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Abstract

We consider the facility location problem in the one-
dimensional setting where each facility can serve a limited
number of agents from the algorithmic and mechanism design
perspectives. From the algorithmic perspective, we prove that
the corresponding optimization problem, where the goal is to
locate facilities to minimize either the total cost to all agents
or the maximum cost of any agent is NP-hard. However, we
show that the problem is fixed-parameter tractable, and the
optimal solution can be computed in polynomial time when-
ever the number of facilities is bounded, or when all facilities
have identical capacities. We then consider the problem from
a mechanism design perspective where the agents are strate-
gic and need not reveal their true locations. We show that sev-
eral natural mechanisms studied in the uncapacitated setting
either lose strategyproofness or a bound on the solution qual-
ity for the total or maximum cost objective. We then propose
new mechanisms that are strategyproof and achieve approxi-
mation guarantees that almost match the lower bounds.

1 Introduction

In this paper, we study the facility location problem with
capacity constraints (FLP-CC) from the algorithmic and
mechanism design perspectives. In this version of the facility
location problem, we have a set of agents and a set of facil-
ities, where each agent is located somewhere on a line, and
each facility has a capacity limiting the number of agents it
can serve. From the algorithmic perspective, the locations of
the agents are publicly known, and we are interested in the
question of how to best locate the facilities to minimize the
total travel distance/cost or the maximum cost of the agents
to the located facilities. On the other hand, in our mecha-
nism design setting, the locations of the agents are privately
known to the agents themselves, and our goal is to design
mechanisms that elicit the true locations of the agents and
locate the facilities to minimize the total or maximum cost
of the agents subject to the agents’ reported locations.

Our FLP-CC models many real-world problems. The
problems include locating schools, hospitals, warehouses,
and libraries, all of which actually face capacity constraints.
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In the one-dimensional setting, our models could be used
to describe the setting of locating wastewater plants along
a river or distribution centres along a highway. There are
also various non-geographical settings that can be viewed
as one-dimensional facility location problems (e.g. choosing
the temperature for a classroom, or selecting a committee to
represent people with different political views). In addition,
there are settings where we can use the one-dimensional
problem to solve more complex problems (e.g. decompos-
ing the 2-d rectilinear problem into a pair of 1-d problems).
The one-dimensional problem is also the starting point to
consider more complex metrics (e.g., trees and networks).

In FLP-CC, we have n agents located on the real line, and
we need to locate m facilities on the line to serve all the
agents1. The ith facility can serve up to ci agents. We as-
sume that n ≤ ∑m

i=1 ci so that every agent can be served.
Each agent i is at location xi, and we suppose that the agents
are ordered so that x1 ≤ . . . ≤ xn. Given an agent j, let
aj ∈ {1, . . . ,m} denote the facility that agent j is assigned
and let Ni denote the set of agents assigned to facility i, i.e.,
Ni := {j | aj = i}. A solution is a location yi for each
facility i, and an assignment of agents to facilities such that
the capacity constraint ci of each facility is not exceeded,
i.e., |Ni| ≤ ci for all i ∈ {1, . . . ,m}. Accordingly, a solu-
tion is denoted by {(yj , Nj)}mj=1. We consider a utilitarian
measure: the total cost,

∑n
j=1 |xj − yaj

|; and an egalitarian
measure: the maximum cost, maxj∈{1,...,n}|xj − yaj

|. Our
goal is to locate facilities on the line and assign agents to
these facilities to minimize the total or maximum cost.
Contribution. Our main contributions are as follows.
Firstly, for FLP-CC, we provide algorithmic results identify-
ing the complexity of the corresponding optimization prob-
lem (NP-hard) but also provide tractability results, via dy-
namic programs (DPs), for various restricted settings. Sec-
ondly, we explore the mechanism design challenges intro-
duced by this new setting. We show that many mechanisms
which are considered desirable in uncapitated FLPs become
undesirable (with respect to strategyproofness and/or ap-
proximation ratio bounds) in FLP-CC. We introduce the in-

1Our problem naturally generalizes to higher dimensions as
well as to non-Euclidean distance metrics.
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nerpoint mechanism which performs relatively well in spe-
cial cases, and characterize this mechanism as the only such
strategyproof mechanism within a larger class of mecha-
nisms, which we call rank mechanisms. Finally, we intro-
duce a new strategyproof mechanism, extended endpoint
mechanism (EEM), which achieves approximation guaran-
tees that almost match the lower bounds. We summarize
our contributions in Table 1. We leave open the question of

Table 1: Algorithmic & Mechanism Approximation Results
Algorithmic Results Total Cost Max. Cost

NP-hard Exact Exact
DP O(2mmn2) Exact Exact

SP Mechanisms∗ Total Cost Max. Cost

Median Unbounded Unbounded
Endpoint Unbounded Unbounded

Innerpoint1 n/2− 1 2
EMM2 3n/2 4

SP = Strategyproof, *two facilities, 1when c1 = c2 = n/2,
2when c1 + c2 ≥ n

upper bounds for three facilities which has remained open
since the seminal work (Procaccia and Tennenholtz 2009;
2013), even when all facilities have infinite capacities.

