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Abstract

We study an information-structure design problem (a.k.a. a
persuasion problem) with a single sender and multiple re-
ceivers with actions of a priori unknown types, independently
drawn from action-specific marginal probability distributions.
As in the standard Bayesian persuasion model, the sender has
access to additional information regarding the action types,
which she can exploit when committing to a (noisy) signal-
ing scheme through which she sends a private signal to each
receiver. The novelty of our model is in considering the much
more expressive case in which the receivers interact in a se-
quential game with imperfect information, with utilities de-
pending on the game outcome and the realized action types.
After formalizing the notions of ex ante and ex interim per-
suasiveness (which differ by the time at which the receivers
commit to following the sender’s signaling scheme), we in-
vestigate the continuous optimization problem of computing
a signaling scheme which maximizes the sender’s expected
revenue. We show that computing an optimal ex ante per-
suasive signaling scheme is NP-hard when there are three or
more receivers. Instead, in contrast with previous hardness re-
sults for ex interim persuasion, we show that, for games with
two receivers, an optimal ex ante persuasive signaling scheme
can be computed in polynomial time thanks to the novel al-
gorithm we propose, based on the ellipsoid method.

Bayesian persuasion, introduced by Kamenica and
Gentzkow (2011), revolves around influencing the behav-
ior of self-interested agents through the provision of payoff-
relevant information. Differently from traditional mecha-
nism design, where the designer influences the outcome
by providing tangible incentives, in Bayesian persuasion
the designer influences the outcome by deciding who gets
to know what (Bergemann and Morris 2016b). Real-world
applications are ubiquitous. For instance, this framework
has been recently applied to security problems (Rabinovich
et al. 2015; Xu et al. 2015; 2016), financial-sector stress
testing (Goldstein and Leitner 2018), voting (Alonso and
Câmara 2016; Castiglioni, Celli, and Gatti 2019), and on-
line advertisement (Badanidiyuru, Bhawalkar, and Xu 2018;
Emek et al. 2012).

The classical Bayesian persuasion framework comprises a
single sender and a single receiver. The sender, who has ac-
cess to some private information, designs a signaling scheme
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in order to persuade the receiver to select a favorable action.
The model assumes that the sender commits to the selected
signaling scheme. This hypothesis is realistic in many set-
tings where reputation and credibility are a key factor for
the long-term utility of the sender (Rayo and Segal 2010), as
well as whenever an automated signaling scheme either has
to abide by a contractual service agreement or it is enforced
by a trusted authority (Dughmi 2017).

The extension to the case with multiple receivers is of ma-
jor interest, see, e.g., its applications to private-value auc-
tions studied by Kaplan and Zamir (2000). In this setting, a
number of works assume a public signal model in which
all the receivers observe the same information (Dughmi,
Immorlica, and Roth 2014; Alonso and Câmara 2016;
Dughmi 2018). A more general setting is the private sig-
nal case, in which the sender may tailor receiver-specific
signals. Persuasion with private signals has been explored
only in very specific settings, such as two-agents two-action
games (Taneva 2019), unanimity elections (Bardhi and Guo
2018), voting with binary action spaces and binary states of
Nature (Wang 2013), and games with binary action spaces
and no inter-agent externalities (Babichenko and Barman
2016; Arieli and Babichenko 2016; Dughmi and Xu 2017).
As pointed out by Dughmi (2017), the problem of comput-
ing private signaling schemes in general multi-receiver set-
tings still lacks a general algorithmic framework.

In this work, we make a further step in this direction and
consider a general model with the following key features: i)
it admits an arbitrary number of receivers’ actions and states
of Nature; ii) it allows inter-agent externalities; 1 iii) it mod-
els sequential interactions among receivers. The last point
constitutes the major difference from classical Bayesian per-
suasion models, which typically assume that the receivers
take their actions simultaneously (Dughmi 2017; Kamenica
2018) as, to the best of our knowledge, we address here the
multi-receiver case with sequential interactions among re-
ceivers for the first time in the literature. As most of the real-
world economic interactions take place sequentially, this al-
lows for a greater modeling flexibility which could be ex-
ploited in the context of, e.g., sequential auctions (Leme,

1When there are inter-agent externalities, the utility of a re-
ceiver is determined by the state of Nature, her action, and (cru-
cially) the actions selected by all the other receivers.
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Syrgkanis, and Tardos 2012). In this paper, we show how
to address sequential, multi-receiver settings algorithmically
via the notion of ex ante persuasive signaling scheme, where
the receivers commit to following the sender’s recommen-
dations having observed only the signaling scheme. This is
motivated by the fact that the classical notion of persuasive-
ness (ex interim persuasiveness), which allows the receivers
to deviate after observing the sender’s signal, renders most
of the associated design problems (with the exception of
very narrow settings) computationally intractable even when
the interaction is simultaneous (Dughmi and Xu 2016), ulti-
mately making its adoption impractical in real-world appli-
cations where the receivers act sequentially. In parallel with
our work, Xu (2019) introduced a notion of ex ante persua-
sion similar to ours, but studies it in a more restrictive set-
ting: public signaling, simultaneous moves, binary actions,
and no inter-agent externalities.

