The Complexity of Computing Maximin Share Allocations on Graphs
DOI:
https://doi.org/10.1609/aaai.v34i02.5572Abstract
Maximin share is a compelling notion of fairness proposed by Buddish as a relaxation of more traditional concepts for fair allocations of indivisible goods. In this paper we consider this notion within a setting where bundles of goods must induce connected subsets over an underlying graph. This setting received much attention in earlier literature, and our study answers a number of questions that were left open. First, we show that computing maximin share allocations is FΔ2P-complete, even when focusing on consistent scenarios, that is, where such allocations are a-priori guaranteed to exist. Moreover, the problem remains intractable if all agents have the same type, i.e., have the same utility functions, and if either the values returned by the utility functions are polynomially bounded, or the underlying graphs have a low degree of cyclicity (more precisely, have bounded treewidth). However, if these conditions hold all together, then computing maximin share allocations (or checking that none exists) becomes tractable. The result is established via machineries based on logspace alternating machines that use partial representations of connected bundles, which are interesting in their own.