
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Adapting Stable Matchings to Evolving Preferences
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Abstract

Adaptivity to changing environments and constraints is key to
success in modern society. We address this by proposing “in-
crementalized versions” of STABLE MARRIAGE and STABLE
ROOMMATES. That is, we try to answer the following question:
for both problems, what is the computational cost of adapting
an existing stable matching after some of the preferences of
the agents have changed. While doing so, we also model the
constraint that the new stable matching shall be not too dif-
ferent from the old one. After formalizing these incremental
versions, we provide a fairly comprehensive picture of the
computational complexity landscape of INCREMENTAL STA-
BLE MARRIAGE and INCREMENTAL STABLE ROOMMATES.
To this end, we exploit the parameters “degree of change” both
in the input (difference between old and new preference pro-
file) and in the output (difference between old and new stable
matching). We obtain both hardness and tractability results, in
particular showing a fixed-parameter tractability result with
respect to the parameter “distance between old and new stable
matching”.

Introduction

Imagine the following scenario. A manager responsible for
a group of 2n workers has to form n two-worker teams
based on the preferences over potential work partners of
each worker. The manager, being interested in a robust solu-
tion, computes a stable matching (indeed, this refers to the
STABLE ROOMMATES problem). However, say every month
the workers may update their preferences about wanted work
partners (the updates may be based on gained experiences,
new information, newly developed personal skills etc.). The
team manager then has to find a new stable matching re-
specting the individually evolved preferences. To this end,
however, the team manager may not want to allow too radical
changes in the composition of the two-worker teams because
this might e.g. overburden administration. Thus, a moderate
change is acceptable, but too radical changes in the team com-
positions should be avoided whenever possible. We address
this scenario by introducing and studying “incremental ver-
sions” of the two most prominent stable matching problems,
namely STABLE MARRIAGE and STABLE ROOMMATES.
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In stable matching scenarios or, in other words, in match-
ing under preferences (Manlove 2013), one is given a set
of agents, each of them having preferences over (some of)
the other agents, and the goal is to match pairs of agents
such that the outcome is stable. Informally speaking, stability
means that there are no two agents that would both prefer to
be matched with each other instead to their current partners
in the matching (or being unmatched). Two classic problems
here are the bipartite case with two equal-sized sets of agents
(referred to as STABLE MARRIAGE) and the general case of
an even number of agents (referred to as STABLE ROOM-
MATES). Motivated by the introductory considerations, we
next define “incremental versions” of both problems; further
formal definitions are presented later.

INCREMENTAL STABLE MARRIAGE (resp. INCREMEN-
TAL STABLE ROOMMATES)
Input: Two disjoint sets U and W of n agents each
(resp. a set V of 2n agents), two preference profiles P1

and P2 for U �W (resp. V ), a stable matching M1 for
profile P1, and a non-negative integer k.
Question: Does U �W (resp. V ) admit a stable match-
ing M2 for profile P2 such that dist(M1,M2) =
|M1ΔM2| ≤ k?

Herein, M1ΔM2 is the symmetric difference between the
two matchings (sets of edges) M1 and M2.

In both definitions there are two main regulating screws.
First, we are given two preference profiles, the old P1 and the
new P2, thereby reflecting the change of preferences. Indeed,
to reflect only moderate changes (“evolution”), we will subse-
quently measure the difference between the two profiles (later
referred to as swap distance), yielding a natural problem-
specific parameter (the smaller it is, the less revolutionary the
changes are). Second, the number k can be interpreted as a
locality parameter—it exposes how close the new matching
has to be to the old one. The smaller we choose k, the more
conservative we are with respect to change in the outcome
(namely the difference between old and new stable matching).
Together, we thus have one parameter to regulate the degree
of change measured in the input preferences and one parame-
ter to regulate the degree of change measured in the output
stable matching solution. Taking up these two parameters,
we provide a thorough parameterized complexity analysis of
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these kinds of stable matching problems with evolving pref-
erences. To this end, we also distinguish between preferences
with and without ties. Roughly speaking, we provide posi-
tive (fixed-parameter) tractability results in the case without
ties and several (parameterized) intractability results for the
case with ties. Before describing our results in more detail,
however, we discuss related work.

Related work. There is previous work on matching-related
problems in the context of dynamic graph algorithms where
vertices and/or edges arrive or depart iteratively over time.
The goal then is to maintain a solution of sufficient quality
by performing necessary updates after every single change.
The main difference to our work is that we study changes be-
tween two preference profiles (not so much in the graph struc-
ture), and the changes can be at a larger scale. For instance,
Bhattacharya et al. (2015) studied the maintenance of near-
popular matchings (a scenario related to stable matchings)
based on a greedy improvement strategy, heavily employing
maximum vertex degree in their analysis. Ghosal, Kunysz,
and Paluch (2017) and Nimbhorkar and Rameshwar (2019)
investigated dynamic rank-maximal and popular matchings,
again within the setting of dynamic graph algorithms and a
focus on update times after each single change in the graph.
Kanade, Leonardos, and Magniez (2016) studied STABLE
MARRIAGE where at each time-step, two random adjacent
agents in some preference list are swapped, and designed
approximation algorithms to maintain a matching with loga-
rithmic number of blocking pairs.

