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Abstract

We consider settings where agents are evaluated based on ob-
served features, and assume they seek to achieve feature val-
ues that bring about good evaluations. Our goal is to craft
evaluation mechanisms that incentivize the agents to invest
effort in desirable actions; a notable application is the design
of course grading schemes. Previous work has studied this
problem in the case of a single agent. By contrast, we investi-
gate the general, multi-agent model, and provide a complete
characterization of its computational complexity.

1 Introduction

Any reader who has ever taught a course would have
undoubtedly faced some variant of the grading-scheme
dilemma: Should the final exam count for 30% of the grade,
and the homework assignments for 40%? Or should these
two components perhaps be weighted equally? Should the
lowest homework grade be dropped? Admittedly, grades
only serve as a proxy for students’ (unobservable) learning
outcomes. But once a grading scheme is in place, students
will optimize their grades by investing effort accordingly.
Therefore, the grading scheme must be designed to encour-
age desirable behaviors. For example, a participation grade
may make some students come to class, but those same stu-
dents — who are now short on time — may elect to cheat on
their homework assignments.

The design of course grading schemes is an instance of a
much broader challenge. Whenever an evaluator designs a
scheme for evaluating an agent based on observed features,
the agent is incentivized to achieve feature values that lead
to a good evaluation. The hope is that the agent will do so
through genuine self-improvement rather than blatant gam-
ing. The evaluation of creditworthiness through credit his-
tory in the United States serves as an especially egregious
example: instead of promoting true financial responsibility,
it encourages idiosyncratic practices such as using a specific
percentage of one’s credit card limit.

In a very recent paper, Kleinberg and Raghavan (2019)
model and analyze these scenarios. In their model, an agent
has a given amount of effort that can be invested in different
actions (e.g., attempt to solve a homework assignment or
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cheat). There are also effort conversion functions that map
the levels of effort invested in each action to features (e.g.,
homework grade, exam grade, or participation grade). The
evaluator’s task is to design a mechanism that maps the fea-
ture values to a score, which coincides with the agent’s util-
ity. The agent seeks to distribute effort between actions to
achieve maximum utility. The evaluator’s goal, then, is to
design the mechanism to elicit a desirable effort profile.

Importantly, an instance of the evaluation problem of
Kleinberg and Raghavan (2019) includes only a single
agent — or, equivalently, multiple agents that share the same
model. However, in the domains of interest there are mul-
tiple types of agents. For example, one student might opti-
mize exam grades by studying alone, whereas another would
derive more benefit from studying with peers. With this in
mind, we wish to extend the model and results of Kleinberg
and Raghavan to the multi-agent case. In other words, our
main research challenge is this:

Given a set of different agent models, design mecha-
nisms that induce all agents, or as many agents as pos-
sible, to invest effort in desirable actions.

1.1 Our Results

The foregoing challenge gives rise to multiple problems,
each of which is determined by the answers to the follow-
ing three questions.

First, what requirements must the mechanism satisfy? The
minimal assumption made by Kleinberg and Raghavan is
that the mechanism must be monotone, meaning that agents
should receive higher payoffs for higher feature scores. A
more restrictive requirement is that the mechanism be lin-
ear, meaning that the payoff is just a linear combination of
all feature scores.

Second, what is the goal of the evaluator? Is there some
specific admissible profile of effort investment the evaluator
wishes to incentivize, or will they be content with any pro-
file, as long as all of the actions which the agent invests a
nonzero amount of effort into are admissible actions?

Third, are we interested in incentivizing all agents in a
particular way, or just a maximum number of agents?

With only one agent, the main result of Kleinberg and
Raghavan is that the answers to these questions do not mat-
ter: whenever a monotone mechanism exists a linear mecha-
nism exists, and whether an effort profile can be incentivized
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Problem #
Type of

mechanism
Incentivize

Admissible
set

Complexity

1 monotone all agents admissible
profile P

2 monotone all agents admissible
actions

P (const. n)
NP-c (gen.)

