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Abstract

Election rules are formal processes that aggregate voters’
preferences, typically to select a single winning candidate.
Most of the election rules studied in the literature require the
voters to rank the candidates from the most to the least pre-
ferred one. This method of eliciting preferences is impracti-
cal when the number of candidates to be ranked is large. We
ask how well certain election rules (focusing on positional
scoring rules and the Minimax rule) can be approximated
from partial preferences collected through one of the follow-
ing procedures: (i) randomized—we ask each voter to rank a
random subset of � candidates, and (ii) deterministic—we ask
each voter to provide a ranking of her � most preferred candi-
dates (the �-truncated ballot). We establish theoretical bounds
on the approximation ratios and complement our theoretical
analysis with computer simulations. We find that it is usually
better to use the randomized approach.

1 Introduction

An election rule is a function that takes as input a collection
of voters’ preferences over a given set of m candidates and
returns a single candidate, called the winner. There is a large
variety of election rules known in the literature (we refer the
reader to the survey by Zwicker (2015) for an overview);
most of them require the voters to provide strict linear or-
ders over the candidates. Yet, it is often hard, or even in-
feasible for a voter to provide such a preference ranking,
especially when the set of candidates is large. Indeed, it is
often believed that a voter can rank at most five to nine can-
didates (Miller 1956).

In this paper, we ask how the quality of decisions made
through voting depends on the amount of information avail-
able. Specifically, our goal is to assess the quality of out-
comes of elections when each voter can be asked to rank at
most � < m candidates. We compare two ways of elicit-
ing preferences. In the first approach—which we call ran-
domized—we ask each voter to rank a random subset of �
candidates. In the second approach—which we call deter-
ministic—we ask each voter to provide the ranking of her
top � most preferred candidates (the so-called �-truncated
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ballot). We investigate how well positional scoring rules and
the Minimax rule (a.k.a., Simpson rule) can be approximated
by algorithms that use one of the two elicitation methods.

Our Contribution

1. In Section 3.1 we identify a class Sep� of positional scor-
ing rules that, for a given �, can be well approximated
using the randomized approach. Sep2 consists of a single
rule, namely the Borda count; the number of rules in Sep�
grows exponentially with �. We theoretically prove ap-
proximation guarantees for the rules from Sep�—these
guarantees are more likely to be accurate when the num-
ber of voters is large. In Section 3.2 we provide an analo-
gous analysis for the Minimax rule.

2. In Section 4 we prove upper-bounds on the approxima-
tion ratios of algorithms that use �-truncated ballots. We
show that the algorithm that minimizes the maximal re-
gret of Lu and Boutilier (2011) (we recall this algorithm
in Section 4.1) matches our upper-bounds (for Minimax
our analysis is tight up to a small constant factor).

3. We ran computer simulations to verify how the approxi-
mation ratio depends on the particular distribution of vot-
ers preferences (Section 5). Our experiments confirm that
in most cases (with the exception of very unstructured
preferences) the randomized approach is superior. We also
show that usually only a couple of hundreds of voters are
required to achieve a reasonably good approximation.

Related Work

Our work contributes to the broad literature on handling
incomplete information in voting—for a survey on this
topic, we refer the reader to the book chapter by Boutilier
and Rosenschein (2015). Specifically, our research is closely
related to the idea of minimizing the maximal regret (Lu and
Boutilier 2011). Therein, for a partial preference profile P ,
the goal is to select a candidate c such that the score of c
in the worst possible completion of P is maximized. Our
paper complements this literature by (1) providing an accu-
rate analysis of the approximation ratios for various methods
(which allows to better judge suitability of different methods
for handling incomplete information), and (2) by analyzing
two natural methods of preference elicitation.
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Algorithms for minimizing the maximal regret inter-
pret the missing information in the most pessimistic way.
Other approaches include assuming the missing pairwise
preferences to be distributed uniformly (e.g. Xia and
Conitzer (2011)) or similarly to the already observed pair-
wise preferences (Doucette (2014; 2015)).