Genc et al. (2017a; 2017b; 2019) studied robustness of
a matching in STABLE MARRIAGE. Herein, the robustness
of a given stable matching is measured by the number of
modifications needed to find an alternative stable matching
if some currently matched agent pairs break up. They de-
fine an (x, y)-supermatch as a stable matching that satisfies
the following: If any x agents break up, then it is possi-
ble to rematch these x agents so that the new matching is
again stable; further, this re-matching must not break up
more than y other pairs. Genc et al. (2019) showed that de-
ciding whether a (1, 1)-supermatch exists is NP-complete.
The main distinguishing features compared to our model
are that, using our two regulating screws mentioned above,
we can model both moderate changes in the preferences
(that is, the input) and moderate differences between the
old and the new stable matching (that is, the output). In-
deed, we perform a parameterized complexity analysis ex-
ploiting these parameters while Genc et al. (2017a; 2017b;
2019) focused on classic complexity results and used heuris-
tics in experimental work. Moreover, we model changing
preferences while they addressed breaking up matched pairs.
Finally, our main contributions are in the STABLE ROOM-
MATES case while they exclusively focused on STABLE MAR-
RIAGE without ties.

Our model of measuring the distance between the input
and sought matching is related to the stable matching prob-
lem with forbidden and forced edges studied by Cseh and
Manlove (2016). Th goal is to find a stable matching which
minimizes the number of forbidden edges plus the number of
non-forced edges. While we do not model forbidden edges,

Cseh and Manlove do not assume changes in agents’ pref-
erences. This makes a difference in terms of parameterized
complexity.

Marx and Schlotter (2010; 2011) studied local search as-
pects for the NP-hard STABLE MARRIAGE with ties. More
specifically, they investigated the parameterized complexity
of a local search variant of STABLE MARRIAGE using param-
eters such as the number of ties. Thus, the main overlap with
our work is in terms of searching for local improvements and
employing parameterized complexity analysis—the studied
computational problems are different from ours as they do
not model changes in the input preferences.

There have been numerous other models and investigations
to enrich the basic stable matching model, including the
use of only partially ordered preferences (Drummond and
Boutilier 2013), “multilayer” stable matchings with several
preference profiles to be obeyed ‘in parallel’ (Aziz et al.
2016; Miyazaki and Okamoto 2017; Chen, Niedermeier, and
Skowron 2018), or studying robust stability in a probabilistic
model (Mai and Vazirani 2018a; 2018b) or from a quantitative
angle (Chen, Skowron, and Sorge 2019).

Finally, let us briefly mention that the motivation for our
incremental scenario for stable matching is related to similar
scenarios in the context of clustering (Charikar et al. 2004;
Luo et al. 2018), coloring (Hartung and Niedermeier 2013),
other dynamic versions of parameterized problems (Abu-
Khzam et al. 2015; Krithika, Sahu, and Tale 2018), and reop-
timization (Böckenhauer et al. 2018; Schieber et al. 2018).

Our contributions. Besides introducing a fresh model of
stable matching computations, we provide results mostly in
terms of parameterized complexity analysis for both INCRE-
MENTAL STABLE MARRIAGE and INCREMENTAL STABLE
ROOMMATES, where we see the main technical contributions
mostly for the latter. In particular, our main algorithmic result
is that INCREMENTAL STABLE ROOMMATES for input in-
stances without ties is fixed-parameter tractable with respect
to the parameter k (distance between the old and the new
matchings). To show this, we heavily use structural results
due to Irving (1994) and Gusfield (1988) and show how to
exploit them for designing a fixed-parameter algorithm.

Most of our results are surveyed in Table 1. Herein, P1⊕P2

denotes the swap distance between two preference profiles
(see the next section for formal definitions). The table indi-
cates that we obtained a fairly complete picture of the com-
putational complexity landscape, e.g., also complementing
W[1]-hardness results with corresponding XP-algorithms.

Finally, we mention in passing that to achieve our results,
throughout the work we also introduce and study some in-
termediate problems (for instance, EDGE-INCREMENTAL
INDEPENDENT SET) which may be of independent interest
and prove useful in other settings.

Due to space constraints, many technical details and proofs
are deferred to the full version (Bredereck et al. 2019).

