
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Contiguous Cake Cutting: Hardness Results and Approximation Algorithms

Paul W. Goldberg, Alexandros Hollender, Warut Suksompong
Department of Computer Science

University of Oxford

Abstract

We study the fair allocation of a cake, which serves as a
metaphor for a divisible resource, under the requirement that
each agent should receive a contiguous piece of the cake.
While it is known that no finite envy-free algorithm exists
in this setting, we exhibit efficient algorithms that produce
allocations with low envy among the agents. We then estab-
lish NP-hardness results for various decision problems on the
existence of envy-free allocations, such as when we fix the or-
dering of the agents or constrain the positions of certain cuts.
In addition, we consider a discretized setting where indivisi-
ble items lie on a line and show a number of hardness results
strengthening those from prior work.

1 Introduction

We consider the classical cake cutting problem, where we
wish to divide a cake among a set of agents with different
preferences over different parts of the cake. The cake serves
as a metaphor for any divisible resource such as time or land,
and our aim is to perform the division in a fair manner. This
problem has a long and storied history that dates back over
70 years and has received attention from mathematicians,
economists, and computer scientists alike (Brams and Taylor
1996; Robertson and Webb 1998; Procaccia 2016).

In order to reason about fairness, we need to specify when
a division is considered to be fair. One of the most com-
monly used definitions is envy-freeness, which means that
no agent envies another with respect to the division. In other
words, among the pieces in the division, every agent receives
their first choice. An early result by Dubins and Spanier
(1961) shows that an envy-free allocation always exists for
arbitrary valuations of the agents. However, as Stromquist
(1980) noted, this result depends on a liberal definition of
what constitutes a piece of cake, and an agent “who hopes
only for a modest interval of cake may be presented instead
with a countable union of crumbs.”

In light of this concern, Stromquist (1980) strengthened
the result of Dubins and Spanier by showing that it is pos-
sible to guarantee an envy-free allocation in which every
agent receives a contiguous piece of the cake. Stromquist’s
result, together with its topological proof, is widely regarded

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as a cornerstone of the cake cutting literature. Neverthe-
less, since the result focuses only on the existence of a con-
tiguous envy-free allocation, it leaves open the question of
how to compute such an allocation. Almost 30 years later,
Stromquist himself addressed this question and showed that
under the Robertson-Webb model, where an algorithm is
allowed to discover the agents’ valuations through cut and
evaluate queries, no finite algorithm can compute a contigu-
ous envy-free allocation when there are at least three agents
(Stromquist 2008).1

Although Stromquist’s later result rules out the possibility
of computing contiguous envy-free allocations in general,
several important questions still remain. For instance, can
we compute a contiguous allocation with low envy between
the agents, and if so, how efficiently? How does the answer
change if we know that the agents’ valuations belong to a
restricted class? What happens if we add extra requirements
on the allocation, such as fixing a desired ordering of the
agents or constraining the positions of certain cuts? The goal
of this paper is to shed light on the complexity of contiguous
cake cutting by addressing these questions.

1.1 Our Contributions

First, in Section 3 we present two algorithms that compute
an allocation with low envy in polynomial time. As is stan-
dard in the cake-cutting literature, we represent the cake by
the interval [0, 1] and normalize the agents’ valuations so
that each agent has value 1 for the entire interval. Our first
algorithm works for general valuations under the Robertson-
Webb model and produces a contiguous allocation in which
any agent has envy no more than 1/3 towards any other
agent. On the other hand, our second algorithm is specific
to valuations where each agent only desires a single subin-
terval and has a uniform value over that interval—for such
valuations, the algorithm produces a contiguous allocation
with a lower envy of at most 1/4.

Next, in Section 4, we consider variants of the cake-
cutting problem where we impose constraints on the desired
allocation. We show that for several natural variants, the de-

1For two agents, the well-known cut-and-choose protocol,
which lets the first agent cut the cake into two equal pieces and
lets the second agent choose the piece that she prefers, computes a
contiguous envy-free allocation.

1990

cision problem of whether there exists a contiguous envy-
free allocation satisfying the corresponding constraints is
NP-hard. In particular, this holds for the variants where (i) a
certain agent must be allocated the leftmost piece; (ii) the or-
dering of the agents is fixed; and (iii) one of the cuts must fall
at a given position. Fixing the ordering of the agents is rel-
evant when there is a temporal ordering in which the agents
must be served, e.g., due to notions of seniority or the ease
of switching from one agent to another in the service. Like-
wise, fixing a cut point is applicable when we divide a parcel
of land and there is a road crossing the parcel, so we cannot
allocate a piece that lies on both sides of the road. Moreover,
our construction serves as a general framework that can be
used to obtain hardness results for other related variants.

Finally, in Section 5 we investigate a discrete analog of
cake cutting, where there are indivisible items on a line and
each agent is to be allocated a contiguous block of items.
The discrete setting can be viewed as a type of restriction
for the continuous setting, where cuts must be placed be-
tween discrete items. In addition to envy-freeness, we work
with two other well-studied fairness notions: proportional-
ity and equitability.2 Using a single reduction, we show that
deciding whether there exists a contiguous fair allocation
is NP-hard for each of the three fairness notions as well
as any combination of them; our result holds even when
all agents have binary valuations3 and moreover value the
same number of items. This significantly strengthens a re-
sult of Bouveret et al. (2017), who established the hardness
for proportionality and envy-freeness using additive but non-
binary valuations. In addition, we prove that when the valu-
ations are binary and every agent values a contiguous block
of items, deciding whether a contiguous proportional alloca-
tion exists is also NP-hard.