Our work is also closely related to the literature on dis-
tortion (Procaccia and Rosenschein 2006; Caragiannis and
Procaccia 2011; Boutilier et al. 2015). There, an underlying
utility model is assumed and the goal is to estimate how well
various voting rules that only have access to ordinal pref-
erences approximate optimal winners, i.e., candidates that
maximize the total utility of the voters. The definition of
distortion has also been adapted to social welfare functions
(where the goal is to output a ranking of candidates rather
than a single winner) (Benadé, Procaccia, and Qiao 2019)
and to participatory budgeting (Benade et al. 2017). Some
works also study distortion assuming a certain structure of
the underlying utility model (for example, that it can be rep-
resented as a metric space) (Anshelevich et al. 2018; An-
shelevich and Postl 2017; Feldman, Fiat, and Golomb 2016;
Goel, Krishnaswamy, and Munagala 2017; Gross, Anshele-
vich, and Xia 2017; Pierczynski and Skowron 2019).

Another related line of research concerns ordinal peer
grading (Raman and Joachims 2014; Caragiannis, Krimpas,
and Voudouris 2015; 2016; Caragiannis et al. 2019). The
main difference between these works and ours is that there,
the authors assume that a ground truth exists. Here, we do
not: The voters’ preferences can vary not only because the
voters have imperfect information of what is the “correct”
outcome, but also since they put focus on various aspects—
different voters can have different opinions of what is “cor-
rect”; the goal is to aggregate (subjective) preferences rather
than to discover the ground truth (which might not even ex-
ist). Our results both apply when the existence of a ground
truth is assumed and when it is not assumed and hence is
more widely applicable.

Our randomized algorithms are similar to the one pro-
posed by Hansen (2016). Yet, the work of Hansen differs
from ours in several important aspects. First, in Hansen’s
algorithm (called Random Pairs) each voter is asked to com-
pare a predetermined number of random pairs of candidates
(the pairs are sampled uniformly at random); in our case the
voter does not compare pairs but rather ranks predetermined
subsets of candidates. Second and more importantly, Hansen
does not ask how well certain rules can be approximated by
schemes that require less information, but rather analyzes
how often his method is able to find a Condorcet winner.
Our approach is different—we investigate a number of rules,
and for each of these rules we ask how well this rule can be
approximated having only partial knowledge of the voters’
preferences. Third, Hansen’s work is based only on simula-
tions and does not contain theoretical results.

A similar approach to ours has been recently applied to
STV (Ayadi et al. 2019) and to other rules whose defini-
tions are based on the notion of score (Ayadi, Ben Amor,
and Lang 2019). In particular, the work of Ayadi, Ben Amor,
and Lang (2019) complements our experimental analysis for
the Borda and Minimax rules for truncated ballots.

2 Preliminaries

An election is a pair E = (V,C), where V =
{v1, v2, . . . , vn} and C = {c1, c2, . . . , cm} denote the sets
of n voters and m candidates, respectively. Each voter vi
is endowed with a preference ranking over the candidates,
which is a total ordering of the candidates and which we de-
note by �i. For each candidate c ∈ C by posi(c) we denote
the position of c in vi’s preference ranking.

A voting rule is a function that, for a given election E,
returns a subset of candidates, which we call tied winning
candidates. Below we describe several (classes of) voting
rules that we will focus on in this paper.

For an integer t we use [t] to denote the set {1, 2, . . . , t}.
A positional scoring function is a mapping λ : [m] → R

that assigns to each position a real value: intuitively, λ(p)
is a score that a voter assigns to a candidate that she ranks
as her p-th most preferred one. For each positional scor-
ing function λ we define the λ-score of a candidate c as
scλ(c) =

∑
vi∈V λ(posi(c)), and the corresponding elec-

tion rule selects the candidate(s) with the highest λ-score.
Examples of common positional scoring rules include:
Borda rule: Based on a linear decreasing positional scor-

ing function, the Borda rule is defined as β(p) = m− p.
Plurality rule: Being equivalent to the 1-approval rule, the

positional scoring function for the Plurality rule assigns a
score of one to the first position and zero to all others.
Another important class of voting rules origins from the