1.1 Background

Algorithmic Perspective. The classic FLP with a single un-
capacitated facility can be solved optimally in polynomial
time when the objective is to minimize the total or maxi-
mum cost (e.g., Procaccia and Tennenholtz (2013)). Simi-
larly, when extending to the setting with multiple uncapaci-
tated facilities, the optimization problem remains tractable
admitting a polynomial time solution for either objective
function (Megiddo et al. 1981; Megiddo, Zemel, and Hakimi
1983). If there are multiple facilities with identical capac-
ity constraints, the problem is tractable if the objective is to
minimize the total cost but becomes intractable (NP-hard)
for more general objective functions (Brimberg et al. 2001).
Complementing these results, we show in the present pa-
per that for our setting, i.e., the multiple capacitated FLP
with non-identical capacity constraints, that minimizing ei-
ther objective function is NP-hard. The intractability result
in Brimberg et al. (2001) does not imply intractability in our
setting for our objective functions. Moreover, we provide an
alternate dynamic program to minimize the total cost for the
identical capacity constraint setting studied by Brimberg et
al. (2001). Finally, we note that our setting is different from
the “capacitated k-facility location problem” (see e.g., (Pal,
Tardos, and Wexler 2001; Levi, Shmoys, and Swamy 2012;
Aardal et al. 2015)) where the set of potential facility lo-
cations is countable and bounded while, in ours, the set of
facility locations is infinite (i.e., the real line). Thus, we can-
not use previous results in the literature directly.

Mechanism Design Perspective. The classic FLP fo-
cuses on the setting where a single facility with unlim-
ited capacity, i.e., an uncapacitated facility, must be lo-
cated along a line with the goal of satisfying certain prop-

erties (most importantly strategyproofness) and/or optimiz-
ing some objective function. This setting escapes the fa-
mous impossibility result of Gibbard-Satterhwaite (1973;
1975) and inherits many well-known characterization results
from social choice, such as those from Moulin (1980).

Two extensions of the classic FLP have attracted attention
in the literature: multiple but uncapacitated facilities (see
e.g., Miyagawa (2001), Heo (2013), Fotakis and Tzamos
(2013), and Golowich, Narasimhan, and Parkes (2018)),
and, to a lesser extent, a single capacitated facility. Con-
sidering the mechanism design problem for facilities with
capacity constraints has only recently been considered by
Aziz, Chan, Lee, and Parkes (2019) for a single facility. In
their setting, additional strategic complications arise since
some agents will not be served. The set of agents served by
the facility is determined via an equilibrium outcome aris-
ing from the induced subgame.2 We do not have such an
issue since all our agents can be serviced. Another closely
related work is by Procaccia and Tennenholtz (2013) which
considers the problem of designing strategyproof mecha-
nisms with approximation guarantees on an objective func-
tion (such as total cost and egalitarian welfare) for one or two
facilities without capacity constraints. The works of (Fotakis
and Tzamos 2013; Lu et al. 2010) prove that any determin-
istic strategyproof mechanism has an approximation ratio of
Ω(n) for the total cost. Our EEM mechanism has approxi-
mation guarantees that almost match the lower bound of the
uncapacitated setting.

2 An Algorithmic Perspective

We first show that it is intractable to find a solution that min-
imizes either the total or maximum cost. This result comple-
ments the result in Brimberg et al. (2001, Theorem 2) where
intractability is proven for facilities with identical capacity
constraints and a total cost objective function that can be
non-monotonic in the distance between agents and facilities.
Theorem 1. Computing a solution that minimizes the total
or maximum cost is NP-hard even when there is no spare
capacity in the FLP-CC.

Proof. We show that the problem is NP-hard by reducing
from the 3-partition problem, which is known to be strongly
NP-hard (Garey and Johnson 1979). In a 3-partition prob-
lem, we are given a multiset T = {t1, ..., t3n} of positive
integers of size 3n, and we want to know if T can be parti-
tioned into n subsets T1, T2, ..., Tn, each of size three, such
that the sum of the numbers in each subset is the same. Let
B =

∑
t∈T t

n . In particular, we consider the 3-partition in-
stances in which B and integers are polynomially bounded
in n and B

4 < ti < B
2 for all i such that B is a positive

integer and the integers are at least 1. Take such instance of
3-partition, we reduce it to the decision version of FLP-CC
where we want to place the facilities to achieve the total cost
and maximum cost of 0. We let m = |S| = 3n to be the
number of facilities, and, for each facility sj , j = 1, ..., 3n,
set capacity kj = tj . With a slight abuse of notation, we let

2They show an impossibility result that ‘reasonable’ mecha-
nisms which dictate the agents served can never be strategyproof.
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nB = |N | to be the number of agents such that there are n
groups of B agents which are equally spaced apart and the
agents in the same group are located at a single location.