1.2 Further Related Work

Since the seminal work of Stromquist (1980), a number of
researchers have studied cake cutting in view of the con-
tiguity condition. Su (1999) proved the existence of con-
tiguous envy-free allocations using Sperner’s lemma argu-
ments. Deng, Qi, and Saberi (2012) showed that contigu-
ous envy-free cake cutting is PPAD-complete; however, the
result requires non-standard (e.g., non-additive) valuation
functions. Aumann, Dombb, and Hassidim (2013) consid-
ered the problem of maximizing social welfare with contigu-
ous pieces, while Bei et al. (2012) tackled the same problem
with the added requirement of proportionality. Cechlárová
and Pillárová (2012) and Cechlárová, Doboš, and Pillárová
(2013) examined the existence and computation of contigu-
ous equitable allocations—among other things, they showed
that such an allocation is guaranteed to exist even if we fix
the ordering of the agents. Aumann and Dombb (2015) an-
alyzed the trade-off between fairness and social welfare in
contiguous cake cutting.

The contiguity requirement has also been considered in
the context of indivisible items. Marenco and Tetzlaff (2014)

2See the definitions in Section 5.
3That is, the valuations are additive and each agent values each

item either 0 or 1.

proved that if the items lie on a line and every item is pos-
itively valued by at most one agent, a contiguous envy-free
allocation is guaranteed to exist. When each item can yield
positive value to any number of agents, Barrera et al. (2015),
Bilò et al. (2019), and Suksompong (2019) showed that vari-
ous relaxations of envy-freeness can be fulfilled. In addition,
contiguity has been studied in the more general model where
the items lie on an arbitrary graph (Bouveret et al. 2017;
Igarashi and Peters 2019; Bei et al. 2019).

Recently, Arunachaleswaran et al. (2019) developed an
efficient algorithm that computes a contiguous cake divi-
sion with multiplicatively bounded envy—in particular, each
agent’s envy is bounded by a multiplicative factor of 3. We
remark that our approximation algorithms are incomparable
to their result. On the one hand, their algorithm may return
an allocation wherein an agent has value 1/4 for her own
piece and 3/4 for another agent’s piece—this corresponds to
an additive envy of 1/2. On the other hand, our algorithms
may leave some agents empty-handed, leading to unbounded
multiplicative envy. We also note that additive envy is the
more commonly considered form of approximation, both for
cake cutting (Deng, Qi, and Saberi 2012; Brânzei and Nisan
2017; 2019) and for indivisible items (Lipton et al. 2004;
Caragiannis et al. 2016).

2 Preliminaries

For any positive integer n, let [n] = {1, 2, . . . , n}. In
our cake cutting setting, we consider the cake as the inter-
val [0, 1]. There are n agents whose preferences over the
cake are represented by valuation functions v1, . . . , vn. As-
sume that these valuation functions are non-negative density
functions over [0, 1]. We abuse notation and let vi(a, b) =

vi([a, b]) =
∫ b

a
vi(x)dx for 0 ≤ a ≤ b ≤ 1. It follows that

the valuations are non-negative, additive, and non-atomic
(i.e., vi(a, a) = 0). We assume further that the valuations
are normalized so that vi(0, 1) = 1 for every i ∈ [n].

A contiguous allocation of the cake is a partition of [0, 1]
into n (possibly empty) intervals, along with an assignment
of each interval to an agent, so that every agent gets exactly
one interval. Note that this means that we cut the cake using
n− 1 cuts. Formally, a contiguous allocation is represented
by the cut positions 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ 1 and
a permutation π : [n] → [n] that assigns the intervals to the
agents so that agent i receives the interval [xπ(i)−1, xπ(i)],
where we define x0 = 0 and xn = 1 for convenience.

We are interested in finding a contiguous allocation that
is envy-free, i.e., no agent thinks that another agent gets a
better interval. Formally, the contiguous allocation (x, π) is
envy-free if for all i, j ∈ [n], we have vi(xπ(i)−1, xπ(i)) ≥
vi(xj−1, xj). In some cases we will be interested in find-
ing a contiguous allocation that is only approximately envy-
free. For ε ∈ [0, 1], the contiguous allocation (x, π) is ε-
envy-free if for all i, j ∈ [n], we have vi(xπ(i)−1, xπ(i)) ≥
vi(xj−1, xj)− ε. In other words, any agent has envy that is
at most a fraction ε of her value for the whole cake.

A typical way for an algorithm to access the valuation
functions is through queries in the Robertson-Webb model:
the algorithm can make evaluate queries—where it speci-

1991

fies x, y and asks agent i to return the value vi(x, y)—and
cut queries—where it specifies x, α and asks agent i to re-
turn the leftmost point y such that vi(x, y) = α. A more
restrictive class of valuations is that of piecewise constant
valuations. A piecewise constant valuation function is de-
fined by a piecewise constant density function on [0, 1], i.e.,
a step function. This class of valuations can be explicitly
represented as part of the input. A subclass of piecewise con-
stant valuations is the class of piecewise uniform valuations,
where the density function of agent i is either some fixed
rational constant ci or 0.