Definitions and notations

In this section, we review fundamental concepts used in
matchings under preferences.
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ties |P1 ⊕ P2| INCR. ST. MARRIAGE INCR. STABLE ROOMMATES

no any P (Prop. 1) FPT for k := dist(M1,M2), W[1]-h for k′ := |M1 ∩M2| (Thm. 1), (Prop. 5)
yes 1 W[1]-h for k (Thm. 2) W[1]-h for k, even for compl. pref., NP-h even if k′ ≥ 0 (Thm. 4)
yes 2 W[1]-h for k′ (Thm. 3) W[1]-h for k′ (Thm. 3)
yes any XP for k (Prop. 2) XP for k (Prop. 2)

Table 1: Overview of our results. Unless otherwise stated, results are for the general case where preferences could be incomplete.

Preference lists and profiles. Let V = {1, 2, . . . , 2n} be
a set of 2n agents. Each agent i ∈ V has a subset Vi ⊆ V \{i}
of agents which they find acceptable as partners and has a
preference list 	i on Vi (i.e., a transitive and complete binary
relation on Vi). Here, x 	i y means that i weakly prefers x
over y (i.e., x is at least as good as y). We use 
i to denote
the asymmetric part (i.e., x 	i y and ¬(y 	i x)) and ∼i to
denote the symmetric part of 	i (i.e., x 	i y and y 	i x).
If x ∼i y, then we also say that x and y are tied in i’s
preference list and that agent i has ties in its preference list.

For two disjoint subsets of agents X ⊆ V and Y ⊆ V we
write X 	i Y if for each pair of agents x ∈ X and y ∈ Y
we have x 	i y.

A preference profile P for V is a collection (	i)i∈V of
preference lists for each agent i ∈ V . A profile P may have
the following properties:

1. It is complete if for each agent i ∈ V it holds that Vi ∪
{i} = V ; otherwise it is incomplete.

2. The profile P has ties if there is an agent i ∈ V with ties
in its preference list.

To an instance (V,P) we assign an acceptability graph G,
which has V as its vertex set and two agents are connected
by an edge if each finds the other acceptable. Without loss of
generality, G does not contain isolated vertices, meaning that
each agent has at least one agent which it finds acceptable.

Swaps and differences between two matchings. Given
two preference lists 	 and 	′, the swap distance between
	 and 	′ is defined as the number of pairs that are “or-
dered” differently; if 	 and 	′ are defined on different sets,
then we assume that their swap distance is infinite. Formally,
δ(	,	′) := ∞ if 	 and 	′ are defined on different sets, oth-
erwise, δ(	,	′) := |{(x, y) | x 
 y ∧ y 	′ x}|+ |{(x, y) |
x ∼ y ∧ (x, y) /∈∼′}|. For example, δ(x ∼ y ∼ z, z 

{x, y}) = 2.

Let P1 and P2 be two preference profiles for the same
set V of agents. The swap distance between P1 and P2,
denoted as |P1 ⊕ P2|, is defined as the sum of the swap
distances between the preference lists of each agent in the
two preference profiles. Formally, let 	j

i be the preference
list of an agent i ∈ V in the profile Pj for j = 1, 2. We have
that |P1 ⊕ P2| =

∑
i∈V δ(	1

i ,	2
i ).

Given a set V of agents, a matching M of V is a set of
pairwisely disjoint pairs of agents in V . Given two match-
ings M1 and M2 for the same set V with 2n agents, we define
the distance between M1 and M2 as the size of the symmet-
ric difference of M1 and M2, formally: dist(M1,M2) :=
|M1ΔM2| = |M1 \M2|+ |M2 \M1|.

Blocking pairs and stable matchings. Let a preference
profile P for a set V of agents, the corresponding accept-
ability graph G, and a matching M ⊆ E(G) be given. For
a pair {x, y} of agents, if {x, y} ∈ M , then we denote the
corresponding partner y by M(x); otherwise we call this pair
unmatched. We write M(x) = ⊥ if agent x has no partner,
i.e., if the agent x is not involved in any pair in M . We use
⊥(M) to denote the set of unmatched agents in a match-
ing M , that is, ⊥(M) = {x | M(x) = ⊥}. If no agent x has
M(x) = ⊥ (i.e., ⊥(M) = ∅), then M is called perfect.

An unmatched pair {x, y} ∈ E(G) \ M is blocking M
if both x and y prefer each other to being unmatched or to
their assigned partners, i.e., it holds that

(
M(x) = ⊥∨ y 
x

M(x)
)
∧
(
M(y) = ⊥∨x 
y M(y)

)
. We call a matching M

stable1 if no unmatched pair is blocking M .

Algorithms

To start with, we note that our most restricted problem vari-
ant, INCREMENTAL STABLE MARRIAGE without ties, can be
solved in polynomial time. The main idea behind this result is
based on the fact that there exists a compact and polynomial-
time computable representation of all stable matchings, the
so-called partially ordered set of polynomially many rota-
tions (Gusfield and Irving 1989, Chapter 2). Equipping these
rotations with some appropriate weights, we can reduce our
problem to finding a closed subset of rotations with maxi-
mum weight, which can be solved in polynomial time using
an approach similar to a known one (Gusfield and Irving
1989, Chapter 3.6.1). We refer to the full version (Bredereck
et al. 2019) for more details.