Condorcet criterion. It says that if there exists a candidate c
that is preferred to any other candidate by a majority of vot-
ers, then the voting rule should select c. We focus on one
particular rule satisfying the Condorcet criterion (we chose
a rule picking the candidates that maximize a certain score
so that the standard definition of approximation applies):
Minimax rule (a.k.a., the Simpson rule). For an election

E = (V,C) and two candidates c, c′ ∈ C, we define
scMM(c, c′) = |{vi ∈ V | c �i c′}| as the number of
voters who prefer c to c′ and

scMM(c) = min
c′ �=c
{scMM(c, c′)}.

The rule then selects the candidates with the highest scMM

score.
We use a natural definition of approximation.

Definition 1. We say that A is an α-approximation algo-
rithm for a ruleR if for each election E it holds that:

scoreR(A(E))

maxw∈R(E) scoreR(w)
≥ α,

where scoreR is a function representing the scoreR awards
each candidate, R(E) is the set of winners returned by R,
and A(E) is the candidate returned by A.

Later on, we will consider algorithms that have access
only to certain parts of the input instances. In such cases the
above definition still applies. For example, let trunc(E, �)
denote the � truncated instance obtained from E, that is, a
partial election which for each voter only contains her pref-
erences ranking from E, truncated to the top � positions.
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Algorithm 1: Algorithm α-PSF-ALG for positional
scoring functions.

1 foreach candidate c do
2 total score(c)← 0
3 ranked(c)← 0

4 foreach voter v do
5 Sv ← random set of � candidates
6 ask v to rank Sv

7 foreach c ∈ Sv do
8 if c is ranked i-th among Sv then
9 total score(c)← total score(c) + αi

10 ranked(c)← ranked(c) + 1

11 foreach candidate c do
12 score(c)← total score(c) · n

ranked(c)

13 return candidate c with maximal score(c)

Then, we say that A is an α-approximation algorithm forR
for �-truncated instances, when for each election instance E
it holds that:

scoreR(A(trunc(E, �)))

maxw∈R(E) scoreR(w)
≥ α.

3 Randomized Approach

In this section we explore a randomized approach, where
each voter is asked to rank a random subset of candidates.

3.1 Scoring Rules

We start our analysis by looking at the class of positional
scoring rules. For the sake of simplicity, we will assume
throughout this section that n is divisible by m. We first
present an algorithm that estimates the score of each can-
didate and picks the candidate with the highest score. The
algorithm is parameterized with a natural number � ≤ m
and a vector of � reals α = (α1, . . . , α�)—for a fixed vec-
tor α we will call the algorithm α-PSF-ALG. This algo-
rithm asks each voter to rank a random set of � candidates.
We say that a candidate c is ranked by a voter v if c belongs
to the set of � candidates that v was asked to rank. If c is
the i-th most preferred among the candidates ranked by a
voter, then c receives the score of αi from the voter. Such
scores are summed up for each candidate, normalized by the
number of voters who ranked the respective candidate, and
the candidate with the highest total score is declared the win-
ner. Pseudocode of this algorithm is given in Algorithm 1.

We will show that for some positional scoring rules, by
choosing the vector α carefully, we can find good approxi-
mations of winning candidates with high probability. First,
through Theorem 1 we establish a relation between posi-
tional scoring functions λ and vectors α that should be used
to assess λ; the formula is not intuitive, and we will discuss it
later on. In particular, we will explain which positional scor-
ing functions can be well approximated using this approach,
that is, we will discuss the structure of the class of scoring
functions which are covered by the following theorem.

Theorem 1 (�1). For a non-increasing vector of � reals α =
(α1, . . . , α�) consider the positional scoring function

λα(p) =
1(

m−1
�−1

) ·
�∑

i=1

αi

(
p− 1

i− 1

)
·
(
m− p

�− i

)
.