Suppose that the instance of the 3-partition problems has
a solution. It follows that there are T1, T2, ..., Tn such that
each sum up to B. For each group i of B agents, we place
three facilities of capacities tj ∈ Ti at the location of group
i. Clearly, we achieve the total cost or maximum cost of 0.

Suppose that we have a solution to the constructed prob-
lem. We have a location aj for each facility sj such that the
total cost or maximum cost is 0. In fact, this is the best cost
we can obtain where the agents do not have to travel at all.
Moreover, each facility must be located on the location of
one of the groups and all of the B agents within each group
can use one of the facilities at its location. Since the capac-
ity of facility sj is B

4 < kj = tj < B
2 , each location of the

group has at least three facilities. Also since the total num-
ber of facilities is 3n and there are n groups, the number of
facilities at each group is exactly 3. Finally, the sum of the
capacities of the three facilities is B. Thus, for each group i,
we can construct Ti by take elements with the same values
as capacities of the facilities located at group i.

To conclude, the problem instance above is of polynomial
size bounded by n and we obtain our claimed result.

We observe that the computational complexity of finding
an optimal solution does not come from having to decide
where to distribute any spare capacity. The reduction uses
a FLP-CC instance where the facilities have a total capacity
exactly equal to the number of agents to be served. The com-
putational complexity comes from having to find the best of
the m! possible left to right orderings of these facilities.

As we show next, to minimize the maximum cost (total
cost), we locate each facility in the midpoint (median) of
the continuous region of agents it serves. Thus, for a fixed
number of facilities or facilities of identical capacity, we can
use dynamic programming to compute the optimal (total or
maximum cost) solution in polynomial time.

Order the set of agents N such that x1 ≤ x2 ≤ . . . ≤
xn−1 ≤ xn. We say that a set of agents Nj is continuous if
Nj = {xj1 , xj1+1, . . . , xj2} for some j1 ≤ j2.

Lemma 1. For either objective function (total cost or max-
imum cost), there exists an optimal solution {(yj , Nj)}mj=1
such that each Nj is continuous.

Proof. Suppose that the solution {(yj , Nj)}mj=1 provides
minimal total cost but is such that there exists j for which
Nj is not continuous. That is, the exists some pair of agents
p, s ∈ Nj such that (1) yj ≤ xp < xs, p /∈ Nj and s ∈ Nj ,
or (2) xs < xp ≤ yj , p /∈ Nj and s ∈ Nj . Both cases are
dealt with similarly and so we assume the first case.

Let � : p ∈ N�. For any location of xs, if yj ≤ xp < y�,
then swapping p from N� and s from Nj leads to strictly
lower total cost. On the other hand, if y� ≤ yj , then swap-
ping p from N� and s from Nj leads to no change in total
cost. Repeating this method until each set Nj is continuous
leads to a solution with at least as low total cost. Since the
original solution was optimal, we conclude that there exists
an optimal solution with each Nj continuous.

Now consider the maximum cost objective. A similar ar-
gument applies. The only difference is that in the case where
yj ≤ xp < y� we can only guarantee weakly lower maxi-
mum cost. Nonetheless, the same conclusion is reached —
there exists an optimal maximum cost solution such that
each Nj is continuous.

The above lemma shows that partitions, or sets Nj , must
be continuous but it does not require that facilities be lo-
cated ‘inside’ such a partition. However, it is well-known
that the median of a set of points minimizes the sum of ab-
solute deviations and the midpoint minimizes the maximum
deviation. This leads to the following corollary.

Corollary 1. An optimal solution {(yj , Nj)}mj=1 is given by
by continuous partitions of the agents which correspond to
facilities such that each facility sj locates at the median and
midpoint of its associated partition Nj for total cost and
maximum cost, respectively.

The above results show that to solve FLP-CC for total and
maximum costs, it suffices to look for continuous sets which
match the capacity of each facility and locate the facility at
the median or midpoint of each set.

2.1 Bounded Number of Facilities

Total Cost. We compute the optimal way (for minimizing
the total cost) of locating m facilities and partition agents
into m parts using dynamic program. We will use [j, j′]
to denote the set of agents {j, . . . , j′} for any j ≤ j′.
We use OPT (j, j′, k, S) to represent the optimal total cost
when agents [1, j′] are partitioned into k parts, and j′ ≥ j
are in the k-th partition, and S is the subset of k facil-
ities used to serve agents [1, j′]. We will make use of a
n× n×m× 2m array M , whose entries are initially set to
empty. We will use M [j, j′, k, S] to store OPT (j, j′, k, S).
We use v([j, j′], s) to denote the optimal total cost when
agents [j, j′] are served by facility s (with capacity c). In
order to compute v([j, j′], s) we can simply try to locate s at
each of the agent locations and serve c nearest agents.3

We invoke OPTT (n, n,m, S) (Algorithm 1) to compute
the optimal total cost and recover the solution from the val-
ues stored in M .

Theorem 2. Algorithm 1 computes the optimal total cost
solution in O(2mmn2) time. Hence, it is fixed parameter
tractable in m.