Proposition 1. INCREMENTAL STABLE MARRIAGE without
ties can be solved in O(n3) time.

Second we show that our least restricted NP-hard problem
variant, INCREMENTAL STABLE ROOMMATES with ties al-
lowed, can at least be solved in polynomial time when the
distance between the matchings M1 and M2 is a constant. In
other words, Proposition 2 presents an XP-algorithm for the
distance as a parameter.

Proposition 2. INCREMENTAL STABLE ROOMMATES with
ties can be solved in nO(k) time, where k = |M1ΔM2|.

Proof. Let n̂ = |M1|. The algorithm first guesses positive
integers k1, k2 with k1 + k2 ≤ k which we further treat as

1We exclusively focus on the (most common) weak stability
concept (Manlove 2013). We conjecture that several results will also
hold at least for strong stability. The proofs, however, may need
non-trivial adjustments.
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follows. We denote by k1 the number of matching edges
leaving M1 (that is, |M1 \ M2|) and by k2 the number of
new edges (that is, |M2 \ M1|). Now, for each such pair
(k1, k2) we first guess k1 edges to delete from M1. Notice
that there are O(n̂k1) = O(nk) possible guesses. Let M̂1 be
the rest of the matching M1 (after we delete the just guessed
edges). Then we guess k2 pairs of vertices not matched
in M̂1. This completely defines the matching M2 which can
be checked in polynomial-time for stability. Notice that there
are

(
2n−2n̂+2k1

2k2

)
· (2k2)!
2·k2!

= O(2k2k ·(2n)2k) possible guesses.
Repeating the above procedure for every pair (k1, k2) and ap-
plying the obvious bound k ≤ n, we get the overall running
time nO(k) as claimed.

We remark that Proposition 2 can also be shown by using
an idea of Cseh and Manlove (2016, Theorem 4.14). Our
approach, however, is much simpler. The most pressing ques-
tion following from Proposition 2 is to ask for which cases
this result can be improved to a fixed-parameter tractability
result for the parameter k, the distance between M1 and M2.
Unfortunately, we will show in the next section that this is
not possible when ties are involved. In the remainder of this
section, however, we show that this is possible when ties are
not allowed. Formally, we show the following.

Theorem 1. INCREMENTAL STABLE ROOMMATES without
ties can be solved in O(2kn4) time.

The algorithm behind Theorem 1 is partially inspired
by the polynomial-time algorithm for solving MAXIMUM
WEIGHT STABLE MARRIAGE (Gusfield and Irving 1989,
Chapter 2.5.1). The high-level structure of our algorithm is
as follows:

1. Using the algorithm of Irving (1985) and based on the
structural insights of Gusfield (1988) that the set of all
stable matchings can be compactly and efficiently repre-
sented via the so-called partially ordered set (poset) of
polynomially many rotations, we compute the poset of
rotations for the new preference profile P2.
Roughly speaking, a rotation (relative to a preference
profile) involves a specific cyclic sequence ρ of agents
where the first acceptable partner in the preference list of
each agent x in ρ is exactly the second acceptable partner
in the preference list of x’s predecessor in ρ. We remark
that for a rotation removing the first acceptable partner
of each agent in ρ will not alter the existence of a stable
matching.

2. To capture the (different) costs of eliminating one rotation
from each dual pair (see Definition 3) with respect to the
resulting distance between the matchings M1 and M2, we
compute two weights for each rotation.

3. Finally, to consistently choose one rotation from each dual
pair, and additionally respecting the weight constraints,
we reduce our problem to an auxiliary graph problem
defined below and provide a fixed-parameter algorithm
for this auxiliary problem.

Each high-level step of the algorithm will be described in one
of the subsequent subsections.

To define our auxiliary problem (which indeed may be of
independent interest), for each partially ordered set (R,�),
we say that a given subset C ⊆ R is closed with respect to the
relation � if for each pair {ρ, σ} ⊆ R of elements it holds
that ρ ∈ C and σ � ρ imply σ ∈ C.

WEIGHTED CONFLICT-FREE CLOSED SUBSET
(WCS)
Input: A partially ordered set (R,�), an undirected
graph G = (R,E), a weight function w : R → N, a
positive integer �, and a budget b ∈ N.
Question: Is there a closed subset C ⊆ R of size �
which is independent in G such that

∑
c∈C w(c) ≤ b?

Here, the conflicts are modeled by the edges so that the graph
is also referred to as a conflict graph and seeking for an
independent set solution means seeking for a conflict-free set.