Ex ante persuasive signaling schemes may be employed
every time the environment allows for a credible receivers’
commitment before the recommendations are revealed. As
argued by Kamenica and Gentzkow (2011), this is not un-
realistic. On a general level, the receivers will uphold their
ex ante commitment every time they reason with a long-
term horizon where a reputation for credibility positively af-
fects their utility (Rayo and Segal 2010). In some cases, they
could also be forced to stick to their ex ante commitment by
contractual agreements or penalties. Many real-world prob-
lems involve ex ante commitments. This happens, for exam-
ple, when the signaling schemes are implemented as soft-
ware (e.g., recommender systems) and receivers can decide
whether to adopt it or not. This is the case in sequential auc-
tions in online advertising, where a (trusted) third party ser-
vice (e.g., programmatic advertising platforms) could allow
bidders for coordinated behaviors during the sequential auc-
tion, leading to better outcomes in terms of bidders’ payoffs,
and to more efficient allocations of the ads.

Original contributions. We investigate private persua-
sion games with multiple receivers interacting in a sequen-
tial game, and study the continuous optimization problem
of computing a private signaling scheme which maximizes
the sender’s expected utility. We focus on the framework
with independent action types, similarly to what is previ-
ously done by Dughmi and Xu (2016). We introduce the no-
tion of ex ante persuasive signaling scheme, and formalize
its differences from ex interim persuasive schemes. Then, we
show that ex ante persuasiveness can provide the sender with
a utility that can be arbitrarily larger than that provided by
ex interim persuasiveness. Motivated by the hardness results
for the ex interim setting with simultaneous moves provided
by Dughmi and Xu (2016), we study the problem of com-
puting optimal ex ante signaling schemes. First, we prove
a result of independent interest that plays a crucial role in
the following proofs. More precisely, we show that, given
a multi-player game and a behavioral strategy of a perfect-
recall player, it is possible to find, in polynomial time, a
realization-equivalent mixed strategy (defined on the nor-
mal form) with a polynomially-sized support. We show that
an optimal ex ante signaling scheme may be computed in
polynomial time in settings with two receivers and indepen-

dent action types, which makes ex ante persuasive signaling
schemes a persuasion tool which is applicable in practice.
Moreover, we show that this result cannot be extended to set-
tings with more than two receivers, as the problem of com-
puting an optimal ex ante signaling scheme becomes NP-
hard.

Bayesian Persuasion with Sequential Games

In our model, we assume a sender denoted by S and a set of
receiversR = {1, . . . , n}. Each receiver i ∈ R is faced with
the problem of selecting actions from a set Ai with a priori
uncertain payoffs. We adopt the perspective of the sender,
whose goal is persuading the receivers to take actions which
are favorable for her. The fundamental feature of our model
is that receivers confront themselves in a sequential deci-
sion problem, which we describe as an extensive-form game
(EFG) with imperfect information and perfect recall.

Payoffs are a function of the actions taken by the re-
ceivers and of an unknown state of nature θ, drawn from
a set of potential realizations Θ. We follow the standard
framework of Dughmi and Xu (2016), where each action
a has a set of possible types Θa and in which a state of
nature θ is a vector specifying the realized type of each
action of the receivers, i.e., θ ∈ Θ = ×i∈R×a∈Ai

Θa.2
Furthermore, as also done by Dughmi and Xu (2016), we
assume action types which are drawn independently from
action-specific marginal probability distributions denoted by
π̃a ∈ int(Δ|Θa|), where π̃a(t) is the probability of a having
type t ∈ Θa.3 These marginal probability distributions form
a common prior over the states of nature which we assume to
be known explicitly to both sender and receivers. This com-
mon knowledge can be equivalently represented by the dis-
tribution μ0 ∈ Δ|Θ|, where μ0(θ) =

∏
i∈R

∏
a∈Ai

π̃a(θa).
In the following, we provide some background on EFGs,

describe the two models of persuasion (ex interim and ex
ante), and highlight their differences with some examples.

Background on EFGs

An EFG—here denoted by Γ—is composed of a set H of
nodes, each of which is identified by the ordered sequence
of actions leading to it from the root node. The set of termi-
nal nodes of the game is denoted by Z ⊆ H . The game is
played by the receivers R. Ai is the set of actions available
to each receiver i ∈ R. Let A = {Ai}i∈R. For each nonter-
minal node h ∈ H \Z, we denote by, respectively, P (h) and
A(h) the unique receiver acting at h and the set of actions
available at that node. Imperfect information is represented
via information sets (or infosets), which group together deci-
sion nodes which are indistinguishable for a certain receiver.
For each receiver i, we denote her set of infosets by Ii. Ii
defines a partition of {h ∈ H | P (h) = i}. Each I ∈ Ii is
such that A(h) = A(h′) ∀h, h′ ∈ I . With a little notation
overload, we let A(I) be the set of actions available at each

2Standard (i.e., non Bayesian) EFGs can be represented by as-
signing to each Θa a singleton. Note that this model also encom-
passes Bayesian games á la Harsanyi (1967).

3int(X) is the interior of set X , and Δ|X| is the set of all prob-
ability distributions on X .
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decision node in I . Receiver i has perfect recall if she has
perfect memory of her past actions and observations.