3 Approximation Algorithms

In this section, we present two algorithms for approximate
envy-free cake cutting. Algorithm 1 works for arbitrary val-
uations and returns a 1/3-envy-free allocation. On the other
hand, Algorithm 2 can be used for piecewise uniform valua-
tions with a single value-block and outputs a 1/4-envy-free
allocation. Note that such valuations are relevant, for exam-
ple, when the agents are dividing machine processing time:
each agent has a release date and a deadline for her job, so
she would like to maximize the processing time she obtains
after the release date and before the deadline.

Algorithm 1 1/3-Envy-Free Algorithm for Arbitrary Valu-
ations

1: procedure APPROXIMATEEFARBITRARY
2: �← 0, N ← [n]
3: for i ∈ N do
4: Mi ← ∅
5: while some agent in N values [�, 1] at least 1/3 do
6: for i ∈ N do
7: if vi(�, 1) ≥ 1/3 then
8: ri ← leftmost point such that vi(�, ri) = 1/3
9: else

10: ri ← 1

11: j ← argmini∈N ri, r ← mini∈N ri
12: Mj ← [�, r]
13: �← r, N ← N\{j}
14: if N �= ∅ then
15: j ← arbitrary agent in N
16: Mj ← [�, 1]
17: else
18: j ← last agent removed from N
19: Mj ←Mj ∪ [�, 1]

20: return (M1, . . . ,Mn)

While Algorithm 1 can be implemented for general val-
uations under the Robertson-Webb model, it also allows a
simple interpretation as a moving-knife algorithm. In this
interpretation, the algorithm works by moving a knife over
the cake from left to right. Whenever the current piece has
value 1/3 to at least one remaining agent, the piece is allo-
cated to one such agent. If the knife reaches the right end of
the cake, then the piece is allocated to an arbitrary remain-
ing agent if there is at least one remaining agent, and to the
agent who received the last piece otherwise.

Theorem 3.1. For n agents with arbitrary valuations, Al-
gorithm 1 returns a contiguous 1/3-envy-free allocation and
runs in time polynomial in n assuming that it makes queries
in the Robertson-Webb model.

Proof. Every agent receives a single interval from the al-
gorithm; the only possible exception is agent j in line 19.
However, since j is chosen as the last agent removed from
N , the interval Mj allocated to j earlier is adjacent to [�, 1],
meaning that j also receives a single interval. Hence the al-
location is contiguous. Moreover, the algorithm only needs
to make queries in lines 5, 7 and 8, and the number of neces-
sary queries is clearly polynomial in n. The remaining steps
can be implemented in polynomial time.

We now prove that the envy of an agent i towards any
other agent is at most 1/3. If i is assigned a piece in the while
loop (line 5), i receives value at least 1/3. This means that i’s
value for any other agent’s piece is at most 2/3, so i’s envy
is no more than 1/3. Alternatively, after the while loop, i
still has not received a piece, meaning that N �= ∅ in line 14.
By our allocation procedure in the while loop, i values any
piece assigned in the while loop at most 1/3. Furthermore,
when the algorithm enters line 14, i values the interval [�, 1]
less than 1/3. Since [�, 1] is assigned to an agent who did not
receive an interval earlier, it follows that i does not envy any
other agent more than 1/3, as claimed.

Note that if we are only interested in having an algo-
rithm that makes a polynomial number of queries, Brânzei
and Nisan (2017) showed that for any ε > 0, a contiguous
ε-envy-free allocation can be found using O(n/ε) queries,
which is polynomial in n for constant ε. Their algorithm
works by cutting the cake into pieces of size 1/ε and per-
forming a brute-force search over the space of all contigu-
ous allocations with respect to these cuts; this algorithm
therefore has exponential computational complexity (even
for constant ε). By contrast, in the absence of the contiguity
constraint, Procaccia (2016) gave a simple polynomial-time
algorithm that computes an ε-envy-free allocation for any
constant ε. His algorithm also starts by cutting the cake into
pieces of size 1/ε and then lets agents choose their favorite
pieces in a round-robin manner; consequently, the resulting
allocation can be highly non-contiguous.

While we do not know whether the bound 1/3 in our ap-
proximation can be improved under the computational effi-
ciency requirement,4 we show next that if the agents have
piecewise uniform valuations and each agent only values a
single interval, the envy can be reduced to 1/4. Alijani et
al. (2017) showed that if the valuations are as described and
moreover the n valued intervals satisfy an “ordering prop-
erty”, meaning that no interval is a strict subinterval of an-
other interval, then a contiguous envy-free allocation can be
computed efficiently. Nevertheless, the ordering property is
a very strong assumption, and indeed reducing the envy to

4For the case n = 3, Deng, Qi, and Saberi (2012) gave a fully
polynomial-time approximation scheme that computes a contigu-
ous ε-envy-free allocation for any ε > 0.