Preprocessing and identification of the rotations

We first recall Irving’s polynomial-time algorithm (Irving
1985) for determining whether an instance of STABLE ROOM-
MATES without ties has a stable matching and fundamental
structural properties behind all stable matchings (Gusfield
1988). Irving’s algorithm is divided into two phases: Phase 1
and Phase 2. Phase 1 involves a sequence of proposals from
each agent i to the first agent j on i’s list, and each such pro-
posal resulting in the deletion of all successors of i from j’s
list. Phase 1 does not alter any stable matching since in this
phase j is removed from i’s preference list (and i is removed
from j’s preference list) only when {i, j} does not form a
pair in any stable matching. The set of lists at the end of the
first phase is called Phase 1 table.

There are three possibilities for the Phase 1 table; note that
the Phase 1 table is unique.

Every list in the table is empty. Then, there is no stable
matching; Irving’s original algorithm assumes that the
input preferences are complete, implying that whenever a
list becomes empty, then there is no stable matching; for in-
complete preferences we can only infer the non-existence
of stable matchings if every list becomes empty.

Every non-empty list contains exactly one agent. Then,
we find a unique stable matching.

At least one list contains more than one agent. Then, we
proceed to Phase 2.

For agents with empty preference lists in the Phase 1 table,
we use the following.

Proposition 3 ((Gusfield and Irving 1989, Theorem 4.5.2)).
For each agent, if its preference list becomes empty after
Phase 1, then it will not be matched by any stable matching;
otherwise it must be matched by all stable matchings.

Since in the first two cases the instance of INCREMENTAL
STABLE ROOMMATES is trivial to solve, we assume the third
case in the following and we can ignore every agent whose
list becomes empty after Phase 1. Notice that in the Phase 1
table we always have that if an agent i is ranked first in j’s
preference list, then j is ranked the last in i’s preference list.
This invariant we keep throughout the whole Phase 2.
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We need some definitions for Phase 2. A preference table
is the Phase 1 table or any Phase 2 table (i.e., it is a collection
of preference lists).
Definition 1 (Rotations). A rotation exposed in
a preference table T is an ordered sequence
(e0, h0), (e1, h1), . . . , (er−1, hr−1) of pairs of agents
such that hi and hi+1 mod r are the first and the second
agent on ei’s list in T , for all 0 ≤ i ≤ r − 1.

Note that if (e, h) is a pair in a rotation, then e is ranked
last by h with respect to T .
Definition 2. The elimination of an exposed rota-
tion (e0, h0), (e1, h1), . . . , (er−1, hr−1) from table T is the
following operation. For every 0 ≤ i ≤ r − 1, remove ev-
ery entry below ei in hi+1’s list in T , i.e., move the bottom
of hi+1’s list up to ei (from ei+1). Then for each agent p who
was just removed from hi+1’s preference list, remove hi+1

from p’s list.

In Phase 2, exposed rotations are eliminated from the pref-
erence table one by one until some list becomes empty, which
means that there is no stable matching, or no rotation is ex-
posed in the table, which means that the list of every agent
contains exactly one agent and we get a stable matching.
Proposition 4 ((Irving 1994, Corollary 3.2)). If some agent
obtains an empty preference list in Phase 2, then there is no
stable matching.

There are two types of rotations, which can be used to char-
acterize all stable matchings. Let D denote the execution tree
when Phase 2 is executed in all possible ways on the Phase 1
table. Note that each node x in D represents a table T (x),
which is the current table state of the algorithm at node x.
Let R be the set of all rotations which are exposed in some
table of some node in D.
Definition 3 (Dual and singleton rotations). If ρ ∈ R
with ρ = ((e0, h0), (e1, h1), . . . , (er−1, hr−1)),
then the negation of ρ is defined as ¬ρ =
((h0, er−1), (h1, e0), . . . , (hr−1, er−2)).

If ¬ρ ∈ R, then we call ρ and ¬ρ a dual pair of rotations.
Any rotation without a dual is called a singleton rotation.

Definition 4. A subset C ⊆ R of rotations is complete if it
contains

(i) all singleton rotations and
(ii) exactly one rotation from each dual pair of rotation.

A binary relation � on R is defined as follows. For each
pair {ρ1, ρ2} of rotations, if the elimination of ρ1 is necessary
for ρ2 to be exposed (i.e., the elimination of ρ1 precedes the
exposition of ρ2 on every path in D), then we say that ρ1
precedes ρ2, written as ρ1 � ρ2. The partial order � is the
reflexive closure of the precedence relation �.

Note that the rotation poset (R,�) is an O(n2)-sized
representation of all stable matchings. It follows from Gus-
field (1988) that one can compute R in O(n3 · log(n)) time.

It follows that in order to solve our problem, it suffices to
search for a complete and closed subset of rotations for the
second input profile P2 such that the corresponding stable
matching is closest to M1.