We denote a behavioral strategy of receiver i by πi. It
corresponds to a vector defining a probability distribution
over A(I), ∀I ∈ Ii. Given πi, let πi,I be the (sub)vector
representing the probability distribution at I ∈ Ii. Letting,
for each receiver i, Σi = ×I∈Ii

A(I), a plan is a vector
σi ∈ Σi which specifies an action for each of the receiver’s
infosets.4 We denote by σi(I) the action selected at infoset
I ∈ Ii. Letting Σ =×i∈P Σi, we denote by σ ∈ Σ the tuple
which specifies the plan chosen by each receiver. Finally, a
mixed strategy xi is a probability distribution over Σi. We
let Xi be the mixed strategy space of receiver i, and X be
the set of joint probability distributions over Σ.

The sequence form (Koller, Megiddo, and von Stengel
1996; von Stengel 1996) of a game is a compact repre-
sentation applicable to games with perfect recall. It decom-
poses strategies into sequences of actions and their realiza-
tion probabilities. A sequence qi for receiver i associated
with a node h is a tuple specifying receiver i’s actions on the
path from the root to h. We denote the set of all sequences for
receiver i by Qi. A sequence is said terminal if, together with
some sequences of the other receivers, leads to a terminal
node. We let q∅ be the fictitious sequence leading to the root
node and qa the extended sequence obtained by appending
action a to q. A sequence-form strategy (usually called real-
ization plan) for a receiver i is a function ri : Qi → [0, 1]
such that ri(q∅) = 1 and, for each I ∈ Ii and sequence q
leading to I , −ri(q) +

∑
a∈A(I) ri(qa) = 0 holds. We de-

note by Q(I) the set of sequences originating in I . For each
q ∈ Qi, we denote by I↓(q) ⊆ Ii the set of infosets reach-
able by i after selecting q without making other intermediate
moves, whereas I↑(q) ∈ Ii denotes the unique infoset where
the last action of q was taken.5 We call two strategies of re-
ceiver i realization equivalent if, for any fixed strategy of
the other receivers, they induce the same distribution over
the terminal nodes in Z.

Ex interim Persuasiveness

Let uS : Σ × Θ → R and ui : Σ × Θ → R be the pay-
off functions of the sender and receiver i ∈ R. We assume
that the sender is allowed to tailor signals to individual re-
ceivers through private communications. Let Ωi be the set
of signals available to receiver i, and let Ω =×i∈R Ωi. We
assume that the sender has access to private information and
her goal is designing a signaling scheme ϕ : Θ → Δ|Ω|
to persuade the receivers to select actions which are favor-
able for her. We denote by ϕθ the probability distribution
over Ω having observed θ. In the classical Bayesian per-
suasion framework by Kamenica and Gentzkow (2011), the
receivers decide their behavior after observing the sender’s
signal and updating their posterior over Θ accordingly. The
sender-receivers interaction goes as follows.
• The sender chooses ϕ and publicly discloses it.

4A plan is an action of the corresponding normal-form game,
whose size is exponentially larger than the extensive form.

5When the context requires disambiguation between different
games, we write IΓ↓ (q) to denote the result for EFG Γ.

• Nature draws a state θ ∼ μ0, observed by the sender.

• The sender draws a tuple ω ∼ ϕθ and privately sends
signal ωi to each receiver i ∈ R.

• Each receiver i updates her posterior distribution knowing
ϕ and having observed ωi. Then, each of the receivers
selects a plan σi ∈ Σi. Together, their joint choices form
the tuple σ = (σ1, . . . , σn).

• Sender and receivers get, respectively, payoffs uS(θ, σ)
and ui(θ, σ), for all i ∈ R.

In this setting, a result similar to the revelation principle
(see, e.g., (Myerson 1979)) holds. Specifically, an optimal
signaling scheme (i.e., a signaling scheme maximizing the
sender’s expected utility) can always be obtained by restrict-
ing the set of signals Ω to the set of plans Σ; see Propo-
sition 1 by Kamenica and Gentzkow (2011). In the follow-
ing, we assume Ω = Σ (i.e., the sender recommends a plan
to follow to each receiver). The receivers have an incen-
tive to follow the sender’s recommendation σ̂i if the recom-
mended plan is preferred to any other action, conditional on
the knowledge of σ̂i. We call this condition ex interim per-
suasiveness, which is precisely the kind of constraint charac-
terizing a Bayes Correlated Equilibrium (BCE) (Bergemann
and Morris 2013; 2016a). We remark that, according to the
definition of BCE, the signaling scheme must necessarily be
defined on plans and cannot be compactly represented by
using sequences or actions.
Definition 1 (Ex interim persuasiveness). A signaling
scheme ϕ : Θ → Δ|Σ| is ex interim persuasive if the fol-
lowing holds for all i ∈ R and σi, σ

′
i ∈ Σi:

∑
θ∈Θ,

σ−i∈Σ−i

μ0(θ)ϕθ(σi, σ−i)
(
ui(θ, (σi, σ−i))−ui(θ, (σ

′
i, σ−i))

)
≥ 0.