1992

Algorithm 2 1/4-Envy-Free Algorithm for Uniform Single-Interval Valuations

� Ri : the single interval valued by agent i
� mid(i) : the midpoint of Ri

� Ai : part of Ri that is unallocated at the start of agent i’s turn
� an interval is restrained if it is adjacent to an interval that has already been allocated

1: procedure APPROXIMATEEFSINGLEINTERVAL
2: Order the agents 1, . . . , n so that |Ri| ≤ |Rj | for all i < j
3: for i = 1, . . . , n do
4: if there exists a restrained interval I ⊆ Ai with vi(I) = 1/4 and mid(i) ∈ I then � Case 1
5: Mi ← I
6: else if there exists an interval I ⊆ Ai with vi(I) = 1/4 and mid(i) ∈ I then � Case 2
7: Si ← {j > i | vi(min(mid(i),mid(j)),max(mid(i),mid(j))) ≤ 1/4}
8: k ← minSi

9: Mi ← an interval I ⊆ Ai with vi(I) = 1/4, mid(i) ∈ I and mid(k) ∈ ∂I (i.e., an endpoint of I)
10: else if there exist � < i with mid(i) ∈M� and an interval I ⊆ Ai adjacent to M� with vi(I) = 1/4 then � Case 3
11: Mi ← I
12: else � Case 4
13: Mi ← a largest restrained interval I ⊆ Ai with vi(I) ≤ 1/4

14: if some two intervals Mq,Mr are adjacent (say, Mq is to the left of Mr) then
15: Extend Mq and all assigned intervals to its left as far as possible to the left.
16: Extend Mr and all assigned intervals to its right as far as possible to the right.
17: else
18: Extend assigned intervals arbitrarily to cover the remaining cake.
19: return (M1, . . . ,Mn)

1/4 without this assumption already requires significant care
in assigning the pieces.5

At a high level, Algorithm 2 first orders the agents from
shortest to longest desired interval, breaking ties arbitrar-
ily. For each agent in the ordering, if an interval of value
1/4 containing the midpoint of her valued interval (perhaps
at the edge of the former interval) has not been taken, the
agent takes one such interval. Else, if an interval of value
1/4 is available somewhere, the agent takes one such inter-
val; here, if there are choices on both sides of the midpoint,
the agent may need to be careful to pick the “correct” one.
Otherwise, if no interval of value 1/4 is available, the agent
takes a largest available interval. At the end of this process,
part of the cake may remain unallocated. If some pair of as-
signed intervals are adjacent, pick one such pair, and allocate
the remaining cake by extending pieces away from the bor-
der between this pair. Else, extend the pieces arbitrarily to
cover the remaining cake.

Theorem 3.2. For n agents with piecewise uniform valua-
tions such that each agent only values a single interval, Al-
gorithm 2 returns a contiguous 1/4-envy-free allocation and
runs in time polynomial in n.

Proof. One can check that Algorithm 2 assigns a single in-
terval to every agent and can be implemented in polynomial
time. It remains to show that the algorithm returns an allo-
cation such that for any two agents i, j, agent i has envy

5Alijani et al. (2017) also showed that for piecewise uniform
valuations where each agent only values a single interval (without
the ordering property assumption), one can efficiently compute an
envy-free allocation with at most 2n− 1 intervals in total.

at most 1/4 towards agent j. For the purpose of this proof,
when we refer to an interval Mi, we mean the interval be-
fore it is extended in the final phase of the algorithm (the
extension phase starting at line 14). We denote by M+

i the
corresponding extended interval that is returned by the algo-
rithm. For any agent i and any interval I , the i-value of I is
the value of I for agent i, i.e., vi(I).

When agent i’s turn comes in the for-loop, it falls into
exactly one of four possible cases: Case 1 (line 4), Case 2
(line 6), Case 3 (line 10) or Case 4 (line 12). Depending
on which case applies, Mi is chosen accordingly. We say
that the single-direction extension (SDE) property holds, if
at least one agent does not fall into Case 2. It is easy to check
that if the SDE property holds, then there are at least two
allocated intervals Mq and Mr that are adjacent before the
extension phase begins, and thus every interval Mi will be
extended in a single direction.

It is clear that vi(M+
j) ≥ vi(Mj) for all i, j. Furthermore,

in all four cases it holds that agent i is allocated an interval
of value at most 1/4, i.e., vi(Mi) ≤ 1/4 for all i. Since
Mi ⊆ Ri and because of the way the agents are ordered, it
follows that

vi(Mj) ≤ 1/4 for all j ≤ i (1)
We now show that any agent i has envy at most 1/4 at the

end of the algorithm. Namely, we prove that for any agents
i, j we have vi(M

+
j) ≤ vi(M

+
i) + 1/4. We treat the four

different cases that can occur during agent i’s turn.
Cases 1 and 2. In both cases, Mi contains mid(i) and has

i-value 1/4. This also holds for M+
i ⊇ Mi. Since the mid-

point of Ri is contained in M+
i , any other interval M+

j has
i-value at most 1/2. Thus, agent i has envy at most 1/4.

1993

Case 3. In this case, we again have vi(Mi) = 1/4. How-
ever, this time we have mid(i) ∈ M�, which implies that
vi(M

+
j) ≤ 1/2 for all j �= �. Thus, it remains to show that

vi(M
+
�) ≤ 1/2. Since � < i, we have vi(M�) ≤ 1/4. Thus,

we need to show that the extension of M� to M+
� increases

the i-value by at most 1/4. Since Mi was chosen to be ad-
jacent to M�, it suffices to show that there is at most 1/4
i-value available on the other side of M�.