For a candidate c ∈ C that is ranked by at least one voter,
we denote by Xc the random variable describing the to-
tal normalized score that c was assigned by α-PSF-ALG.
Then, the expected value E(Xc) is equal to the λα-score of c,
and the probability that the score computed by α-PSF-ALG
for c differs from its expected value by a multiplicative factor
of 1± ε is upper-bounded by 2 exp

(
− ε2E(Xc)

3

)
, that is,

P
(
|Xc − E(Xc)| ≥ εE(Xc)

)
≤ 2 exp

(
−ε2�scλα(c)

6mα1

)
.

Now, let us discuss the form of positional scoring func-
tions λα(p) used in Theorem 1. First, observe that for � = 2,
if we set α1 = 1 and α2 = 0, then we have that λα(p) =(
p−1
0

)
·
(
m−p
2−1

)
= m− p = β(p). This means that by asking

each voter to rank only two candidates, we can correctly (in
expectation) assess the Borda scores of the candidates.
Corollary 2. For a candidate c the expected value of the
score computed by Algorithm (1, 0)-SEP-ALG for c is the
Borda score of c.

Unfortunately, not every positional scoring function can
be efficiently assessed while asking each voter to rank only
few candidates and we will now describe the class of all po-
sitional scoring functions which can be computed correctly
in expectation by our algorithm for any fixed �. Since each
positional scoring function is based on some m-dimensional
vector β = (β1, β2, . . . , βm) which can be expressed
as

∑m
i=1 ηi · βi, where η1 = (1, 0, . . .), η2 = (0, 1, 0, . . .)

and so on, these η-vectors form a basis of the linear space of
positional scoring functions.

Let Sep� = {λα : α ∈ R
�} be the set of all positional

scoring functions that can be computed (correctly in expec-
tation) by our algorithm for a fixed �. Since it holds for each
two �-element vectors α, α′ ∈ R

� that λα+α′(p) =

�∑
i=1

(αi + α′
i)

(
p− 1

i− 1

)(
m− p

�− i

)
=

�∑
i=1

αi

(
p− 1

i− 1

)(
m− p

�− i

)
+

�∑
i=1

α′
i

(
p− 1

i− 1

)
·
(
m− p

�− i

)
=

λα(p) + λα′(p), we have that Sep� is a linear space too.
Thus, Sep� is an �-dimensional linear subspace of the m-

dimensional space of all positional scoring functions, and so
we can compactly describe it by providing � scoring func-
tions forming a basis of Sep�. Figure 1 visually illustrates
the scoring functions forming a basis for � ∈ {2, 4}. In other
words, for a given value of �, we can use Theorem 1 to cor-
rectly compute (in expectation) all scoring functions which
can be obtained as linear combinations of the scoring func-
tions depicted in Figure 1.

1Due to space constraints, we defer all proof details to the full
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Figure 1: A basis of the space Sep� = {λα : α ∈ R
�} for

two different values of �. Each plot illustrates � positional
scoring functions that span the space of all positional scor-
ing functions which can be correctly assessed by algorithm
α-PSF-ALG while asking each voter to rank only � candi-
dates.

Theorem 1 can be also applied to positional scoring rules
that do not belong to the aforementioned linear space. Let us
explain that using the example of the harmonic scoring rule,
defined through the positional scoring function λhar(p) =
1/p (our choice of the harmonic rule is due to its particu-
larly appealing theoretical properties (Boutilier et al. 2012;
Anshelevich et al. 2018)). By solving a simple linear pro-
gram we can find coefficients for the functions from the ba-
sis of Sep� that induce a function from Sep� that is closest
to λhar, according to the following distance:

d(λ1, λ2) = max
p∈[m]

|λ1(p)− λ2(p)|.