Proof. It is easy to see that the running time of Algo-
rithm 1 is O(2mmn2). We argue for the proof of correct-
ness. The base case is clear. The total cost is zero if there
are no agents or no facilities. Suppose we want to compute
OPT (j, j′, k, S) and we have already computed values for
OPT (h, h′, k̂, Ŝ) where h < j or h′ < j′ or k̂ < k or
Ŝ ⊂ S. We distinguish between two cases depending on
whether j − 1 is covered by the last facility in S.

In the first case, OPT (j, j′, k, S) is equivalent to
OPT (j−1, j′, k, S). In the second case we know that j−1

3The optimal point will be the median of those subset of agents
who are actually served.
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Algorithm 1 OPTT (j, j′, k, S)
1: if j = 0 or k = 0 or S = ∅ then
2: return 0
3: else if M [j, j′, k, S] not empty then
4: return M [j, j′, k, S]
5: else
6: s∗ ← argmins∈S{OPTT (j − 1, j − 1, k − 1, S \
{s}) + v([j, j′], s)}
M [j, j′, k, S]← min{OPTT (j − 1, j′, k, S),

OPTT (j − 1, j − 1, k − 1, S \ {s∗}) + v([j, j′], s∗)}}
7: return M [j, j′, k, S]
8: end if

is not served by the last facility in S but j is. Hence, if j is
served by facility s ∈ S, then OPT (j, j′, k, S′) is equiva-
lent to OPT (j− 1, j− 1, k− 1, S \ {s})+ v([j, j′], s).

Maximum Cost. In a similar way, we use
OPTM (i, i′, j, S′) to represent the optimal maximum
cost when agents [1, i′] are partitioned into j parts, and
i′ ≥ i are in the j-th partition, and S′ is the subset of j
facilities. We use OPTM (i, i′, j, S′) to denote optimal
maximum cost when agents [1, i′] are partitioned into j
parts, and i and i′ ≥ i are in the j-th partition, and S′ is the
subset of j facilities. We will make use of a n×n×m×2m

array E, whose entries are initially set to empty. We will
use E[i, i′, j, S′] to store OPTM (i, i′, j, S′). We use
vM ([i, i′], sj) to denote the optimal maximum cost when
agents [i, i′] are covered by sj (with capacity kj). We invoke
OPTM (n, n,m, S) to compute the optimal maximum cost
and recover the solution from the values stored in E. The
subroutine to solve OPT is summarized as Algorithm 2.

Algorithm 2 OPTM (i, i′, j, S′)
1: if i = 0 or j = 0 or S′ = ∅ then
2: return 0
3: else if E[i, i′, j, S′] not empty then
4: return E[i, i′, j, S′]
5: else
6: E[i, i′, j, S′] ← min(max{OPTM (i −

1, i′, j, S′),mins∈S′{max(OPTM (i − 1, i − 1, j −
1, S \ {s}), vM ([i, i′], s))}})

7: return E[i, i′, j]
8: end if

Theorem 3. Algorithm 2 computes the optimal total cost
solution in O(2mmn2) time. Hence, it is fixed parameter
tractable in m.

Identical capacities When facilities have the same capac-
ity, we can use a different dynamic program to compute an
optimal solution with minimum total cost. We exploit the
property that an optimal solution consists of m continuous
regions served by a facility located at the median agent of

the region. We construct an array C(i, j) which is the opti-
mal total cost supposing the leftmost i agents are served by
the first j facilities. Let c be the capacity of the facilities. We
initialize C(i, j) with ∞. In the first round, we set C(i, 1)
for i in 1 to c with the optimal total cost for the first i agents
served by a single facility. In the jth round, for each k from
j to min(n, jc) and i from 1 to min(c, k − j + 1) we update
C(k, j) with the minimum of C(k, j) and C(k − i, j − 1)
plus the total cost of serving the k − ith to the kth agents
from left by the jth facility. In the final round, the optimal
total cost will be computed at C(n,m). The runtime to up-
date each of the O(nm) entries is O(c2) giving a total cost
of O(nmc2). Note that we can suppose m < n otherwise
the optimal solution will have zero total cost. Similarly, we
can suppose c < n. Hence, the total cost is polynomial in
n. We can construct a similar dynamic program to compute
the optimal maximum cost, exploiting the fact that an opti-
mal solution consists in this case of m continuous regions
served by a facility located at the midpoint between the left-
most and rightmost agents served by the facility. The total
run time, in this case, is O(nmc). These results complement
those in Brimberg et al. (2001) where an alternate dynamic
program with run time O(m3n2) is provided for minimizing
the total cost when facilities have identical capacities.

Theorem 4. There exists an O(nmc2) time algorithm to
compute the optimal total cost and an O(nmc) time algo-
rithm to compute the optimal maximum cost with n agents
when all m facilities have the same capacity c.