Proposal sets and rotation weights

In this section, we study the influence of a rotation elimina-
tion on the distance between the ultimate resulting matching
and the initial matching. In order to do so, we first define
proposal sets for preference tables and weights of rotations.
Here, the weight of a rotation shall capture how many pairs
of the initial matching we can additionally obtain if we elimi-
nate this rotation. Then we study the properties of the thus
introduced rotation weights.

Imagine that in a preference table, every agent proposes to
the first agent in their current preference list. Then, we get
a set of ordered pairs, where the agent indicated by the first
component of each pair proposes to the agent indicated by
the second component in the pair.
Definition 5 (Proposal sets). For each preference table T ,
the proposal set for T is defined as ST := {(i, j) | i ∈
U and j is the first agent on i’s list in T } , where (i, j) rep-
resents a proposal pair i → j.

For each matching M , the proposal set SM for M is de-
fined as SM := {(i, j), (j, i) | {i, j} ∈ M}.

By the definition of proposal sets, for each matching M
we have

dist(M1,M) =|M1ΔM |
=|M1|+ |M | − 2|M1 ∩M |
=|M1|+ |M | − |SM1

∩ SM | .
(1)

Hence, we are looking for a matching M2 which is stable
with respect to profile P2 such that

|SM1 ∩ SM2 | ≥ |M1|+ |M2| − k. (2)

Since every complete and closed rotation subset contains
all singleton rotations and since all singleton rotations can
be eliminated from the Phase 1 table before all dual rota-
tions (Gusfield 1988), we can first eliminate all singleton
rotations. By Proposition 4, if after eliminating all singleton
rotations, some agent obtains an empty preference list, then
we can immediately conclude that the given profile does not
admit any stable matching. Thus, in the following, we mainly
work with R2 ⊆ R which is the set of all dual rotations.

To measure the benefit of eliminating a rotation, we define
the following.
Definition 6. For each rotation ρ ∈ R with ρ =
(e0, h0), (e1, h1), . . . , (er−1, hr−1), the set of proposal pairs
gained (lost) by eliminating rotation ρ is defined as follows.

S+ρ := {(e0, h1), (e1, h2), . . . , (er−1, h0)},
S−ρ := {(e0, h0), (e1, h1), . . . , (er−1, hr−1)} .

Further, let w+(ρ) := |S+ρ ∩ SM1
| and w−(ρ) := |S−ρ ∩

SM1 | be the number of proposal pairs gained and lost by the
elimination of rotation ρ.

Observe that the two sets S+ρ and S−ρ are independent
of the table T and all of the proposal pairs of agents not
involved in the rotation ρ remain the same before and after
the elimination of ρ.

Next, we prove that the weights of a dual pair of rotations
are complementary.
Lemma 1. Let ρ ∈ R2, then w+(ρ) = w−(¬ρ).
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Reduction to WCS

In this subsection we give a reduction from INCREMEN-
TAL STABLE ROOMMATES to WEIGHTED CONFLICT-FREE
CLOSED SUBSET in which the conflict graph is is a union of
disjoint edges. In order to do so, we show that the distance
between the target (i.e., initial) matching M1 and a match-
ing MC resulting from the elimination of a complete and
closed set C of rotations for P2 (if such set exists) depends
only on

∑
ρ∈C w−(ρ).

In the remainder of the section, let S0 be the proposal set
for the table obtained from the Phase 1 table for P2 followed
by elimination of all singleton rotations to it.

Before we continue with the procedure, we compare the
sizes of MC and M1; recall that MC is a matching resulting
from eliminating a complete and closed set C ⊆ R. By Propo-
sition 3, every agent that has non-empty list after Phase 1
must be matched under MC and these agents are exactly
those agents who hold some proposals in S0. Consequently,
for each agent x that is matched under M1 but does not hold
a proposal under S0 it holds that {x,M1(x)} ∈ M1ΔMC .
Thus, we define the following data reduction rule.
Reduction Rule 1. For each agent x matched under M1, if for
each agent y it holds that (x, y) /∈ S0, then delete {x,M1(x)}
from M1 and decrease k by one.

Lemma 2. Reduction Rule 1 is sound and can be executed
in O(n2) time. Moreover, if Reduction Rule 1 does not apply,
then for each stable matching M of profile P2 it holds that
|M1| ≤ |M | = |S0|/2.

Next, we upper-bound the sum of weights of a complete
and closed subset C which can result in a desired matching
(i.e., dist(M1,MC) ≤ k).

Lemma 3. Let C be a complete and closed subset of rota-
tions in R2 and let MC be the stable matching associated
with C. Then, the following holds.

(i) |SM1
∩ SMC

| = |SM1
∩ S0| +

∑
σ∈R2

w+(σ) −
2 ·

∑
ρ∈C w−(ρ).

(ii) dist(M1,MC) ≤ k if and only if
∑

ρ∈C w−(ρ) ≤
(|SM1

∩ S0|+
∑

σ∈R2
w+(σ)− |M1| − |MC |+ k)/2.