For example, for m = 50 candidates, using � = 5 com-
parisons we can arbitrarily well approximate a scoring rule
based on the vector of scores which is of distance 0.15 from
the harmonic vector. For � = 10, we can arbitrarily well ap-
proximate a scoring rule based on a vector within a distance
of 0.03 from the harmonic vector. For � = 20 the distance
drops to 0.0003. This shows that our algorithm can be effi-
ciently used for approximating e.g., the harmonic rule.

Finally, let us give some intuition regarding the probabil-
ities assessed in Theorem 1. For 21 candidates and n voters
the Borda score of a winning candidate is at least 10n. When
assessing the score of a winning candidate with � = 2, to
have an approximation within a factor of 1.01 with proba-
bility at least 0.999, we need about 72 thousands voters. For
one million voters, this probability drops below 4/1042.

3.2 Minimax Rule

We will now investigate whether the Minimax rule can be
well approximated when each voter is only asked to rank a
few candidates. We will use an algorithm similar to Algo-
rithm 1: Each voter v ranks a subset of candidates Sv and
whenever two candidates c, c′ ∈ Sv are ranked by a voter v,
we use her preference list to estimate scMM(c, c′). This al-
gorithm is formalized in Algorithm 2.

Theorem 3 (�). For each candidate c ∈ C the probabil-
ity that the total normalized score computed by Algorithm 2

version of the paper (Bentert and Skowron 2019) (affected results
are marked with a �).

Algorithm 2: Randomized Algorithm for Minimax.
1 foreach candidates c, c′ ∈ C do
2 S[c, c′]← 0

3 foreach voter v do
4 Sv ← random set of � candidates
5 ask v to rank Sv

6 foreach c ∈ Sv do
7 foreach c′ ∈ Sv \ {c} do
8 if c �i c

′ then
9 S[c, c′]← S[c, c′] + 1

10 foreach candidate c do

11 S[c]← min
{

n·S[c,c′]
S[c,c′]+S[c′,c] : S[c, c

′] + S[c′, c] > 0
}

12 return candidate c with maximal S[c]

for c differs from the true Minimax score of c by a multi-
plicative factor of at least 1± ε is upper-bounded by

m exp

(
−ε2�2scMM(c, cmin)

6m2

)

4 Deterministic Approach

When not asking each voter about each candidate, one al-
ways has to decide whether each voter is asked about ran-
dom candidates or about specific ones. On the one hand,
asking about specific positions in preference rankings allows
one to focus on the top ones that seem to contain more rel-
evant information; especially when the goal is to select the
winner, who—intuitively—is more likely to appear in top
positions. On the other hand, asking voters about random
candidates might be more advantageous as the input may
contain dependencies between candidates that are not known
a priori.

In this section we investigate the case when each voter
is asked about her � most preferred candidates. We will de-
scribe an algorithm that approximates the true score at least
as well as any other algorithm and analyze its performance
for Borda and for Minimax. We will then show general lower
bounds on the approximation ratio, and prove that the ap-
proximation ratio for the Borda rule matches this lower-
bound, and the ratio for Minimax almost does.

4.1 The Best Approximation Algorithm for
�-Truncated Elections

Let us start by describing the algorithm that for each �-
truncated instance gives the best possible approximation
guarantee, that is, the best approximation of the true win-
ner in the worst-case full preference profile that induces the
given �-truncated instance. We mention that the idea of this
algorithm is very similar to the one behind the algorithms
for minimizing the maximal regret (Lu and Boutilier 2011),
yet the analysis of the approximation ratio of the algorithm
is new in this paper.

Consider an election E and let E� be the �-truncated in-
stance obtained from E. Observe that when given E� and
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choosing a winner, the worst case occurs if the picked win-
ner is ranked at the very last position by all voters that did
not rank this candidate in E among the first � positions, and
the true winner (that our algorithm did not pick) is ranked at
position �+1 by each voter who did not rank this candidate.

For each candidate c we compute two scores: The worst
possible score that c is guaranteed to get (denoted by
worst(c)) and the best possible score that c can get (de-
noted by best(c)). Let w, b1, and b2 be the candidates with
the highest worst, the highest best, and the second high-
est best score, respectively. If any candidate c �= b1 is de-
clared winner, then we can guarantee an approximation ratio
of worst(c)/best(b1), which is clearly maximized by c = w.