3 monotone max #
of agents

admissible
profile NP-c

4 monotone max #
of agents

admissible
actions NP-c

5 linear all agents admissible
profile P

6 linear all agents admissible
actions

P (const. n)
NP-c (gen.)

7 linear max #
of agents

admissible
profile

P (const. n)
NP-c (gen.)

8 linear max #
of agents

admissible
actions

P (const. n)
NP-c (gen.)

Table 1: Complexity of the 8 different variants of the eval-
uation problem. Note that n is the number of features, and
“NP-c” stands for NP-complete.

depends only on the actions it is supported by. However,
with multiple agents, we find striking differences between
the problem variants, both qualitatively and in terms of com-
putational complexity. We provide a complete classification
of the complexity of each of these 8 problems, as shown in
Table 1. For each problem, we also consider the complexity
for the realistic restriction of a constant number of features
n. (For example, even in MOOCs with massively-many stu-
dents, the number of features factored into the final grade
is likely to be held constant.) Problems 1-4 are analyzed in
Section 3, and Problems 5-8 are analyzed in Section 4.

1.2 Related Work

There are two main lines of related work. First, evaluation
can be viewed as classifying strategic agents (into classes
such as “A students”, “B students”, etc.). Self-interested
agents facing classification may invest in distorting their true
attributes, in order to steer the classifier away from their
“ground-truth” class. The goal in strategic classification is
to build classifiers robust to such gaming (Hardt et al. 2016).
Our goal is in some sense opposite to this line of work — we
aim to encourage agents to invest in changing their features,
but by choosing desirable actions like studying over unde-
sirable ones like cheating. In other words, in our case the
evaluation is not meant to expose some ground truth, but
rather to incentivize worthwhile behavior. Strategic classifi-
cation is part of a more general literature on learning in the
presence of strategic behavior (Meir, Procaccia, and Rosen-
schein 2008; 2012; Dekel, Fischer, and Procaccia 2010).

A second line of research closely related to our work is
contract design, a branch of microeconomics (Grossman
and Hart 1983) that has recently gained interest in com-
puter science (Babaioff, Feldman, and Nisan 2006; Dütting,
Roughgarden, and Talgam-Cohen 2019). The precise re-
lation between our model and the classic principal-agent,

hidden-action1 model from microeconomics is explained in
Appendix A.2 In a nutshell, the basic setting of our model
can be reinterpreted as a simplified principal-agent one, in
which the principal (the evaluator in our model) has no in-
herent interest in the agents’ outputs except to incentivize
the agents to choose permissible hidden actions. Given the
connection between the models, to avoid confusion it is im-
portant to note here that we use the term linear mechanism
for an entirely different object than the linear contract term
that is standard in microeconomics — see the appendix for
details.3 We also diverge from previous work on contract de-
sign for multiple agents in our motivation for applying a uni-
fied approach to incentivizing the agents, instead of dealing
with each of them separately: rather than aiming to encour-
age cooperation or optimize information as is common in the
contract design literature, we are motivated by the fairness
requirement that all agents face a single uniform evaluation
mechanism (see the appendix for more details).

In parallel work, Xiao et al. (2020) also study the problem
of incentivizing multiple agents under a single mechanism.
In their model, actions are directly observable, and in de-
signing the contract, the principal is motivated by profit and
has to compensate the agents at personal expense. Hence,
their model applies to an entirely different set of principal-
agent problems than ours.

2 The Model

For consistency we adopt the notation of Kleinberg and
Raghavan (2019) where possible. An instance of the evalua-
tion problem consists of actions 1, 2, . . . ,m (indexed by j);
features F1,F2, . . . ,Fn (indexed by i); and agents (e.g., stu-
dents) S = {s1,s2, . . . ,s�} (indexed by k). Each agent sk
has a matrix αk in R

m×n
≥0 called their effort conversion ma-

trix. Entry αk
j,i ∈ R≥0 (which we assume is described us-

ing a polynomial number of bits in m,n) specifies how ef-
fort put into action j translates into feature i (as specified
in the next paragraph). We assume that every agent sk has
the ability to affect every feature, that is, no matrix αk has
an all-zero column.4 We denote the jth row and its entries
by αk

j = (αk
j,1, . . . , α

k
j,n). It is often convenient to describe

an instance of the evaluation problem as an effort graph as
depicted in Figure 1. The instance in Figure 1 has m = 2
actions, n = 2 features and � = 2 agents, and the conversion
matrices are α1