(iii) |SM1 ∩ S0|+
∑

σ∈R2
w+(σ)− |M1| − |MC | ≤ 0.

This allows us to reduce the given instance (in polynomial
time) to an instance of WCS as follows (also see Example 1).

Construction 1. Finally, we arrive at the following instance
of WEIGHTED CONFLICT-FREE CLOSED SUBSET:

(i) Apply Reduction Rule 1 in O(n2) time, and compute in
O(n3 · log n) time the rotation poset (R,�) for P2.

(ii) Compute S0 for the profile P2.
(iii) Let G be a graph on R2 in which two elements of R2

are adjacent if they form a dual pair of rotations (con-
sequently, G is a union of � = |R2|/2 disjoint edges).

(iv) The weight function w is defined as w−.
(v) The budget b on the sum of weights is b := (|SM1

∩
S0|+

∑
σ∈R2

w+(σ)− |M1| − |S0|/2 + k)/2.

ρ2ρ4

ρ5ρ6

� :

ρ2ρ4

ρ5ρ6

G :

1

0

0

0

Figure 1: Left: A diagram for the partial order � on R2. Right:
The constructed graph G with weights next to the vertices.

Note that b is derived from Lemma 3(ii) such that we
are searching for a complete and closed subset C of rota-
tions whose sum of weights is upper-bounded by b. To see
this, since|SM | = |S0|/2 (Lemma 2), the budget b is in fact
equal to (|SM1

∩S0|+
∑

σ∈R2
w+(σ)−|M1|− |M |+k)/2,

where M is an arbitrary stable matching for P2. Thus, by
Lemma 3(ii), the budget b is at most k/2. Note also that the
sum of the weights w−(ρ) is upper-bounded by n and thus
the reduction presented above is a polynomial (many-to-one)
reduction.

Example 1. Let M1 = {{1, 7}, {2, 3}, {4, 6}, {5, 8}}
and k = 4. The profile P2 is from Gusfield (1988). The full
analysis can be found in the full version of this paper (Bred-
ereck et al. 2019). We start with the Phase 2 table where all
singleton rotations (ρ1 and ρ3) are eliminated.

1 6 5 4
2 3
3 2
4 1 7

5 7 1 8
6 8 4 5 1
7 4 5
8 5 6

Now the set of all dual rotations is R2 = {ρ2, ρ4, ρ5, ρ6},
where ρ2 = ¬ρ6 and ρ4 = ¬ρ5. The partial order �
on R2 and the constructed instance ((R = R2,�), G =
(R2, E), w, � = 2, b) of WCS are shown in Figure 1. The
edge set E consists of two edges {ρ2, ρ6} and {ρ4, ρ5} since
they are dual pairs of rotations. We take ρ4 = ((1, 6), (8, 5))
as an example to show how to define the weight func-
tion w. Since S−ρ4

= {(1, 6), (8, 5)}, we have w(ρ4) =

w−(ρ4) = |S−ρ4
∩ SM1

| = |{(8, 5)}| = 1. Similarly, we
get w(ρ2) = w(ρ5) = w(ρ6) = 0. The budget b =
(3 + 1 − 4 − 4 + 4)/2 = 0. The task is to find a closed
subset C ⊆ R2 of size � = 2 which is independent in G such
that

∑
c∈C w(c) ≤ 0. It is easy to see that C = {ρ2, ρ5} is

the only solution. By eliminating ρ2 and ρ5, we get match-
ing M{ρ1,ρ2,ρ3,ρ5} = {{1, 6}, {2, 3}, {7, 4}, {8, 5}}. It is
easy to check that dist(M1,M{ρ1,ρ2,ρ3,ρ5}) = 4 = k.

Solving WCS when the conflict graph consists of � dis-
joint cliques. Now, to prove Theorem 1, we only need to
show the following; recall that the budget b, as defined in the
construction, is at most k/2.

Lemma 4. For graphs G with exactly � cliques, WCS can
be solved in O((Δ(G) + 1))b · |R|2) time.

We finally prove our main theorem.

Proof of Theorem 1 . By Construction 1, in polynomial time,
we construct an instance for WCS, where the budget b is
upper-bounded by k/2 and the conflict graph consists of
|R2|/2 edges. Note that by Corollary 5.1 of Gusfield (1988)
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we have that |R2| = O(n2). By Lemma 4, we can solve this
instance and thus our problem in O(2k · n4) time.

Hard Cases

Throughout this section, we are using the following non-
standard “incremental” (resp. “decremental”) variants of the
INDEPENDENT SET (resp. CLIQUE) problem to show param-
eterized intractability.

Our first problem asks for an independent set of size h for
some graph in the case when an independent set of size h for
the graph minus an edge is already known.

