of bidders with |N| = N.

e S =5 x---x Sy is the state space, where S; is the set
of all possible bid distributions of bidder i;

e R = Ry x---X Ry is the action space, where R; is the set
of all possible reserve prices that the mechanism designer
can set for bidder i;

e G= (917927"'

e REV (s,r) is the immediate reward function that gives the
expected revenue for setting reserve price profile r when
the state is s;

e ~ is the discount factor with 0 < v < 1.

,gN) is the state transition functions;

Remark 1. Note that although we use the revenue as the
immediate reward in this particular task, we can change it to
any other function without changing the framework.

The objective is to select a sequence of reserve price pro-
files {r(¥)} that maximizes the sum of discounted revenues:

OBJ =3 4'REV (s, 7))
t=1
Figure 1 shows the main framework of the dynamic mecha-
nism design problem. The framework contains two parts:

1. Markov bidder model (the RNNS in our case, as described
in the formal section), which determines how bidders
adjust their bids according to the KPI feedbacks;

2. Mechanism, where the bidders interact with the seller’s
action (reserve prices) and get KPIs as feedbacks.

Bidder model
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Figure 1: Model framework

Optimization algorithm: Monte-Carlo Tree Search

Although an optimal reserve pricing scheme exists according
to the MDP theory, its exact computation is formidably costly
due to the following reasons:

e The possible reserve profiles grows exponentially with
respect to the number of the bidders;

2240

e The number of future states to explore is exponential with
respect to the searching depth.

We circumvent the first difficulty by restricting attentions
to keywords that contain only a few major bidders. We fo-
cus on the keywords with thin markets (few major bidders)
mainly because the effect of reserve prices diminishes in thick
markets anyway. To tackle the second one, we only explore
possible actions for a bidder that are in a small neighborhood
of the current reserve price. This restriction is also necessary
for practical stability concerns, since sudden changes in re-
serve prices would result in sudden changes in bidders” KPIs,
which would hurt the stability of the platform. With these
restrictions, the size of the action space is greatly reduced to
a small subset. To further speed up the search, we implement
the Monte-Carlo Tree Search (MCTS) algorithm (Khandel-
wal et al. 2016), since the computational complexity of the
MCTS algorithm can be effectively bounded by restricting
the search depth and the number of search trajectories.

Experiments
We selected 400 keywords' with the following properties:

e The number of daily queries for the keyword is large and
stable (with small variance).

e The most part (at least 80%) of the revenue of the keyword
is contributed by at most 3 bidders.

We extracted 8 months’ bidding data related to these key-
words from Baidu. The total data size of the data set is over
70TB. As mentioned before, the reason for the second con-
dition is that the effect of reserve prices diminishes in thick
markets. These 400 keywords in the data set contributes about
10% of Baidu’s total revenue. In our data set, each data record
corresponds to an impression of an ad and contains over 300
data fields.

Bidder behavior model

For each keyword, we only focus on the 3 major bidders and
ignore others. For each bidder, we built an LSTM recurrent
neural network with 128 hidden units using TensorFlow. We
set the time step to be 1 day and trained it using the 8 months’
data. We use the average cross entropy as the performance
indicator and optimize our RNN using Tensorflow’s built-in
ADAM optimizer. The total data set is divided into a 90%
training set and a 10% test set.

Recall that the input of our RNN is the bid distributions and
KPIs of m consecutive days. We set m = 4 in our experiment
which has an average cross entropy of about 1.67 among all
bidders and all test instances in the test set. Some selected
test instances are listed in Figure 2.

The Monte-Carlo Tree Search algorithm

The possible reserve prices we explore for the bidder are
0.95, 1.0 and 1.05 times the current reserve price for the

'Our dataset is considerably larger than in most papers in the
literature. For example, (Nekipelov, Syrgkanis, and Tardos 2015)
conduct experiments based on 1 week’s data from 9 bidders and the
dataset for simulations in (Lahaie and Pennock 2007) contains only
1 keyword.
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Figure 2: Prediction results for 4 selected bidders. Each sub-
figure contains two distributions, with the upper one being
the actual distribution and the lower one being the prediction.
The cross entropy of each instance is shown on top.

bidder. We set A = 0.8 and the search depth to be 5 in our
optimization algorithm. In the selection step, we restrict the
number of explorations to be 5000. In the expansion step, to
estimate the revenue at the selected node, we simulate the
auction 5 million times and compute the average revenue as
the per-impression revenue of each keyword.

We set the initial reserve price to be p = arg max; b(1 —
F(b)) where F'(b) is the current bid distribution. We call
this reserve price static optimal, since this price maximizes
the revenue if the bidders do not change their bids. Several
algorithms are compared:

o STATIC_OPT: Always use the initial reserve.

e GREEDY: Let the revenue of the current period be REV®.
In each round, we randomly choose a bidder ¢ and change
only his reserve price by —5% and simulate auctions for
the next period. The revenue is then

REV!™ = REV (5040, (0951",r1)) )

i
And we set

® ()
+1) _ 0.95r,7,r_;
1.057“@, r(jz

K2

if REV/*T! > REV}!

otherwise

Notice this method can been seen as a simplified version
of coordinate gradient descend (ascend) method.

e POLICY_GRAD: This algorithm is similar to apply the
GREEDY algorithm to each bidder simultaneously. In this
algorithm, we compute the revenue change for each bidder
1 and change the reserve price accordingly:

ey _ J0.950 it REVT > REV!
! 1.05T,£t) otherwise '

o BAIDU: Current reserve prices used by Baidu.

e STATIC_50: 50 cents as the reserve prices for all bidders,
regardless of bid distribution.