3 A Mechanism Design Perspective

In our mechanism design setting, each agent j’s position
xj is her private information and a mechanism M oper-
ates on the reported locations (x′

1, · · · , x′
n) of all agents,

which may be different from their actual locations. Based
on the reported locations, the mechanism M(x′

1, ..., x
′
n)

locates m facilities, y1, ..., ym ∈ R, and allocates dis-
joint sets of agents to each facility while respecting the
capacity constraints (i.e., assign aj ∈ {1, ...,m} for each
agent j where |{j | aj = i}| ≤ ci for each facility
i). The total and maximum costs of a mechanism are de-
fined in the same way. Accordingly, every agent j’s cost is
uj(xj ,M(x′

1, ..., x
′
j , ..., x

′
n)) = |xj − yaj | and they prefer

mechanism outcomes that allocate them to a facility closer
to their true location xj . A mechanism is said to be strat-
egyproof if for every agent j and for any profile of other
agent reports, agent j weakly prefers the mechanism out-
come achieved by reporting her true location x′

j = xj to the
outcome achieved by any other report x′′

j . Our goal in this
section is to find strategyproof mechanisms.

When m = 1 and c1 ≥ n, locating the facility at the me-
dian location is strategyproof and optimal for minimizing
the total cost. As a result, we focus on the case of two facil-
ities. When m = 2 and c1, c2 ≥ n, Procaccia and Tennen-
holtz (2013) first argue that no deterministic strategyproof
mechanism is guaranteed to return the optimal solution for
either the total or the maximum cost.

In general, if we set the capacities of the locations high
enough, we can inherit the lower bounds results from exist-
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ing lower bound results. Particularly, (Lu et al. 2010) proved
that any deterministic strategyproof mechanism has an ap-
proximation ratio for the total cost of at least n

2 −1, which is
further improved to be n−2 by (Fotakis and Tzamos 2013).
Procaccia and Tennenholtz (2013) proved that any determin-
istic strategyproof mechanism has an approximation ratio
for the maximum cost of at least 2. An approximation ratio
of α (w.r.t. some objective function to be minimized) implies
that, across all instances of agent locations, the mechanism
outcome evaluated according to the objective function is no
more than a factor of α larger than the optimal outcome.

3.1 Limitations of Existing Approaches

The first contender is the median mechanism which has
been studied for the case of one facility with unlimited ca-
pacity. We can extend this mechanism to two or even more
facilities with capacity constraints as follows: locate all fa-
cilities at the median agent. The mechanism remains strat-
egyproof. However, we can no longer bound the approx-
imation ratio for either the total or maximum cost. Sup-
pose, for instance, most of the facilities are concentrated
at the end points in the optimal solution. We next explore
the idea of placing facilities at the endpoints with the end-
point mechanism which locates the facilities at the reported
endpoints (Procaccia and Tennenholtz 2009). With two un-
capacitated facilities, the endpoint mechanism has several
nice properties. It is, for instance, strategyproof and returns
a 2-approximation of the maximum cost, which is proved
to be optimal by (Procaccia and Tennenholtz 2009). Unfor-
tunately, it is not hard to verify that, when we add (even
uniform) capacities, the endpoint mechanism is not strate-
gyproof (i.e., agents can strategically exploit capacity limits
to ensure a more favourable outcome). The main difficulty
here is how to allocate the agents to the facilities.

3.2 Mechanisms for Two Facilities with Equal
Capacity for Total and Maximum Costs

We now present another mechanism for two capacitated fa-
cilities. Suppose we have two facilities of capacities c1 and
c2 where n = c1 + c2. If we order agents from left to right,
the innerpoint mechanism places one facility at the c1th
agent from left, serving the leftmost c1 agents, and the other
facility at the c1 + 1th agent from the left, serving the right-
most c2 agents. If c1 	= c2, we suppose as before that the
order of facilities is fixed in advance of the agents reporting.
Theorem 5. When n is even and 2 facilities have equal ca-
pacity n/2, the innerpoint mechanism is strategyproof and
has a bounded approximation ratio of 2 for maximum cost
and a ratio of n

2 − 1 for total cost.

Proof. To show strategyproofness, we consider three cases.
In the first, consider one of the c1 − 1 leftmost agents. The
only way they can change the outcome is if they report a lo-
cation to the right of the c1th agent. But this will give them
a worst outcome. In the second case, consider the c1th agent
from the left. They have zero cost. Reporting any other loca-
tion leaves this the same or worse. In the third case, consider
one of the c2 rightmost agents. This case is analogous to the
first two cases. In all cases, misreporting is not beneficial.

To determine the approximation ratio for the maximum
cost, we rescale the problem so leftmost agent is at 0, and
rightmost agent at 1. This does not affect the approximation
ratio. By assumption, the two facilities have equal capacity
c. Suppose the cth agent from left is at x, and the c + 1th
agent is at 1− y. The maximum cost is then max(x, y). An
optimal location of facilities would put one facility at x

2 , and
the other at 1− y

2 . This has a maximum cost half as much of
max(x2 ,

y
2 ). Hence, the approximation ratio is 2.