Definition 2. A signaling scheme ϕ : Θ→ Δ|Σ| is a BCE if
it is ex interim persuasive.

Ex ante Persuasiveness

We introduce the setting in which the receivers have to de-
cide whether to follow the sender’s recommendations before
actually observing them, basing their decision only on the
knowledge of μ0 and ϕ.6 The interaction between sender
and receivers goes as follows.

• The sender computes ϕ, and publicly discloses it.

• The receivers decide whether to adhere to the recommen-
dations drawn according to ϕ or not.

• Nature draws a state θ ∼ μ0, observed by the sender.

• If i ∈ R decided to opt-in to the signaling scheme:

◦ the sender draws σ̂i ∼ ϕθ and privately communicates
it to receiver i;
◦ receiver i acts according to the recommended σ̂i.
6As discussed in the introduction of the paper, the receivers’

commitment to follow a certain signaling scheme is not an unreal-
istic assumption for the same reason why it is realistic to assume
the sender’s commitment power.
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time
S ⇒

R ⇒

choose
ϕ

observe
θ ∼ μ0

draw
σ̂ ∼ ϕθ uS(θ, σ)

observe
ϕ

observe
σ̂i

choose
σi

ui(θ, σ)ex ante
decision

ex interim
decision

Figure 1: Interaction between sender and receivers in the ex
ante and ex interim settings.

In Out P
E (−1, 1) (1, 0) (0, 1/2)
H (−1,−1) (1, 0) (0, 0)

Figure 2: A game where ex ante persuasion guarantees the
sender a higher expected utility with respect to ex interim
persuasion.

• Sender and receivers get, respectively, payoffs uS(θ, σ)
and ui(θ, σ), ∀i ∈ R, where σi = σ̂i if i adhered to the
signaling scheme.

In this setting, the receivers adhere to the signaling scheme
(i.e., σi = σ̂i) if it is ex ante persuasive:
Definition 3 (Ex ante persuasiveness). The signaling
scheme ϕ : Θ→ Δ|Σ| is ex ante persuasive if, for all i ∈ R
and σi ∈ Σi, the following holds:

∑

θ∈Θ,σ′
i∈Σi

σ−i∈Σ−i

μ0(θ)ϕθ(σ
′
i, σ−i)

(
ui(θ, (σ

′
i, σ−i)) − ui(θ, (σi, σ−i))

)
≥ 0.

Such constraints define Bayes Coarse Correlated Equilibria
(BCCE), i.e., the generalization of coarse correlated equilib-
ria to incomplete-information games, see Forges (1993), Cai
and Papadimitriou (2014), Hartline, Syrgkanis, and Tar-
dos (2015), and Caragiannis et al. (2015), Celli, Coniglio,
and Gatti (2019b).7

Definition 4. A signaling scheme ϕ : Θ→ Δ|Σ| is a BCCE
if it is ex ante persuasive.

Comparison Between Notions of Persuasiveness

Figure 1 summarizes the interaction flow between sender
and receivers in the two aforementioned settings. The key
difference is the time at which the receivers decide whether
to adhere to the signaling scheme or not.

We also propose the following illustrative example (in the
basic single-receiver setting) to further illustrate the main
differences between the two notions of persuasiveness.

Example 1. The incumbent of an industry wants to per-
suade a potential new entrant to the market. The market can
be either easy (E), with probability 0.3, or hard (H), with
the remaining probability. The incumbent knows the state of
the market. The entrant has three possible actions available:
entering the market (In), staying out of the market (Out), or
proposing a partnership to the incumbent (P ). Figure 2 de-
picts the utility matrix for the game (the first values are the
incunbent’s payoffs).

7The set of (non Bayesian) coarse correlated equilibria is char-
acterized by the constraints of Definition 3, with |Θa| = 1 ∀a ∈ A.

I1

(k, 0)

t1
(0, 0)

t2

a12

(0, 0)

t1
(0, 0)

t2

a22

(0, 1)

t1
(1, 1)

t2

a32

a11

(0, 0)

a12

(1, 0)

a22

(0,−1)

a32

a21I2

Figure 3: A game with two receivers in which action a11
has two possible types t1 and t2. Terminal nodes report re-
ceivers’ utilities.

The incumbent wants the entrant to stay out of the mar-
ket, values its entrance negatively, and is indifferent towards
a partnership. The entrant values entering the new market
positively only when it has favorable conditions. A partner-
ship in a hard market gives the entrant 0 (rather than a neg-
ative score) as no fixed costs have to be sustained. In this
setting, forcing the entrant (contractually) to commit to fol-
lowing the incumbent’s recommendations ex ante is strictly
better (in terms of expected utility) for the incumbent.

An optimal ex ante signaling scheme (e.g., ϕE(In) =
ϕE(Out) = 1

2 , ϕH(Out) = 1) guarantees the sender an ex-
pected utility of 0.7. An optimal ex interim signaling scheme
(e.g., ϕE(P ) = 1, ϕH(Out) = 11

14 , ϕH(P ) = 3
14 ,) guaran-

tees a sender’s expected utility of 0.55. Therefore, ex ante
persuasion provides a 27% increase in utility for the incum-
bent w.r.t. ex interim persuasion.