If candidate b1 is declared winner, then we can guarantee
an approximation ratio of worst(b1)/best(b2). The optimal ap-
proximation ratio is therefore achieved by an algorithm that
computes all the possible scores and then declares w or b1
winning depending on which one guarantees a better result.

Interestingly, while our algorithm provides the best pos-
sible approximation, it can select a candidate that is not a
possible winner, i.e., that is not a winner in any profile con-
sistent with the truncated ballot at hand.
Example 1. Consider the following instance with 5 can-
didates A,B,C,D,E, four voters v1, v2, . . . , v4, and λ =
(3, 1, 1, 1, 0).

v1 : B � A

v2 : C � A

v3 : D � A

v4 : E � A

It holds that worst(A) = 4, worst(B) = worst(C) =
worst(D) = worst(E) = 3, best(A) = 4 and best(B) =
best(C) = best(D) = best(E) = 6 and therefore declar-
ing a winning achieves the best approximation ratio. How-
ever, in any election that is consistent with the given trun-
cated election, at least two candidates in {B,C,D,E} get
at least 5 points while A always gets 4 points. Thus, A is not
a possible winner.

4.2 Positional Scoring Rules: Approximation
Guarantees for �-Truncated Elections

In this section, we continue our analysis of the algorithm
from Section 4.1. We will now prove guarantees that each
of the two rules (i.e., choosing the candidate with high-
est worst, respectively best, score) provide for positional
scoring rules when only having access to �-truncated elec-
tions.
Theorem 4 (�). Let R be a positional scoring rule defined
by the scoring function λ(i) = αi. The algorithm from Sec-
tion 4.1 for �-truncated elections gives an approximation
guarantee of ∑�

i=1 αi

mα�+1 +
α1−α�+1

α1

∑�
i=1 αi

.

Theorem 4 gives a very general result that applies to any
positional scoring rule. For instance, for k-approval we get
the approximation ratio of �/m.
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Figure 2: The approximation ratios for the deterministic
algorithms from Section 4.1 for the Borda rule (left) and
for the Minimax rule (right). The plot was generated for
m = 30. Note that the plotted line for the Minimax rule is al-
most indistinguishable from the plotted line for 1/(m−�/2)

Corollary 5 (�). The algorithm from Section 4.1 for k-
approval with �-truncated elections, k > �, gives the ap-
proximation guarantee of �/m.

For the Borda rule, we get the approximation of
�

m+ �
m−1 ·�

, which looks similarly to �
m (see the left-hand side

plot in Figure 2).
Corollary 6 (�). The algorithm from Section 4.1 gives an
approximation guarantee of �

m+ �
m−1 ·�

for Borda with �-

truncated elections.

We conclude by providing intuitive explanation of in-
stances that match the bound from Theorem 4. In these in-
stances all candidates get roughly the same worst score and
there are two candidates a, b that also get average worst
score but only appear as few times as possible in the first �
positions. If candidate a is declared the winner by any rule
then she gets 0 points from all voters, that did not rank her
in the first � positions and b gets m− �−1 points from these
voters. Otherwise the winning candidate gets 0 points from
all voters that did not rank her in the first � positions and a
gets m−�−1 points whenever she is not ranked first or sec-
ond. For such constructed instances the approximation ratio
of our (optimal) algorithm is exactly as given in Theorem 4.

4.3 Minimax Rule

Let us now move to the analysis for the Minimax rule. We
start by showing that no deterministic algorithm for Mini-
max can guarantee a better approximation ratio than 1

m−� .

Theorem 7 (�). There exists no (deterministic) algorithm
for �-truncated elections F that is a 1

m−�−ε -approximation
algorithm for the Minimax rule for any ε > 0.