To determine the approximation ratio for the total cost, we
again rescale the problem so the leftmost agent is at 0, and
the rightmost agent at 1. Suppose the cth agent from left is
at x, and the c + 1th agent is at x + u. The worst case for
the total cost has c − 1 agents at 0, the cth agent at x, the
c + 1th agent at x + u and the c − 1 remaining agents at 1.
This gives a total cost of (c − 1)x + (c − 1)(1 − x − u).
That is, (c − 1)(1 − u). The optimal solution, in this case,
puts one facility at 0 and the other at 1, giving a total cost of
x + (1 − x − u). That is, 1 − u. Hence, the approximation
ratio for the total cost is at least c− 1 (or n

2 − 1).

Unfortunately, innerpoint no longer has a bounded ap-
proximation ratio for the total or maximum cost when fa-
cilities have spare capacity i.e., c1 + c2 > n. The following
theorem can be proved by constructing a suitable example.

Theorem 6. With 4 agents, and 2 capacitated facilities of
size 3 or larger, the innerpoint mechanism has an unbounded
approximation ratio for the total or maximum cost.

Proof. Suppose two agents are at 0, one at ε and the fourth
agent at 1. The innerpoint mechanism will locate one facility
at 0, serving the two leftmost agents, and the other at ε, serv-
ing the two rightmost agents. The total and maximum costs
are both 1 − ε while the optimal total and maximum costs
for two facilities with capacity 3 or greater are both ε. The
approximation ratio for total or maximum costs is therefore
1−ε
ε which tends to infinity as ε tends to zero.

Inspired by the median, endpoint and innerpoint mecha-
nisms, we introduce a family of mechanisms that general-
ize all three. Given m ≥ 2 facilities and n agents, we let
the capacity of the ith facility be ci and agent j report loca-
tion xj where x1 ≤ . . . ≤ xn. We suppose n =

∑m
i=1 ci.

The rank mechanism has m + 1 parameters, t1 to tm with
t1 ≤ . . . ≤ tm and a permutation π of 1 to m. The mech-
anism locates facility π(i) at xti . Agents are then allocated
to the facilities from left to right (while also respecting each
facility’s capacity constraint). If facilities have identical ca-
pacities, then we can ignore the permutation. We also note
that our rank mechanism is similar to the percentile mech-
anisms introduced in (Sui, Boutilier, and Sandholm 2013),
but the later only works for uncapacitated facilities.

We now provide a simple characterization of those rank
mechanisms which are strategyproof.

Theorem 7. The rank mechanism with parameters t1 to tm
and π is strategyproof if and only if either ti = tj for any i

and j, or there exists 1 ≤ k < m with t1 = tk =
∑k

i=1 cπ(i)
and tk+1 = tm = t1 + 1.
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Proof. (Necessity) There are two cases. In the first case,
ti = tj for any i and j. All facilities are located at the
same location. An agent to the left of this can only mis-
report and move the location of the facilities to the right
which is not in their interest. Similarly, an agent to the right
can only mis-report and move the location of the facilities
to the left which is not in their interest. In the second case,
there exists 1 ≤ k < m with t1 = tk =

∑k
i=1 cπ(i) and

tk+1 = tm = t1+1. We can view this as equivalent to lump-
ing the facilities into two “super” facilities, setting m = 2,
t1 = cπ(1) and t2 = t1+1. This is the innerpoint mechanism
which we have shown previously to be strategyproof.

(Sufficiency). There are again two cases. In the first case,
m > 2. We give a counter-example for strategyproofness for
m = 3. For greater m, we pad the counter-example with ad-
ditional facilities and agents. We give a counter-example for
t1 = t2 = 1 and t3 = 2. Similar counter-examples can be
constructed for other values of ti. We suppose facilities have
capacity 2, and x1 = 0, x2 = 3, x3 = 4, x4 = 5, x5 = 6,
x6 = 7. Agent 2 has an incentive to mis-report their position
as location 7. In the second case, m = 2 and t1 	= cπ(i).
We give a counter-example for t1 = 1 and t2 = 2. Simi-
lar counter-examples can be constructed for other values of
t1 and t2. Suppose the two facilities have capacity 2, and
x1 = 0, x2 = 3, x3 = 4, x4 = 5. Agent 2 has an incentive
to mis-report their location to be position 5.

As an example, consider the quartile mechanism that
places one facility at the first quartile, and the second at the
third quartile. It follows immediately from the last theorem
that the quartile mechanism is not strategyproof.

We now provide a simple necessary condition for the rank
mechanism to have bounded approximation ratio.
Theorem 8. With 2 (or more) facilities with capacity con-
straints, if the rank mechanism has bounded approximation
ratio for the total and maximum cost it must be that t1 ≤ c1
and tm ≥ c1 + 1 (recall that t1 ≤ tm), where c1 is the
capacity of facility π(1).

Proof. Consider an instance where c1 agents located at 0
and the remaining n − c1 =

∑m
j=2 cj agents are located at

1. The optimal total and maximum costs are zero. If either
t1 > c1 or tm < c1 + 1 holds, since tj ≤ tk for all j ≤ k,
all facilities will be located at the same location (either 0 or
1). This necessarily gives non-zero total and maximum costs
and hence unbounded approximation ratios.