1 = (4, p), α1
2 = (0, 9) for the first agent and

α2
1 = (p, 4), α2

2 = (9, 0) for the second.
Each agent sk has a budget of one unit of effort to divide

among different actions.5 Their choice of how to divide their

1As opposed to hidden-type models; note that while we deal
with different types of agents, these are not hidden.

2The appendix is included in the full version of our paper, avail-
able at http://procaccia.info.

3We use the term linear mechanism to be consistent with
(Kleinberg and Raghavan 2019).

4This is implicitly assumed in (Kleinberg and Raghavan 2019).
5In Kleinberg and Raghavan (2019), the agent has an arbitrary

effort budget B. Note it is without loss of generality to assume
B = 1 for all agents as we do, since any discrepancies in effort
budgets can instead be realized by scaling the effort conversion
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budget is specified by their effort profile xk, where xk
j ≥ 0

(or xj — we sometimes omit the k index where clear from
context) is the effort they invest in action j, and

∑
j x

k
j ≤ 1

(feasibility). We refer to the set of all feasible effort profiles
as X .

An effort profile is converted into the agent’s n features as
follows: F k(xk)i =

∑
j α

k
j,ix

k
j for every i ∈ [n]. In words,

for feature Fi, the effort sk puts into action j is multiplied by
αk
j,i, and this is summed over all actions. Note that Kleinberg

and Raghavan (2019) introduce a generalization: they define
F k(xk)i = fk

i (
∑

j α
k
j,ix

k
j ), where fk

i is a concave, strictly
increasing function. We use the simpler form for ease of ex-
position, and indeed most of our results hold for the more
general model — see Appendix I for details.

An evaluation mechanism is a function M : Rn
≥0 → R≥0

that maps an agent’s features to a score or payoff. The score
coincides with the agent’s utility. Given a mechanism, the
agent chooses an effort profile xk that maximizes their score;
we then say xk is incentivized by the mechanism. The de-
sign goal is to have the mechanism incentivize all agents,
or as many agents as possible, to invest only in a prescribed
set of admissible profiles (we assume that if several profiles
are incentivized, the agent breaks ties in favor of admissible
ones). We use A ⊆ X to denote the set of admissible pro-
files, and consider two different problem variants depend-
ing on the form of A: (1) In the admissible profile variant,
|A| = 1, meaning that the agents must be incentivized to
choose a particular effort profile, which is given as part of
the input. (2) In the admissible actions variant, A is implic-
itly specified by a subset of actions A ⊆ [m], and an effort
profile is admissible if and only if it is supported only over
admissible actions (xk

j = 0 for every j /∈ A).
We consider two main classes of evaluation mechanisms:

monotone mechanisms and their subclass of linear mecha-
nisms. An evaluation mechanism is monotone if two condi-
tions hold: (i) for every two feature vectors F ′ ≥ F , it holds
that M(F ′) ≥ M(F );6 and (ii) for every feature vector F
there exists a subset S of features such that increasing all
features FS in the subset strictly increases M(F ).7 An eval-
uation mechanism is linear if M(F ) is a multilinear function
in the features, namely, M(F ) =

∑
i βiFi where βi ≥ 0 for

every i and βi′ > 0 for some i′.

2.1 Examples

The following examples illustrate the complexity that is
added to the evaluation problem when there are multiple
agents.

matrices.
6Throughout the paper, whenever we write an inequality be-

tween two vectors, it means that the inequality holds in each coor-
dinate.

7Together with the assumption that no effort conversion matrix
has a column of zeros, condition (ii) implies there is always poten-
tial to increase the score by investing more effort, so all agents are
strictly incentivized to exhaust their effort budgets. Without con-
dition (ii), the evaluation problem would be trivial, since we could
always just use the mechanism that gives a payoff of zero no matter
what the feature scores are.