Theorem 7 already shows that with �-truncated ballots
Minimax cannot be well approximated. In particular, the
bound for the Minimax rule is much worse than for scoring-
based rules. We do not know whether the bound from The-
orem 7 is tight. Yet, we can show that a simplified variant
of the algorithm from Section 4.1 that computes the max-
imum worst score of each candidate and declares the one
with the highest score winner, achieves an approximation
ratio which is lower-bounded by 1

m−�/2 , which means that
for reasonably small � it (almost) matches the upper bound
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Figure 3: Approximation ratio for the two algorithms for the
Borda rule assessed through computer simulations.

from Theorem 7 (see the right-hand side plot in Figure 2 for
the comparison of these two bounds).
Theorem 8 (�). The algorithm from Section 4.1 approxi-
mates Minimax in �-truncated elections within a factor of

1

(m− �) ·
(
1 + �2

m2−�2−m+�

) ≥ 1

m− �/2
.

5 Experimental Evaluation

In Sections 3 and 4 we have assessed the worst-case guar-
antees of our approximation algorithms. In this section we
investigate how these guarantees depend on particular dis-
tributions of the the voters’ preferences. We tested the fol-
lowing distributions over preference rankings:
Impartial Culture (IC). In the Impartial Culture model

each ranking over the candidates has the same probability.
One-dimensional Euclidean Model (1D). First, we asso-

ciate each voter and each candidate with a point from the
interval [0, 1]—these points are sampled independently
and uniformly at random. Then, each voter ranks the
candidates according to her distance, preferring the ones
which are closer to those which are farther.

Mixture of Mallows’ Models (MMM). In the Mallows’
model (Mallows 1957) we are given a reference ranking π
and a real value φ ∈ [0, 1]. The probability of sampling a
ranking τ is proportional to φdK(π,τ), where dK(π, τ) is
the number of swaps of adjacent candidates that are re-
quired to turn φ into τ . We used a uniform mixture of
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Figure 4: Approximation ratio for the two algorithms for the
Minimax rule assessed through computer simulations.

three Mallows’ models, where for each of the three mod-
els we drew the reference ranking π and the real value φ
uniformly at random.
For each distributions D over preferences and for each

approximation algorithm A we ran computer simulations
as follows: We set the number m of candidates to 50 and
tested for � ∈ {2, 5, 8} and n ranging from 10 to 1000 in
steps of 25. For each combination of values of (�, n) we ran
500 independent experiments, each time computing the ra-
tio r(A,D) between the score of the candidate returned by
algorithm A to the score of the optimal candidate. The av-
erages of these ratios and the corresponding standard devi-
ations for the Borda and the Minimax rules are depicted in
Figure 3 and Figure 4.

5.1 Approximation Algorithms for Borda

We empirically tested how well the two algorithms that we
analyzed theoretically in the previous sections approximate
the Borda rule. Specifically, we implemented Algorithm 1—
which we will refer to as RANDOMIZED, and the algorithm
described in Section 4.1. We also checked two other deter-
ministic heuristics that appear simple and intuitive:
1. The variant of the deterministic algorithm that always

picks the candidate with the highest worst score.
2. An algorithm we call DETER-AVG that, for each voter vi

and candidate cj assigns to cj the score
(a) β(posi(cj)) if posi(cj) ≤ �,
(b) the average score of the unranked positions∑

p=�+1m β(p)/(m− �), otherwise.
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The three deterministic algorithms were almost indistin-
guishable in our simulations—DETER-AVG was slightly bet-
ter than the other two. Thus, we only present the results for
DETER-AVG and RANDOMIZED. We found the following:

1. For preferences with no or with little structure (IC), the
deterministic algorithm gives better results. For prefer-
ences with more structure (those obtained from 1D and
MMM models), the randomized algorithm significantly
outperforms the deterministic ones.

2. For each preference distribution that we tested the ran-
domized algorithm gives high quality approximations un-
less the number of voters is small. Our results suggest to
ask each voter to rank a random subsets of alternatives
when the goal is to approximate the Borda rule, and if
there are more than a couple of hundreds voters.