Theorem 5, Theorem 7, and Theorem 8 collectively lead
to the following theorem which characterizes the innerpoint
mechanism as the only strategyproof rank mechanism with
bounded approximation ratio (for either total or maximum
cost) when there are two facilities of equal capacities.
Theorem 9. With 2 capacitated facilities of equal capacity,
the only rank mechanism which is both strategyproof and
provides a bounded approximation ratio for both the maxi-
mum and total cost is the innerpoint mechanism, i.e, t1 = c1
and t2 = c1 + 1.

In summary, the mechanisms in this section are either un-
bounded or not strategyproof or only satisfy the desirable

properties if c1 = c2 = n/2. Next we present a new mecha-
nism that is strategyproof and provides bounded approxima-
tions even for two capacitated facilities and the case where
there may be spare capacities.

3.3 Mechanisms for Two Facilities with Arbitrary
Capacities for Total and Maximum Costs

In this section, we present a more general strategyproof
mechanism that almost matches the existing lower bounds
of (Lu et al. 2010) and (Fotakis and Tzamos 2013). Let
x = (xi)i∈N be the location profile such that x1 ≤ · · · ≤ xn

and c1 ≥ c2 ≥ 1 be the capacities such that c1+ c2 ≥ n. Let
f1 and f2 be the output locations of the two facilities.

Extended Endpoint Mechanism (EEM) Let X1 =
{i|xi − x1 ≤ 1

2 (xn − x1)} and X2 = {i|xn − xi <
1
2 (xn − x1)}. If |X1| ≥ |X2|, execute one of the follow-
ing three cases.

Case 1. If |X1| ≤ c1 and |X2| ≤ c2, f1 = x1 and f2 =
xn. Agents in X1 are allocated to f1 and the others are
allocated to f2.

Case 2. If |X1| > c1 and |X2| ≤ c2, f1 = 2xc1+1−xn and
f2 = xn. Agents {1, · · · , c1} are allocated to f1 and the
others are allocated to f2.

Case 3. If |X1| ≤ c1 and |X2| > c2, f1 = x1 and f2 =
2xn−c2 − x1. Agents in {1, · · · , n − c2} are allocated to
f1 and the others are allocated to f2.

If |X1| < |X2|, switch the roles of the two facilities in above
cases and execute one of them.

EEM is essentially an endpoint mechanism, but to restore
strategyproofness, it locates one facility outside of [x1, xn].
Although EEM has slightly poorer performance than the
classical endpoint mechanism, with respect to the lower
bound results, EEM is actually optimal up to a constant.

Theorem 10. EEM is strategyproof.

Proof. Without loss of generality, assume |X1| ≥ |X2| as
the other case is symmetric. Note that fk ≤ x1 and f2−k ≥
xn always hold for some k ∈ {1, 2}.

For Case 1 where |X1| ≤ c1 and |X2| ≤ c2, each agent is
served by the facility located at the nearest endpoint to her,
and the two endpoint agents get the best possible solution.
If any agent except the two endpoint agents deviates and the
resulting locations of the two facilities change, she can only
be worse off as under no situation she could be served by
a facility located in (x1, xn). Thus our mechanism is strate-
gyproof in this case.

Next we consider Case 2 where |X1| > c1 and |X2| ≤ c2.

• For any agent 1 ≤ i ≤ c1, i ∈ X1 and is served by the
facility located at f1 = 2xc1+1 − xn.
Under EEM, any deviation by agent i to x′

i < xc1+1 will
continue to allocate agent i to the left most facility whose
location f ′

1 either remains unchanged at 2xc1+1−xn, or, if
Case 1 occurs, is moved to f ′

1 = x′
i < x1. It is straightfor-

ward to see that neither of these cases is profitable for the
agent, and so we restrict our attention to deviations x′

i ≥
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xc1+1. Let X ′
1 and X ′

2 be the new partitions of the EEM.
If X ′

1, X
′
2 are such that Case 1 or Case 2 holds then agent

i is now allocated to f ′
2 = max{xn, x

′
i}, this is never

a profitable deviation. Finally, we note that Case 3 can
never occur since this would require that |X1| = c1 + 1
and |X2| = c2 which contradicts |X1| + |X2| = n and
c1 + c2 ≥ n. Thus i cannot be better off by deviating.

• Next, we consider agent i ≥ c1 + 1. If she reports some
location on the left of xc1 , then agent c1 will replace the
role of c1 + 1 in the mechanism thus f ′

1 = 2xc1 − xn

and i is connected to f ′
1. However, xi − f ′

1 ≥ xc1 − f ′
1 =

xn−xc1 ≥ xn−xi, thus i does not profit from the misre-
porting their location. Note that i’s deviation cannot cause
the number of agents in X1 to be less than the number of
agents in X2. Otherwise, |X1| = |X2| + 1, then c1 must
be at least as large as |X1| as c1 ≥ c2 and c1 + c2 ≥ n,
Thus Case 1 must happen when i tells the truth. Accord-
ingly, if i reports some location on the right of xc1 , she
is still connected to f2 (or even the right of f2), no mat-
ter which case happens after the deviation. Thus i never
benefits from misreporting.