We remark that the set of ex ante persuasive signaling
schemes strictly includes the set of ex interim signaling
schemes. In particular, an optimal ex ante persuasive sig-
naling scheme may lead to an expected utility for the sender
that is arbitrarily larger than the one she would obtain with
an optimal ex interim scheme. This is shown by means of
the following example.

Example 2. Consider the game in Figure 3, with two re-
ceivers with one information set each (I1 for receiver 1 and
I2 for receiver 2), and parametric in k � 1. Action a11 ∈ A1

is such that Θa1
1
= {t1, t2} and π̃a1

1
(t1) = π̃a1

1
(t2) = 1/2.

The figure only reports the receivers’ utilities, as we as-
sume uS(θ, σ) = u1(θ, σ) + u2(θ, σ), ∀(θ, σ). The signal-
ing scheme with ϕ′

t1(a
1
1, a

1
2) = 1/2, ϕ′

t1(a
2
1, a

2
2) = 1/2, and

ϕ′
t2(a

1
1, a

3
2) = 1 is ex ante persuasive, but it is not ex in-

terim persuasive. The optimal ex interim persuasive signal-
ing scheme is such that ϕ′′

t1(a
2
1, a

2
2) = 1, and ϕ′′

t2(a
1
1, a

3
2) =

1. Signaling scheme ϕ′ guarantees the sender an expected
utility of (k + 5)/4, while signaling scheme ϕ′′ guarantees
3/2. Therefore, for increasing values of k, an optimal ex ante
signaling scheme provides an arbitrarily larger utility than
what can be obtained by ex interim persuasion.

Positive Result

In the independent-actions setting, Dughmi and Xu (2016)
show that computing an optimal ex interim signaling scheme
is #P-hard even with a single receiver. Motivated by this
negative result, we study the problem of computing an op-
timal (for the sender) ex ante persuasive signaling scheme.
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We denote this problem by OPT-EA. It amounts to comput-
ing a Coarse Correlated Equilibrium (CCE) for the game of
complete information obtained by treating Nature as a player
with a trivial (i.e., constant everywhere) payoff function and
subject to having marginal strategies constrained to be μ0.8

In contrast with the known hardness results for the ex in-
terim setting, we show that OPT-EA with |R| = 2 can be
solved in polynomial time (see Theorem 5 below). To prove
our main theorem, we first show how to build, in polynomial
time, a small (i.e., with a support of size upper bounded by a
polynomial) mixed strategy which is realization-equivalent
to a given behavioral strategy. Omitted proofs are presented
in extended version of the paper (see Celli, Coniglio, and
Gatti (2019a)).

Small–supported Mixed Strategies

Given a behavioral strategy profile π∗
i for a generic perfect-

recall player i, we show (see Theorem 4 below) that it is
always possible to compute in polynomial time some x∗

i ∈Xi such that (i) it is realization-equivalent to π∗
i and (ii) it

has a support of polynomial size.9
For each σi ∈ Σi, let ξ(σi) := {q ∈ Qi|∃I ∈

Ii, σi(I) = q} (i.e., the set of sequences selected with
probability 1 in a realization plan equivalent to σi). Anal-
ogously, ∀σ = (σ1, σ2) ∈ Σ we denote by ξ(σ) the set
of tuples (q1, q2) such that q1 ∈ ξ(σ1) and q2 ∈ ξ(σ2).
In the remainder of the section, we drop the dependency
on i when it is not strictly necessary. We denote by M an
|Qi| × |Σi| matrix where M(q, σ) = 1 iff q ∈ ξ(σ) and
M(q, σ) = 0 otherwise. We denote by Mq the row of M
specifying the plans containing q in their support. Let r∗ be
the |Qi|-dimensional vector representing the realization plan
of player i which is realization-equivalent to π∗. In order to
compute x∗, it is enough to find an optimal solution to the
LP max

x∈R
|Σi|
≥0

{1�x s.t. Mx ≤ r∗}, which we de-

note by A , which has a polynomial number of constraints
and an exponential number of variables.

By relying on the assumption of perfect recall and pro-
ceeding by contradiction, we establish the following lemma:

Lemma 1. An optimal solution x∗ to A satisfies Mx∗ =
r∗.

Proof. Consider a behavioral strategy π∗ whose realization-
equivalent realization plan is denoted by r∗. Since player i
has perfect recall, there always exists at least a mixed strat-
egy x̂ ∈ Xi realization equivalent to π∗ (Maschler, Solan,
and Zamir 2013, Th. 6.11). Therefore, the optimal value of
A is 1 (since 1�x̂ = 1). Given x̂ ∈ Xi, a distribution as-

signing to each sequence q ∈ Qi value
∑

σ∈Σi:q∈ξ(σ) x̂σ

is a valid realization plan. Therefore, if x ∈ Δ|Σi| then
Mx is a well defined realization plan for i. Now, by con-
tradiction, assume that x∗ is an optimal solution to A and

8Notice that finding an optimal CCE with two players and Na-
ture is hard in the worst-case, while our problem is a variation.