5.2 Approximation Algorithms for Minimax

Similarly to Section 5.1, we empirically tested how well the
randomized algorithm (Algorithm 2) and the deterministic
algorithm from Section 4.1 approximate the Minimax rule.
We refer to the two algorithms as RANDOMIZED and DE-
TERMINISTIC, respectively. We also tested two other natu-
ral heuristics. For each two candidates c and c′, let n(c, c′)
denote the number of voters who (i) rank c and c′ among
their � most preferred candidates and prefer c over c′ or (ii)
who rank c but not c′ among their top � positions. Then:

1. In our first heuristic, for each two candidates, c and c′, we
use a method similar to Minimax, but replace scMM(c, c′)
by n(c, c′). Then, similarly as in the case of Minimax we
compute for each candidate c the score minc′ �=c n(c, c

′)
and pick the candidate w with the maximal score.

2. In the second heuristic, we replace scMM(c, c′) by

n · n(c, c′)
n(c, c′) + n(c′, c)

.

In our simulation DETERMINISTIC outperformed the two
heuristic algorithms we mentioned above, hence we present
our results only for DETERMINISTIC and RANDOMIZED.
We observed the following:

1. The randomized algorithm for the Minimax rule needs
to ask each voter to compare more candidates than in the
case of Borda in order to achieve a good approximation
ratio. For m = 50 candidates, asking each voter to com-
pare � = 8 of them already gave good results for suffi-
ciently many voters.

2. The deterministic algorithm usually performs better than
the randomized one, yet there are distributions (e.g., the
one-dimensional Euclidean model) where the quality of
winners returned by the deterministic algorithm is much
worse than those returned by the randomized algorithm.
However, for each distribution that we tested, the random-
ized algorithm consistently was giving good results when
the number n of voters and � (number of candidates to
rank) were sufficiently large.

6 Conclusion & Discussion

In this paper we theoretically and experimentally analyzed
how well certain election rules can be approximated when
we are only given part of the voters’ preferences. We in-
vestigated how well one can approximate positional scoring
rules and the Minimax rule through deterministic and ran-
domized elicitation methods, providing both upper-bounds
on the approximation ratio (impossibility results), and pro-
viding algorithms (almost) matching these bounds.

We conclude that the randomized approach is usually su-
perior; the exceptions include preference distributions with
little or no structure, which rarely appear in practice. For
the Borda rule, with hundreds of voters it is usually suffi-
cient to ask each voter to compare two random candidates to
achieve a high approximation guarantee. For approximating
the Minimax rule, one typically needs more voters and to ask
them to compare more candidates—e.g., for 50 candidates,
we obtained high approximation guarantees for the Mini-
max rule only when we set the number of voters to around a
thousand and � = 8.

Finally, let us provide a short discussion on our method-
ology and possible future research directions that stem from
our work. In this project we focused on how well the scores
of certain candidates can be approximated while having only
partial information. Notice that a good approximation guar-
antee of an algorithm does not imply that the algorithm will
return the winner with high probability. E.g., when there are
two comparably good candidates our rules will pick either
of them with almost the same probability. Though, we can
guarantee that the score of the picked candidate will be close
(with high probability) to the score of the true winner. This
means that if the winner has a sufficiently high margin of
victory, the rules can identify such a winner with high proba-
bility. Our model is also more flexible in the following sense:
it cannot only be used to find a good candidate as a winner,
but also to return a good ranking or to estimate the scores.

There are several ways in which our work can be ex-
tended. First, one could look at other natural voting rules
that are based on the concept of a score/distance (e.g., Buck-
lin or Kemeny). Further, instead of using the standard con-
cept of approximation, one could consider other means for
evaluating “closeness” of the outcomes. One can for exam-
ple measure the number of swaps in the preference profile
that are required to make c a winner. Finally, it is natural to
ask whether one can provide stronger guarantees in certain
special cases of the model of preference aggregation (e.g.,
assuming certain models of ground truth).
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