By a similar argument as for Case 2, EEM is strategyproof
under Case 3.

Theorem 11. For the objective of total cost, EEM has an
approximation ratio of 3n

2 .

Proof. Again, without loss of generality, assume |X1| ≥
|X2|. We first note that the optimal solution has the follow-
ing form: partition of the agents into left successive c1 agents
and right successive c2 successive agents and locate each fa-
cility at the median point of each subset of the agents.

For Case 1, EEM is exactly the same as the classical End-
point Mechanism (Procaccia and Tennenholtz 2009), thus
has an approximation of n− 2.

For Case 2, OPT ≥ xn − xc1+1. This is because in the
optimal solution, all the agents in X1 cannot be served by a
single facility as |X1| > c1 ≥ c2. Thus at least one of the
agents in X1 has to be grouped with xn. Moreover,

ALG ≤ c1(xc1 − f1) + (n− c1)(f2 − xc1+1)

≤ c1(xc1+1 − f1) + (n− c1)(f2 − xc1+1)

= n(f2 − xc1+1) ≤ nOPT.

For Case 3, OPT ≥ 1
2 (xn − x1). This is because in the

optimal solution X1 cannot be served by one facility and X2

by another facility. Thus either at least one of the agents in
X1 has to be grouped with xn or at least one of the agents
in X2 has to be grouped with x1. No matter which case hap-
pens, there is one group such that the longest distance be-
tween each pair of agents of this group is at least 1

2 (xn−x1).
Moreover,

ALG ≤ |X1|(x|X1| − f1) + (n− c2 − |X1|)(xn−c2 − f1)

+ c2(f2 − xn−c2+1)

≤ |X1| · 1
2
(xn − x1) + (n− |X1|) · (xn − x1)

≤ 3n

4
(xn − x1) ≤ 3n

2
OPT.

The second inequality is because f2 − xn−c2+1 ≤ f2 −
xn−c2 = xn−c2 − x1 ≤ xn − x1. The third inequality
is because the term in the second line is maximized when
|X1| = n

2 as |X1| ≥ |X2|.
Theorem 12. For the objective of maximum cost, EEM has
an approximation ratio of 4.

Proof. For Case 1, EEM is exactly the same as the classi-
cal Endpoint Mechanism (Procaccia and Tennenholtz 2009),
thus has an approximation of 2.

For Case 2, let dis = xn − xc1+1. We claim that OPT =
1
2dis. We first note that (f∗

1 , f
∗
2 ) = ( 12 (xc1 − x1),

1
2 (xn +

xc1+1)) is a feasible solution with the announced cost, i.e.
(f∗

1 , f
∗
2 ) an optimal solution. Let (l1, l2) be any solution.

It is easy to see that to guarantee a cost that is not greater
than 1

2dis, max{l1, l2} ≥ 1
2 (xn + xc1+1) as agent n has to

be connected to one of them. Moreover, since the capacity
of the leftmost facility is at most c1, at least one of agents
{1, · · · , c1, c1 +1} has to be grouped with agent n, thus the
optimal solution is to put c1 + 1 into n’s group and its serv-
ing facility is located at 1

2 (xn + xc1+1). We see that the cost
of (l1, l2) cannot be smaller than 1

2dis.
Let (f1, f2) be the output of EEM. Then xc1 − f1 ≤

xc1+1 − f1 = xn − xc1+1 = dis. Thus, ALG ≤ dis =
2OPT , which is a 2-approximation.

Case 3 is similar to Theorem 11. Since the optimal so-
lution cannot serve X1 by one facility and X2 by another
facility, either one of the agents in X1 has to be grouped
with xn or one of the agents in X2 has to be grouped with
x1. Thus OPT ≥ 1

4 (xn−x1). Again, since f2−xn−c2+1 ≤
f2 − xn−c2 = xn−c2 − x1 ≤ xn − x1. ALG ≤ 4 OPT ,
which is a 4-approximation.

4 Conclusion and Discussion

We considered the FLP-CC both algorithmically and from a
mechanism design perspective. See Table 1 for a summary
of our results. Collectively, our results show that the addi-
tion of capacity constraints to the FLP makes it more diffi-
cult compared to the uncapacitated case to solve optimally
and to design mechanisms with desirable properties (e.g.,
strategyproofness and bounds on the approximation ratio).
There are many directions for future work. The most im-
portant question is to understand whether any meaningful
upper bound can be established for the case of three loca-
tions. Moreover, can we extend results beyond one dimen-
sion to trees, networks, or two-dimensional rectilinear and
Euclidean metrics? Finally, it is interesting to consider if
randomization can help to design more efficient and better
algorithms or mechanisms for FLP-CC.
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