To this end, we prove that at the start of agent i’s turn, M�

cannot have at least 1/4 of i-value available both on the left
side and on the right side. Assume on the contrary that this is
the case. Note, in particular, that M� is not restrained. Thus,
M� was allocated in agent �’s turn by Case 2. We also know
that i ∈ S�, because mid(i),mid(�) ∈ M� and v�(M�) =
1/4. Now there are two cases:

• If i = minS�, then mid(i) ∈ ∂M�. But in that case, at
the start of agent i’s turn, there exists a restrained interval
I ⊆ Ai with vi(I) = 1/4 and mid(i) ∈ I . Thus, agent i
would have been in Case 1 instead of 3.
• If i > k = minS�, then in agent k’s turn, Case 1 will

apply. Indeed, mid(k) ∈ ∂M� and thus there is at least
1/4 of k-value available that contains mid(k) (because
there is enough space for 1/4 of i-value and i > k). But
if Case 1 applies, then Mk will be chosen to be adjacent
to M� (since they both contain mid(k)), and M� will not
have space available on both sides when agent i’s turn
comes.

Case 4. First, suppose that vi(Mi) < 1/4. This means that
Mi was a largest available interval in Ri. It follows that any
agent j > i can obtain an interval of i-value at most vi(Mi),
since it is processed after i. For j < i, since agent i is in
Case 4, the SDE property holds. Thus, Mj can be extended
by at most vi(Mi), i.e., vi(M+

j) ≤ vi(Mj) + vi(Mi) for all
j. With (1) it follows that the envy is at most 1/4.

Now, consider the case where vi(Mi) = 1/4. Any agent
j > i can obtain i-value < 1/2—otherwise, agent i would
have fallen in Case 1 or 2. Consider any j < i:

• if mid(i) ∈Mj , then both on the left and right side of Mj

the space available has i-value < 1/4 (otherwise agent i
would be in Case 1 or 3). Since the SDE property holds,
it follows that vi(M+

j) ≤ vi(Mj) + 1/4 ≤ 1/2 with (1).

• if mid(i) /∈Mj , then vi(M
+
j) < 1/2. Otherwise, it means

that Mj is extended in a single direction (SDE property)
and takes over an interval of i-value at least 1/4 that con-
tains mid(i). But then, agent i would be in Case 1 or 2.

This completes the proof.

4 Hardness for Cake-Cutting Variants

In this section, we establish hardness results for a number of
decision problems on the existence of contiguous envy-free
allocations.

Theorem 4.1. The following decision problems are NP-
hard for contiguous cake cutting, even if we restrict the val-
uations to be piecewise uniform:

• Does there exist an envy-free allocation in which agent 1
obtains the left-most piece?
• Does there exist an envy-free allocation in which the

pieces are allocated to the n agents in the order
1, 2, . . . , n?
• Does there exist an envy-free allocation such that there is

a cut at position x, for x given in the input?

These problems remain NP-hard if we replace envy-
freeness by ε-envy-freeness for any sufficiently small con-
stant ε.

This list is not exhaustive: additional results of the same
flavor can be found in the full proof (Goldberg, Hollender,
and Suksompong 2019).6 The following proof sketch con-
veys the main ideas behind these results.

Proof Sketch. In order to prove that these decision problems
are NP-hard, we reduce from 3-SAT. Namely, given a 3-SAT
formula, we construct a cake-cutting instance such that the
answer to the decision problem is “Yes” if and only if the
3-SAT formula is satisfiable. A bonus of our proof is that we
construct a single cake-cutting instance that works for all of
the decision problems mentioned in the Theorem statement
and even a few more.

Let us give some insight into how this instance is con-
structed. Consider a 3-SAT formula C1 ∨ · · · ∨ Cm, where
the Ci are clauses containing 3 literals using the variables
x1, . . . , xn and their negations. The cake-cutting instance is
constructed by putting together multiple small cake-cutting
instances, so-called gadgets. For every clause Ci we intro-
duce a Clause-Gadget with its three corresponding agents
C1

i , C2
i and C3

i . The intuition here is that C1
i is associated

to the first literal appearing in Ci, C2
i to the second one, and

C3
i to the third one. For any Clause-Gadget agent A, we let

�(A) denote the associated literal. The valuations of these
agents inside the gadget are as shown in Figure 1. We say
that the gadget operates correctly if it contains exactly two
cuts and the three resulting pieces go to the three agents C1

i ,
C2

i and C3
i . At this point we can already make a first key

observation: if the gadget operates correctly, at least one of
the three agents must be sad, i.e., obtain at most one out of
its three blocks of value in this gadget.

For every variable xj we introduce a Variable-Gadget
with its two corresponding agents Lj and Rj . Apart from
these two agents, some Clause-Gadget agents will also have
a value-block inside this gadget. In more detail, all the
Clause-Gadget agents that correspond to xj or xj will have
a block of value inside the Variable-Gadget for xj . Figure 2
shows how the value-blocks are arranged inside the gadget.
We say that the gadget operates correctly if it contains ex-
actly one cut and the two resulting pieces go to Lj and Rj .
There is a second key observation to be made here. Assume

6However, if we fix all n − 1 cuts, the problem becomes solv-
able in polynomial time. Indeed, with all the cuts fixed, the result-
ing pieces are also all fixed. We can therefore construct a bipartite
graph with the agents on one side and the pieces on the other side,
where there is an edge between an agent and a piece exactly when
receiving the piece would make the agent envy-free, and check the
existence of a perfect matching in this graph.