Our second problem asks for a size-h clique with pendant
edges for some graph in the case when a size-h clique with
pendant edges for the graph with an additional edge is known.
A clique with pendant edges for a graph G is a subset V ′ ⊂
V (G) of vertices such that V ′ forms a clique in G (each two
vertices in V ′ are adjacent) and each vertex in V ′ has at least
one neighbor outside V ′. The size of a clique with pendant
edges is defined as the number of vertices in the clique.

Lemma 5. EDGE-INCREMENTAL INDEPENDENT SET and
EDGE-DECREMENTAL CLIQUE WITH PENDANT EDGES
are NP-hard and W[1]-hard with respect to h.

INCREMENTAL STABLE ROOMMATES without ties

To show that INCREMENTAL STABLE ROOMMATES without
ties is NP-hard, we identify a relation of it to an egalitar-
ian variant of stable matching where the egalitarian cost is
minimized. Here, the egalitarian cost of a matching M is
defined as the sum of the ranks of the agents with respect
to their partners, and the rank of an agent x with respect to
its partner M(y) is equal to the number agents that x prefer
over y. Feder (1992) showed that finding a stable match-
ing with minimum egalitarian cost is NP-hard for STABLE
ROOMMATES, even for complete preferences without ties
(see Chen et al. (2018) for fixed-parameter tractability results
on this problem).

The original hardness proof by Feder (1992) is to reduce
from VERTEX COVER, which, given an undirected graph G
and an integer h′ ∈ N, asks whether G admits a vertex cover
of size h′, i.e., a size-h′ vertex subset of V ′ ⊆ V (G) such that
each edge in E(G) is incident to at least one vertex from V ′.
The basic idea behind the reduction is that putting a vertex
to the solution set is equivalent to increasing the egalitarian
cost by one. This correspondence can also be achieved in
INCREMENTAL STABLE ROOMMATES by choosing an initial
matching M1 which is associated to an empty vertex set, thus
finding a stable matching M2 closest to M1 is equivalent to
finding a vertex cover of minimum size. Note that VERTEX
COVER and INDEPENDENT SET are dual to each other, i.e.,
a vertex subset V ′ is a vertex cover of size h′ if and only if
V (G) \ V ′ is an independent set of size |V (G)| − h′. Due to
this and since INDEPENDENT SET is W[1]-hard with respect
to |V |−h′, we will directly reduce from INDEPENDENT SET,
also showing parameterized intractability for our problem.

Proposition 5. INCREMENTAL STABLE ROOMMATES with-
out ties is NP-hard and W[1]-hard with respect to k′ =
|M1 ∩M2|.

INCREMENTAL STABLE MARRIAGE with ties

We show that INCREMENTAL STABLE MARRIAGE becomes
intractable when ties are allowed even if the two preference
profiles P1 and P2 are almost identical. The following re-
sult is achieved by a parameterized reduction from EDGE-
DECREMENTAL CLIQUE WITH PENDANT EDGES.

Theorem 2. INCREMENTAL STABLE MARRIAGE with ties
is W[1]-hard with respect to k, even if |P1 ⊕ P2| = 1.

In the following, we show that with respect to the num-
ber of common pairs between the target stable matching and
the initial stable matching the problem is parameterized in-
tractable, even if the two input profiles differ by only two
swaps. The corresponding parameterized reduction is from
INDEPENDENT SET.

Theorem 3. INCREMENTAL STABLE MARRIAGE with ties
is W[1]-hard with respect to k′ = |M1 ∩ M2| of common
pairs, even if |P1 ⊕ P2| = 2.

Finally, we show that even a single swap in the preference
list of one single agent makes the INCREMENTAL STABLE
ROOMMATES problem W[1]-hard with respect to k when ties
are allowed. To show this result, we give a reduction from
EDGE-INCREMENTAL INDEPENDENT SET. The construc-
tion idea is inspired by a reduction from VERTEX COVER
to STABLE ROOMMATES with structured preferences (Bred-
ereck et al. 2017), which, however, is relying on incomplete
preferences and not showing parameterized intractability.

Theorem 4. INCREMENTAL STABLE ROOMMATES with ties
and complete preferences is W[1]-hard with respect to k =
|M1ΔM2|, even if |P1 ⊕ P2| = 1. It remains NP-hard even
if |P1 ⊕ P2| = 1, and the sought stable matching M2 only
needs to satisfy that |M1 ∩M2| ≥ 0.

Conclusion

Motivated by dynamically changing preferences and the ne-
cessity to adapt the corresponding solutions, we introduced
an “incremental view” on the computation of stable match-
ings. We believe that there are plenty of opportunities for
future research, including, for instance, to study the role of
parameters measuring the number of ties—in many hardness
reductions this parameter is unbounded. We also left open
whether INCREMENTAL STABLE ROOMMATES without ties
is fixed-parameter tractable when parameterized by the swap
distance between the two input preference profiles. Naturally,
there are also future directions concerning more conceptual
work, e.g., also studying further stability concepts in the
context of our incremental model.
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