Figure 1: A two-agent instance of the evaluation problem,
where p ∈ [1, 8] is an arbitrary parameter.

Example 2.1. Returning to the classroom setting, suppose
that there are two types of students, s1 and s2, who can
choose between studying (action 1) and cheating (action 2).
Studying improves both test scores (feature F1) and home-
work scores (feature F2) for both types, while cheating im-
proves just one of the scores by an even greater amount. The
effort conversion rates in such a scenario might be as de-
picted in Figure 1, where 1 ≤ p ≤ 8.

Since cheating only improves one kind of score, there are
simple linear mechanisms that can incentivize studying for
either student type in isolation, no matter what p is: for s1,
set β := (1, 0) (final score depends only on the test), and for
s2, set β := (0, 1) (final score depends only on the home-
work). But what if we wish to simultaneously incentivize
both student types to study?

At p = 6, there is a still a linear mechanism that works.
Taking β := (1, 1), the marginal benefit toward studying is
10, while the marginal benefit toward cheating is 9, so both
student types will invest all of their effort into studying.

At p = 4, no linear mechanism exists. For if some β =
(β1, β2) incentivizes s1 to study, we must have 4β1+4β2 ≥
9β2, or in other words, 4β1 ≥ 5β2. Analogously, if that same
β incentivizes s2 to study, we must have 4β2 ≥ 5β1. This is
only satisfied by β = (0, 0), which violates the monotonic-
ity requirement that at least one coordinate be strictly pos-
itive (and makes no sense as a classroom scoring method).
Thus, no linear mechanism can simultaneously incentivize
both student types to study. However, consider a nonlinear,
monotone mechanism: M(F1, F2) := min(F1, F2). Neither
type of student is incentivized to cheat under this mecha-
nism, since that will not improve their minimum score.

At p = 1, there is no monotone mechanism at all, not even
a nonlinear one. Supposing there was such an M : R2

≥0 →
R≥0, consider the choice of an s1 student between two dif-
ferent profiles: the admissible profile (1, 0), and the inadmis-
sible profile ( 12 ,

1
2 ). If s1 chooses the admissible profile, they

obtain a feature vector (4, 1), and if they choose the inad-
missible profile, they obtain the feature vector (2, 5). Since
we are assuming M incentivizes only studying, we must
therefore have M(4, 1) ≥ M(2, 5). Monotonicity implies
M(2, 5) > M(1, 4), so M(4, 1) > M(1, 4). However, by a
completely symmetric argument, for s2 students to be incen-
tivized to study we must have M(1, 4) > M(4, 1), which is
a contradiction. Thus, no monotone mechanism can exist.

One of the most remarkable conclusions from Exam-
ple 2.1 is that, in stark contrast to the one-agent case, non-
linear mechanisms can succeed where linear mechanisms
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Figure 2: A three-agent instance of the evaluation problem
exhibiting the power of nonlinear mechanisms. This con-
struction can be generalized to any number of agents.

fail. One can interpret the scenarios where nonlinear mech-
anisms gain an advantage from a machine learning perspec-
tive. Nonlinear classifiers can see more complex relation-
ships among data, such as the conjunction of two separate
conditions like, “in order to be in the positive class, feature
1 must have value at least x and feature 2 must have value
at least y.” Analogously, a nonlinear evaluation mechanism
can make more complicated distinctions between desirable
and undesirable behavior, such as, “in order to get a high
score, feature 1 must have value at least x and feature 2 must
have value at least y.” Nonlinear mechanisms are necessary
when the effort conversion rates of several agents combine
to form a complex boundary in the feature space between
the results of desirable agent behavior and undesirable agent
behavior, which cannot be linearly separated. This effect can
be quite dramatic: as the following extreme example shows,
there exist situations where the best linear mechanisms per-
form arbitrarily worse than the best nonlinear ones.
Example 2.2. For any positive integer n, define an instance
of the evaluation problem with n actions, n features, and n
agents, where only action 1 is admissible, and the rate of
effort conversion for agent sk from action j to feature Fi is

αk
ji :=

⎧⎨
⎩
1 if i < k

2 if i = k

5 if i > k

if j+k−1 = i mod n, and zero otherwise. Figure 2 shows
an example of this construction when n = 3.