1994

C1
i

C2
i

C3
i

Figure 1: Clause-Gadget for clause Ci: the valuations of its
three agents inside the gadget. Every block in this figure has
value 0.24.

Lj

all agents A:
�(A) = xj

all agents A:
�(A) = xj

Rj

Figure 2: Variable-Gadget for variable xj : the valuations
of its two agents Lj and Rj , as well as the Clause-Gadget
agents that have value in this gadget. The large blocks have
value 1 each and the small blocks have value 0.28 each.

that all gadgets operate correctly. If some agent Ck
i with

�(Ck
i) = xj (or xj) is sad, then the value-block of Ck

i in
the Variable-Gadget for xj has to contain a cut (otherwise
Ck

i would be envious). Since the Variable-Gadget contains
exactly one cut, it is impossible to have agents A and B with
�(A) = xj and �(B) = xj that are both sad.

The instance is constructed by positioning the gadgets one
after the other on the cake. Starting from the left and moving
to the right, we first put the Clause-Gadget for C1, then C2,
and so on until Cm, and then the Variable-Gadget for x1,
then x2, and so on until xn. Between adjacent gadgets we
introduce a small interval without any value-blocks. We say
that an envy-free allocation is nice if all the gadgets operate
correctly.

Let us now see how a nice envy-free allocation yields a
satisfying assignment for the 3-SAT formula. For any agent
Ck

i that is sad, we set the corresponding literal �(Ck
i) to be

true. This means that if �(Ck
i) = xj , then we set xj to be

true, and if �(Ck
i) = xj , then we set xj to be false. The first

key observation above tells us that every Clause-Gadget has
at least one sad agent. Thus, this assignment of the variables
ensures that every clause is satisfied. However, we have to
make sure that this assignment is consistent, i.e., we never
set xj to be both true and false. This consistency is enforced
by the Variable-Gadget for xj and the second key observa-
tion above.

Conversely, given a satisfying assignment for the 3-SAT
formula, it is not too hard to construct a nice envy-free al-
location. This proves NP-hardness for the decision prob-
lem “Does there exist a nice envy-free allocation?”. In order
to prove the result for the more natural decision problems
stated in Theorem 4.1, the construction has to be extended
with some additional work.

5 Hardness for Indivisible Items

We now turn to a discrete analog of cake cutting, where we
wish to allocate a set of indivisible items that lie on a line
subject to the requirement that each agent must receive a
contiguous block. As in cake cutting, we assume that the
valuations of the agents over the items are additive, and that
all items must be allocated. Besides envy-freeness, we con-
sider the classical fairness notions of proportionality and eq-
uitability. An allocation is proportional if every agent re-
ceives value at least 1/n times her value for the whole set of
items, and equitable if all agents receive the same value.

Unlike in cake cutting, for indivisible items there may be
no allocation satisfying any of the three fairness properties,
e.g., when two agents try to divide a single item. Bouveret et
al. (2017) showed that deciding whether an envy-free alloca-
tion exists is NP-hard for additive valuations, and the same
is true for proportionality; they did not consider equitability.
In this section, we extend and strengthen their results in sev-
eral ways. We consider binary valuations, which are additive
valuations such that the value of each agent for each item
is either 0 or 1. In other words, an agent either “wants” an
item or not. Even though binary valuations are much more
restrictive than additive valuations, as we will see, several
problems still remain hard even for this smaller class.

First, we show that deciding whether a fair allocation ex-
ists is NP-hard for each of the three fairness notions men-
tioned. This hardness result holds for any non-empty com-
bination of the three notions and even if all agents want
the same number of items. Moreover, we present a reduc-
tion that establishes the hardness for all combinations in one
fell swoop. We remark that the techniques of Bouveret et
al. (2017) do not extend to the binary domain because each
agent can have different values for different items in their
construction. One may try to fix this by breaking items into
smaller items to obtain a binary valuation, but each agent
will require a different way of breaking items, and moreover
there will be allocations in the new instance that cannot be
mapped back to those in the original instance.

Theorem 5.1. Let

F = {envy-freeness, proportionality, equitability},
and let ∅ �= X ⊆ F . Deciding whether an instance with
indivisible items on a line admits a contiguous allocation
satisfying all properties in X is NP-hard, even if all agents
have binary valuations and value the same number of items.

Proof. We prove this result with a single reduction. Let I
be an instance of 3-SAT with m clauses C1, . . . Cm using
the variables x1, . . . , xn and their negations. We create the
following gadgets.

• Clause-Gadget: For every clause Ci we introduce three
agents: C1

i , C
2
i , C

3
i . Each of these agents is associated

with one of the three literals that appear in the clause Ci.
We denote by �(Ck

i) the literal associated with Ck
i . For

every clause Ci we construct a Clause-Gadget. The gad-
get consists of four contiguous items that are all valued by
all three agents C1

i , C
2
i , C

3
i , and by no one else.

1995

Xj

Xj

Xj

Xj

Xj C
kp

ip
C

kp

ip
. . . C

kq

iq
C

kq

iq

Xj

Xj

Ckr
ir

Ckr
ir

. . . Cks
is

Cks
is

Xj

Figure 3: Variable-Gadget for variable xj . Every item is represented by a rectangle containing the agent(s) who value it.