9As customary, we define the support of a mixed strategy xi ∈
Xi as supp(xi) := {σi ∈ Σi|xi(σi) > 0}.

that there exists q′ ∈ Qi such that Mq′x
∗ < r∗(q′). Opti-

mality implies 1�x∗ = 1 and, therefore, x∗ ∈ Δ|Σi|. Let
Mx∗ = r. We have r(q′) < r∗(q′). Since the sequence-
form constraints hold, there must exist some q′′ ∈ Qi such
that r(q′′) > r∗(q′′). This leads to a contradiction since x∗
would not be a feasible solution.

We now characterize an optimal solution to A by two
properties which are proven by relying on Lemma 1 and on
the fact that, as LP A contains a polynomial number of
constraints, it admits an optimal basic solution with only a
polynomial number of nonzero variables:
Theorem 2. These two properties hold:
• (i) An optimal solution x∗ to A is a normal-form strategy

(x∗ ∈ Xi) realization equivalent to r∗,
• (ii) there exists an optimal solution x∗ with supp(x∗) of

polynomial size.
Let D be the dual of problem A . By showing that an

optimal plan corresponding to a violated dual constraint can
be found in polynomial time by backward induction, we can
establish the following:
Lemma 3. D admits a polynomial-time separation oracle.

Next, by relying on Lemma 3 and on the ellipsoid method
for solving LPs we prove a result which is the basis for our
main theorem, Theorem 5 (whose statement and proof are
given in full in the next subsection):
Theorem 4. Given an EFG, a perfect-recall player i, and
a behavioral strategy profile π∗ for i (with the realization-
equivalent realization plan r∗), a solution to LP A can be
found in polynomial time.

Finally, we show that we can efficiently compute a solu-
tion with support size of at most |Qi| by applying the ellip-
soid method for at most a polynomial number of iterations:

Corollary 1. A basic feasible solution to A can be com-
puted in polynomial time.

Optimal Ex Ante Persuasive Schemes

Computing an ex ante persuasive signaling scheme is equiv-
alent to computing a CCE for an EFG of complete informa-
tion where Nature is treated as a player with constant utility
and marginal strategies constrained to be equal to μ0. We
focus on the setting where |R| = 2 and show that OPT-EA
can be solved in polynomial time. We reason over an auxil-
iary game where each action of the receivers is followed by
one of Nature’s nodes, determining its type. Marginal prob-
abilities π̃ determining action types are treated as behavioral
strategies of the Nature player, which we denote by N. For-
mally:
Definition 5. Given an EFG Γ describing the interaction
between receivers and a set of marginal distributions {π̃a ∈
int(Δ|Θa|)}a∈A, the auxiliary game Γ̂ is an EFG such that:
• It has a set of playersR∪ {N}.
• For each receiver i ∈ R, her utility function is the same

as in Γ, i.e., ∀(θ, σ) ∈ Θ × Σ, ui(θ, σ) = ûi(θ, σ). Na-
ture has ûN(·) = k ∈ R constant everywhere.
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• The receivers have the same information structures as in
Γ, i.e., ∀i ∈ R, Ii = Îi, and ∀q ∈ Qi, IΓ↓ (q) = I Γ̂↓ (q).
• ∀i ∈ R, each a ∈ Ai is immediately followed by a sin-

gleton infoset I ∈ IN such that A(I) = Θa.
• ∀I ∈ IN, with I following a ∈ A, N selects actions

(types) at I according to the marginal distribution π̃a.
The first step is devising an LP to compute a BCCE with a

polynomial number of constraints and an exponential num-
ber of variables. We do so by providing an LP to find an
optimal CCE over Γ̂. First, notice that θ is a plan of player
N in Γ̂. A distribution in Δ|Θ| is a mixed strategy of N.
Denote by μ∗ the mixed strategy realization equivalent to
π̃ computed (in poly-time) as in the proof of Theorem 4.
Let Θ∗ := supp(μ∗). Due to Corollary 1, the set Θ∗ has
polynomial size. Then, we write the problem as a function
of γ ∈ Δ|Σ×Θ∗| (i.e., we look for a correlated distribu-
tion in Γ̂, encompassing the Nature player). Let vi be the
|Ii|-dimensional vector of variables of the dual of the best-
response problem for receiver i in sequence form. Moreover,
we employ sparse (|R| + 1)-dimensional matrices describ-
ing the utility function of sender and receivers for the pro-
files (θ, q1, q2) leading to terminal nodes of Γ̂. We denote
them by Ui ∈ R

|Θ∗|×|Q1|×|Q2|, with i ∈ R ∪ {S}.10 In the
following, we let q = (q1, q2). The problem of computing a
CCE over Γ̂ reads:

max
γ≥0,
v1,v2

∑
θ∈Θ∗
σ∈Σ

γ(θ, σ)
∑

q∈ξ(σ)

US(θ, q) (1a)

s.t.
∑
θ∈Θ∗
σ∈Σ

γ(θ, σ)
∑

q∈ξ(σ)

Ui(θ, q) ≥
∑

I′∈Ii:
I′∈I↓(q∅)

vi(I
′) ∀i ∈ R

(1b)

v1(I↑(q1))−
∑

I′∈I↓(q1)
v1(I

′)+

−
∑
θ∈Θ∗
σ∈Σ

γ(θ, σ)
∑

q2∈ξ(σ2)