Note that Baidu uses randomized reserve prices in its sys-
tem, while in the above algorithms, all reserve prices are
deterministic. The reason of doing so is due to the company’s
disclosure policy.

We also compare the effect of different frequencies of
changing reserve prices by setting the time step At in the
expansion step of the optimization algorithm?. Clearly, chang-
ing the reserve prices too frequently can affect the stability
of the platform and thus is not desirable. In this experiment,
we only compare the performance of our framework.

Results and analysis

In the first experiment, we set At = 1 in our MCTS algo-
rithm, and compare it with other strategies mentioned above.
We simulate 120 days for each strategies. The results of the
experiments are shown in Figure 3. Revenue is normalized
with the converged value of BAIDU.
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Figure 3: Performance of different strategies.

The figure shows that

e Our dynamic strategy outperforms all other static strategies
including STATIC_OPT, BAIDU, STATIC_50, as well as
the dynamic strategy GREEDY and POLICY_GRAD;

e The BAIDU curve converges rapidly within just few days.
It goes up slightly at the beginning, mainly because our
simulation uses deterministic reserve prices instead of the
actual randomized ones.

e The STATIC_OPT curve undergoes a rapid rise on the first
day and then followed by a steep fall, also converges after
two weeks.

This time step is not necessarily equal to the time step for
training the Markov bidder model. We can always simulate bidder
behaviors day by day but change the reserve every several days



In fact, in a previous Baidu online experiment, we set
STATIC_OPT reserve prices for each (keyword, bidder) pair
to test the response from the bidders. The experiment shows
that setting a reserve price according to history bids that
maximizes immediate revenue could result in high revenue
in short term, but drops back after around 10 to 20 days.
Furthermore, such a strategy increases the revenue about
10% after convergence.

In our simulations, the STATIC_OPT curve perfectly aligns
with observations from the previous online experiment, which
can serve as a further proof of the accuracy of our bidder
behavior model.

Besides, the simulation also reveals some interesting facts
about bidder behaviors:

o All aggressive pricing schemes gain high revenue imme-
diately and drop significantly later. This phenomenon is
intrinsic for our dataset, since all the bidders undergo mild
pricing mechanism previously due to relatively low reserve
prices and the random discounts. The sudden change in
reserve price (from both adopting the static optimal reserve
and discarding randomization) could make huge immedi-
ate reward, but once bidders are aware of the change and
respond accordingly, less revenue can be extracted.

o Although STATIC_OPT could beat mild mechanisms like
BAIDU and STATIC_50, its long term revenue is not as
promising as the short term.

e The experiment shows that with more involved optimiza-
tion algorithm (such as MCTS) and accurate bidder model,
we could achieve the best performance and gain higher
revenue in the long run.

e Surprisingly, algorithms GREEDY and POLICY_GRAD
perform very well, only slightly worse than the MCTS al-
gorithm. However, these two algorithms are much simpler
and computationally cheaper. Such a result may, to some
extent, suggest that the bidders are not very strategic, since
simple algorithms like GREEDY can also capture their
behaviors well.

o The GREEDY algorithm and the POLICY_GRAD algo-
rithm are similar to each other, and also have similar perfor-
mances. The POLICY_GRAD algorithm gives a smoother
curve and converges more quickly, but the GREEDY algo-
rithm has a slightly higher revenue when converged.

In the second experiment, we compare the effect of the
frequency of changing reserve prices. The results are shown
in Figure 4. We use the MCTS algorithm and also simulated
120 days for each At. the figure indicates that the larger At
is, the more revenue it can extract, and the more quickly it
converges. The revenue of At = 7 is about several percent
small than that of At = 1, Comparing Figure 3 and 4, we
can see that the performance GREEDY algorithm is almost
the same as the MCTS algorithm with At = 3.

Practical implementation

One may argue that the policies explored in our experiments
are too aggressive, and that using personalized reserve prices
can cause fairness issues. In fact, the flexibility of our frame-
work allows us to implement other non-aggressive policies,
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Figure 4: Effect of the frequency of changing reserve prices.

for example, using an anonymous reserve price, or consider
other objective functions such as welfare, click yield.

A mild version of our framework has already been imple-
mented in the online advertising system in Baidu, and was
highlighted in Baidu’s Financial Report of Q1 2018 (2018).

Conclusion

In this paper, we propose a dynamic pricing framework, that
combines mechanism design with Al techniques. Our frame-
work does not depend on unrealistic assumptions adopted by
most theoretical analyses. We use a data-centric approach to
solve a theoretical market-design problem.

Our framework contains two main parts: the bidder-
behavior model and the optimization algorithm. The opti-
mization algorithm finds the optimal mechanism parameters
for each step iteratively. In each round, the algorithm esti-
mates the future objectives by simulating the auctions with
the bidder-behavior model.

We apply our framework to the sponsored search setting
and assume Markov bidder behavior. The model uses an RNN
for the bidder model and an MCTS algorithm to solve for
the optimal reserve prices. Our experiments with real bid-
ding data from Baidu, a major search engine in China, show
that our framework can dramatically improve the revenue
compared to other static and dynamic strategies.

Our framework has already been adopted by Baidu and is
proven to be able to significantly increase revenue.
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