• Variable-Gadget: For every variable xj we introduce two
agents, Xj and Xj , and construct a Variable-Gadget as
follows (Figure 3). Starting from the left, create two items
that are valued by both Xj and Xj (and no one else).
Then, create one item that is valued only by Xj . Then,
for every Ck

i such that �(Ck
i) = xj , create two items that

are valued only by Ck
i . Then, create an item that is val-

ued by both Xj and Xj . Then, for every Ck
i such that

�(Ck
i) = xj , create two items that are valued only by Ck

i .
Finally, create an item that is valued only by Xj .

We combine these gadgets to create the instance R as fol-
lows. Starting from the left, construct the Clause-Gadget for
each clause Ci. Then, construct the Variable-Gadget for each
variable xj . Thus, we obtain an instance with 3m+2n agents
and 4m+ (5n+ 6m) = 5n+ 10m items.

Claim. The following statements hold:

• Any contiguous allocation in R where every agent gets at
least two items they value yields a satisfying assignment
for I . This holds even if the allocation is partial, i.e., some
items are not allocated.
• Any satisfying assignment for I yields a contiguous envy-

free allocation in R where every agent gets exactly two
items they value.

We leave the proof of the Claim to the full version of this
paper (Goldberg, Hollender, and Suksompong 2019).

The final step of the proof is to introduce one last gadget.
The Special-Gadget creates 3m+2n+7 new agents; denote
the set of these agents by N . The gadget consists of 2(3m+
2n)+14 = 6m+4n+14 new items. These items are valued
by all agents in N . For every i ∈ [m] and k ∈ [3], Ck

i values
all new items except the rightmost six. For every j ∈ [n], Xj

and Xj value all new items except the rightmost four.
The Special-Gadget is added to the right end of R and

yields the final instance R′. Note that in R′ there are 6m +
4n+7 agents and every agent values exactly 6m+4n+14
items. Now consider any contiguous allocation for R′.

• If the allocation is proportional, then every agent gets at
least
(6m + 4n + 14)/(6m + 4n + 7)� = 2 items they
value. It follows that the agents in N get all the new items,
because 2|N | = 2(3m+ 2n+ 7) = 6m+ 4n+ 14. This
means that the other agents get at least two items they
value in R. By the claim above, we obtain a satisfying
assignment.
• If the allocation is equitable, then all agents get exactly s

items they value, for some s ≥ 0. The Special-Gadget
contains an item (in fact, many) that is valued by all
agents. Since this item will be allocated to someone,

s = 0 is not possible. Also s ≥ 3 is not possible, be-
cause the 3m+2n+7 agents in N all like the exact same
2(3m+2n+7) items. Now, since all 6m+4n+7 agents
value the first (6m+4n+14)−6 = 6m+4n+8 items in
the Special-Gadget, at least one of them will be allocated
to two of those (by the pigeonhole principle). It follows
that s = 1 is also impossible. Thus, only s = 2 remains,
and we again obtain a satisfying assignment by the claim.

Since envy-freeness implies proportionality, it follows
that any X-allocation for R′ yields a satisfying assign-
ment for the 3-SAT instance I , for any non-empty X ⊆
{envy-free, proportional, equitable}. On the other hand, any
satisfying assignment for the 3-SAT instance yields an
envy-free and equitable allocation for R′, by assigning two
contiguous Special-Gadget items to each agent in N and
then using the claim.

In the construction used for our proof of Theorem 5.1,
each agent values at most four contiguous block of items. In
light of this result, one may naturally wonder whether the
hardness continues to hold if, for example, every agent val-
ues a single block of items. We show that this is the case for
proportionality, provided that we drop the requirement that
all agents value the same number of items. Note that if each
agent values a contiguous block of items and all agents value
the same number of items, deciding whether a proportional
allocation exists can in fact be done in polynomial time; see
the details in the full version of this paper (Goldberg, Hol-
lender, and Suksompong 2019).
Theorem 5.2. Deciding whether an instance with indivisi-
ble items on a line admits a contiguous proportional alloca-
tion is NP-hard, even if the valuations are binary and every
agent values a contiguous block of items.

The proof of this result, as well as that of the next re-
sult, uses a reduction from the NP-complete problem 3-
PARTITION and can be found in the full version.

Finally, we show that under the same conditions as The-
orem 5.2, deciding whether there exists a proportional and
equitable allocation, or an equitable allocation that gives the
agents positive value, are both NP-hard. Since agents do not
all value the same number of items (unlike in Theorem 5.1),
we normalize the valuations so that if agent i values xi items,
she has value 1/xi of each of them (so her total value is 1).
Theorem 5.3. Deciding whether an instance with indivisi-
ble items on a line admits
• a contiguous allocation that is both proportional and eq-

uitable;
• a contiguous equitable allocation in which the agents re-

ceive positive value
are both NP-hard, even if the valuations are binary and ev-
ery agent values a contiguous block of items.

1996

6 Conclusion
In this paper, we study the classical cake cutting problem
with the contiguity constraint and establish several hardness
results and approximation algorithms for this setting. It is
worth noting that while our 1/3-envy-free algorithm (Algo-
rithm 1) is simple, lowering the envy to 1/4 for the restricted
class of uniform single-interval valuations (Algorithm 2) al-
ready requires significantly more work. Pushing the approx-
imation factor down further even for this class or the class
of piecewise uniform valuations while maintaining compu-
tational efficiency is therefore a challenging direction. Of
course, it is possible that there are hardness results for suf-
ficiently small constants—this is not implied by the work of
Deng, Qi, and Saberi (2012), as their PPAD-completeness
result relies on more complex valuation functions.