U1(θ, q1, q2) ≥ 0 ∀q1 ∈ Q1 (1c)

v2(I↑(q2))−
∑

I′∈I↓(q2)
v2(I

′)+

−
∑
θ∈Θ∗
σ∈Σ

γ(θ, σ)
∑

q1∈ξ(σ1)

U2(θ, q1, q2) ≥ 0 ∀q2 ∈ Q2 (1d)

∑
σ∈Σ

γ(θ, σ) = μ∗(θ) ∀θ ∈ Θ∗. (1e)

We make the following observations on the above LP,
which we denote by B :

• The left term of constr. (1b) is the expected utility of i
at the equilibrium. Incentive constraints (1c) and (1d) are
compactly encoded by exploiting the sequence form. Intu-
itively, we decompose the best-response problem locally
at each infoset. The constraints impose that the utility
at the equilibrium be no smaller than the value achieved
when playing the plan obtained by letting the receiver best
respond in each infoset.
10Ui employs both the sequence form (for receivers), and plans

of N. However, polynomiality of Θ∗ implies polynomiality of Ui.

• Constraint (1e) forces Nature’s marginal distribution to be
equal to the prior μ∗.
• Once a solution γ∗ to B has been computed, an

optimal solution to OPT-EA is the signaling scheme
which, having observed θ, recommends σ with probabil-
ity γ∗(θ, σ)/μ∗(θ).
The following key positive result holds:

Theorem 5. OPT-EA can be solved in polynomial time
when |R| ≤ 2.

Proof. Let DB be the dual of B . Let α1, α2 be the dual
variables of constraints (1b), β1 ∈ R

|Q1| and β2 ∈ R
|Q2|

the dual variables of (1c) and (1d), and δ ∈ R
|Θ∗| the dual

variables of (1e). We show that, given (ᾱ1, ᾱ2, β̄1, β̄2, δ̄), the
problem of finding either a hyperplane separating the solu-
tion from the feasible set of DB or proving that no such hy-
perplane exists can be solved in polynomial time. Along the
lines of Theorem 4, this implies that B is solvable in poly-
nomial time by the ellipsoid method. As the number of dual
constraints corresponding to variables vi is linear, all these
constraints can be checked efficiently for violation. Besides
those, the dual problemDB features the following constraint
for each (θ, σ) ∈ Θ∗ × Σ:∑

i∈R

∑
q∈ξ(σ)

Ui(θ, q)ᾱi +
δ̄(θ)

μ∗(θ)
−

∑
q∈ξ(σ)

US(θ, q)+

−
∑

q∈Q1×ξ(σ2)

U1(θ, q)β̄1(q1)+

−
∑

q∈ξ(σ1)×Q2

U2(θ, q)β̄2(q2) ≥ 0.

Given (ᾱ1, ᾱ2, β̄1, β̄2, δ̄), the separation problem of finding
a maximally violated inequality of DB reads:

min
θ,σ

{ ∑
q∈ξ(σ)

[ ∑
i∈R

Ui(θ, q)− US(θ, q)

]
+

δ̄(θ)

μ∗(θ)
+

−
∑

q∈Q1×ξ(σ2)

U1(θ, q)β̄1(q1)−
∑

q∈ξ(σ1)×Q2

U2(θ, q)β̄2(q2)

}
.

A pair (θ, σ) yielding a violated inequality exists iff the sep-
aration problem admits an optimal solution of value < 0.
If such a (θ, σ) exists, it can be determined in polynomial
time by enumerating all the (polynomially many) (θ, z) ∈
Θ∗×Ẑ, where Ẑ is the outcome set of Γ̂. For each pair (θ, z),
we look for a σ ∈ Σ which, together with some actions of N,
minimizes the objective function of the separation problem
and could lead to z. The procedure halts as soon as a plan
σ such that (θ, σ) yielding a violated inequality is found; if
it terminates without finding any, DB has been solved. First,
by fixing a pair (θ, z) the first two terms of the objective
function are completely determined. The remaining terms
can be minimized independently for each receiver. Let us
consider the problem of finding σ2 ∈ Σ2 (the other one is
solved analogously). It reads:

max
σ2∈Σ2

{ ∑
q1∈Q1

∑
q2∈ξ(σ2)

U1(θ, q1, q2)β̄1(q1)

}
,
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subject to the constraint that σ2 be an admissible plan for
the given z (i.e., given the solution plan, it has to be possi-
ble to reach z together with some actions of the other play-
ers). This problem can be solved in poly-time as shown in
Algorithm 1, where Izi and Qz

i are, respectively, the set of
infosets and sequences of i encountered on the path from
the root to z. Once Q∗ has been determined by visiting each
I ∈ I2, the corresponding optimal σ2 can be built directly.
As in Corollary 1, an optimal solution to B has polyno-
mial support size. Then, it is used to determine an optimal
solution to OPT-EA in poly-time.