On the hardness front, we provide constructions that serve
as frameworks for deriving NP-hardness results for both
cake cutting and indivisible items. Nevertheless, our frame-
works do not cover questions related to the utilities of the
agents, for instance whether there exists a contiguous envy-
free allocation of the cake in which the first agent receives
at least a certain level of utility. Extending or modifying our
constructions to deal with such questions is an interesting
direction for future research.

Acknowledgments
This work was partially supported by the European Research
Council (ERC) under grant number 639945 (ACCORD) and
by an EPSRC doctoral studentship (Reference 1892947).
We would like to thank the anonymous reviewers for their
helpful comments.

References
Alijani, R.; Farhadi, M.; Ghodsi, M.; Seddighin, M.; and
Tajik, A. S. 2017. Envy-free mechanisms with minimum
number of cuts. In AAAI, 312–318.
Arunachaleswaran, E. R.; Barman, S.; Kumar, R.; and Rathi,
N. 2019. Fair and efficient cake division with connected
pieces. In WINE, Forthcoming.
Aumann, Y., and Dombb, Y. 2015. The efficiency of fair
division with connected pieces. ACM Transactions on Eco-
nomics and Computation 3(4):23.
Aumann, Y.; Dombb, Y.; and Hassidim, A. 2013. Comput-
ing socially-efficient cake divisions. In AAMAS, 343–350.
Barrera, R.; Nyman, K.; Ruiz, A.; Su, F. E.; and Zhang, Y.
2015. Discrete envy-free division of necklaces and maps.
CoRR abs/1510.02132.
Bei, X.; Chen, N.; Hua, X.; Tao, B.; and Yang, E. 2012.
Optimal proportional cake cutting with connected pieces. In
AAAI, 1263–1269.
Bei, X.; Igarashi, A.; Lu, X.; and Suksompong, W. 2019.
Connected fair allocation of indivisible goods. CoRR
abs/1908.05433.
Bilò, V.; Caragiannis, I.; Flammini, M.; Igarashi, A.;
Monaco, G.; Peters, D.; Vinci, C.; and Zwicker, W. S. 2019.
Almost envy-free allocations with connected bundles. In
ITCS, 14:1–14:21.

Bouveret, S.; Cechlárová, K.; Elkind, E.; Igarashi, A.; and
Peters, D. 2017. Fair division of a graph. In IJCAI, 135–
141.
Brams, S. J., and Taylor, A. D. 1996. Fair Division: From
Cake-Cutting to Dispute Resolution. Cambridge University
Press.
Brânzei, S., and Nisan, N. 2017. The query complexity of
cake cutting. CoRR abs/1705.02946.
Brânzei, S., and Nisan, N. 2019. Communication complex-
ity of cake cutting. In EC, 525.
Caragiannis, I.; Kurokawa, D.; Moulin, H.; Procaccia, A. D.;
Shah, N.; and Wang, J. 2016. The unreasonable fairness of
maximum Nash welfare. In EC, 305–322.
Cechlárová, K., and Pillárová, E. 2012. On the computabil-
ity of equitable divisions. Discrete Optimization 9(4):249–
257.
Cechlárová, K.; Doboš, J.; and Pillárová, E. 2013. On the
existence of equitable cake divisions. Information Sciences
228:239–245.
Deng, X.; Qi, Q.; and Saberi, A. 2012. Algorithmic so-
lutions for envy-free cake cutting. Operations Research
60(6):1461–1476.
Dubins, L. E., and Spanier, E. H. 1961. How to cut a cake
fairly. The American Mathematical Monthly 68(1):1–17.
Goldberg, P. W.; Hollender, A.; and Suksompong, W. 2019.
Contiguous cake cutting: Hardness results and approxima-
tion algorithms. CoRR abs/1911.05416.
Igarashi, A., and Peters, D. 2019. Pareto-optimal allocation
of indivisible goods with connectivity constraints. In AAAI,
2045–2052.
Lipton, R. J.; Markakis, E.; Mossel, E.; and Saberi, A. 2004.
On approximately fair allocations of indivisible goods. In
EC, 125–131.
Marenco, J., and Tetzlaff, T. 2014. Envy-free division of
discrete cakes. Discrete Applied Mathematics 164:527–531.
Procaccia, A. D. 2016. Cake cutting algorithms. In
Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procac-
cia, A. D., eds., Handbook of Computational Social Choice.
Cambridge University Press. chapter 13, 311–329.
Robertson, J., and Webb, W. 1998. Cake-Cutting Algo-
rithms: Be Fair if You Can. Peters/CRC Press.
Stromquist, W. 1980. How to cut a cake fairly. The American
Mathematical Monthly 87(8):640–644.
Stromquist, W. 2008. Envy-free cake divisions cannot be
found by finite protocols. The Electronic Journal of Combi-
natorics 15:#R11.
Su, F. E. 1999. Rental harmony: Sperner’s lemma in fair di-
vision. The American Mathematical Monthly 106(10):930–
942.
Suksompong, W. 2019. Fairly allocating contiguous
blocks of indivisible items. Discrete Applied Mathematics
260:227–236.

1997