Algorithm 1 Separation plan search for (θ, z)

1: function F(I ,Q∗) � I ∈ I2 is the current infoset
2: Q̂← ∅, w(q2)← −∞ ∀q2 ∈ Q2

3: if I ∈ Iz2 then

4: Q̂← {q2 ∈ Q2|q2 ∈ Q(I) and q2 ∈ Qz
2}

5: else
6: Q̂← Q(I)

7: for q2 ∈ Q̂ do
8:

w(q2)←
∑

q1∈Q1

U1(θ, q1, q2)β̄1(q1)+

+
∑

I′∈I↓(q2)

F(I ′, Q∗)

9: q∗2 = argmaxq2∈Q2
w(q2)

10: Q∗ ← Q∗ ∪ {q∗2}
11: return w(q∗2)

Negative Result

We conclude by showing that the previous approach cannot
be extended to settings where |R| > 2 and that, in particu-
lar, the border between easy and hard cases coincides with
|R| = 2. Indeed, the fact that computing an optimal CCE
for a three-player EFG is NP-hard (von Stengel and Forges
2008, Th. 1.3) directly implies the following:

Theorem 6. OPT-EA is NP-hard when |R| > 2.

Proof. Let |R| = 3 and, ∀a ∈ A, |Θa| = 1. Then, the
problem amounts to computing an optimal CCE for a three
player EFG, which is NP-hard since the reduction described
in Th. 1.3 by von Stengel and Forges (2008) applies.

For completeness, we also provide the following result,
showing that the separation problem of OPT-EA is NP-hard
when |R| > 2.

Theorem 7. Computing an optimal solution to the separa-
tion problem of OPT-EA is NP-hard when |R| > 2.

Proof. Consider the case in whichR = 3 andDB is adapted
accordingly. Let q = (q1, q2, q3). Given the dual variables

(ᾱ1, ᾱ2, ᾱ3, β̄1, β̄2, β̄3, δ̄), the separation problem reads:

min
θ,σ

{ ∑
q∈ξ(σ)

[∑
i∈R

Ui(θ, q)− US(θ, q)

]
+

δ̄(θ)

μ∗(θ)
+

−
∑

q∈Q1×ξ(σ2)×ξ(σ3)

U1(θ, q)β̄1(q1)

−
∑

q∈ξ(σ1)×Q2×ξ(σ3)

U2(θ, q)β̄2(q2)+

−
∑

q∈ξ(σ1)×ξ(σ2)×Q3

U3(θ, q)β̄3(q3)

}
.

Consider a setting with the following features: ∀θ ∈ Θ∗,
δ̄(θ) = 0 (a valid assumption since δ ∈ R

|Θ∗|);
∀(θ, q) ∈ Θ∗ × (×i∈R Qi

)
, US(θ, q) = U1(θ, q);

∀(θ, q) ∈ Θ∗ × (×i∈RQi), U2(θ, q) = U3(θ, q) = 0. Then,
finding a maximally violated inequality corresponds to solv-
ing: argmaxθ,σ2,σ3

{∑q∈Q1×ξ(σ2)×ξ(σ3)
U1(θ, q)β̄1(q1)}.

Let U ′
1 ∈ R

|Θ∗|×|Q2|×|Q3| be such that, for each
(θ, q2, q3), U ′

1(θ, q2, q3) =
∑

q1∈Q1
U1(θ, q1, q2, q3)β̄(q1).

If Θ∗ is a singleton, the problem becomes
argmaxσ2,σ3

{∑(q2,q3)∈ξ(σ2)×ξ(σ3)
U ′
1(q1, q2)}. This

is a joint best-response problem between receivers 2 and
3, which is known to be NP-hard (von Stengel and Forges
2008). This concludes our proof.

The last result is worth some further remarks. Since the
separation problem ofDB is NP-hard, this implies, as a con-
sequence of the equivalence between optimization and sepa-
ration (see Theorem 3.1 of (Grötschel, Lovász, and Schrijver
1981)) that DB is NP-hard for at least one linear objective
function. Theorem 7 shows that one such objective function
is precisely the one obtained from the RHS of B .

Discussion

We have studied persuasion in the multi-receiver setting with
private signals, introducing, for the first time, a model en-
compassing receivers with sequential interactions, as well
as the notion of ex ante persuasiveness. In contrast with pre-
vious complexity results on computing optimal CCEs and
optimal ex interim persuasive schemes, we show that with
|R| ≤ 2 an optimal ex ante scheme can be computed in
polynomial time with the ellipsoid method by relying on a
polynomial-time separation oracle. This result is rather sur-
prising since a very similar problem (the computation of a
CCE with two players and Nature) is known to be hard. We
also show that |R| = 2 constitutes the border between easy
and hard cases as, even for |R| = 3, the problem is NP-hard.

In the future, we are interested both in combining
other forms of correlations with Bayesian persuasion, e.g.,
extensive-form correlations, and in investigating forms of
perfection in sequential information-design problems. We
also plan to assess the scalability of the method we proposed
for solving OPT-EA with simplex-based column generation
algorithms which are, in practice, more efficient than the el-
lipsoid method, also employing techniques for solving the
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separation oracle along the lines of (Amaldi, Coniglio, and
Gualandi 2010; 2014; Coniglio and Tieves 2015) to achieve
a faster convergence.
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