Suppose some pair of agents sk, sk′ where k′ > k could
be jointly incentivized to invest only in action 1 with some
linear mechanism β. For sk to be incentivized to invest only
in action 1, we must have 2βk ≥ 5βk′ , and for sk′ we must
have 2βk′ ≥ βk. Therefore, βk ≥ 5

4βk, so βk = 0, in which
case monotonicity implies it is strictly preferable for sk to
invest in some other, inadmissible action yielding a nonzero
payoff. Hence, no linear mechanism can incentivize more
than one agent to invest only in action 1. However, we will
see in Section 3.1 that all agents can be incentivized to invest
only in action 1 with a monotone, nonlinear mechanism.

3 Monotone Mechanisms

In this section we first describe one of our main contribu-
tions — a useful characterization of when it is possible to

jointly incentivize a given set of agents to choose admissible
actions via a monotone mechanism. The proof is construc-
tive, giving an efficiently computable M : Rn

≥0 → R≥0 with
the guarantee that if any monotone mechanism “works,” so
does M . Using this characterization, we present polynomial-
time algorithms to solve Problem 1 for an unbounded num-
ber of features, and Problem 2 for a constant number of
features. We then present hardness results for the remaining
problems in the top half of Table 1.

3.1 Imitation Graphs

The central obstacle in the multi-agent evaluation problem is
that one agent may be able to achieve good scores by choos-
ing admissible actions, while another agent may be able to
achieve even better scores by choosing inadmissible actions.
In such scenarios, we say that the second agent is able to
imitate the first one. The key observation is that, when this
happens, the second agent must be given a greater payoff
than the first agent, rewarding them for not acting in this
undesirable way. This idea will allow us to characterize ex-
actly when it is possible to jointly incentivize multiple agent
types. Moreover it will imply that the incentivizing mecha-
nism will have quite a natural form, ranking agents by their
capability to emulate others’ achievements, and assigning
them payoffs according to this ranking.

To formally define imitation, we shall refer to two agents
s1 and s2, where we somewhat abuse notation using s1, s2
for arbitrary agents as opposed to the agents with index k =
1, 2. We use this convention throughout Section 3 to avoid
excessive subscripts.

Fix an admissible action profile x∗(s) for each agent
s ∈ S. We say that agent s1 can imitate agent s2 with re-
spect to x∗ if s1 can play an inadmissible action profile x
such that F s1(x) ≥ F s2(x∗(s2)). If x can be chosen so that
F s1(x) > F s2(x∗(s2)), we say that s1 can strictly imitate
s2. The imitation graph with respect to x∗ is the directed
graph with vertex set S and an edge from s1 to s2 if and
only if s1 can imitate s2. If s1 can strictly imitate s2, we say
that (s1, s2) is a strict edge.
Theorem 3.1. It is possible to incentivize all agents in S
to choose effort profiles in A using a monotone mechanism
if and only if there exists some x∗ : S → A such that the
imitation graph with respect to x∗ has no cycles containing
any strict edges.

Proof. For the forward direction, suppose M : Rn
≥0 → R≥0

is a monotone mechanism that incentivizes all agents to in-
vest only in admissible actions. Then for each s ∈ S, choose
x∗(s) to be any admissible best response of s under M . Sup-
pose toward a contradiction that the imitation graph with re-
spect to x∗ contains a directed cycle s1,s2, . . . ,sq, s1, where
(sq, s1) is a strict edge. Then for each k from 1 to q − 1, we
must have

M(F sk(x∗(sk))) ≥M(F sk+1(x∗(sk+1))),

for otherwise, if M(F sk+1(x∗(sk+1))) > M(F sk(x∗(sk)))
then agent sk could deviate from x∗(sk) and choose some
inadmissible action x such that

F sk(x) ≥ F sk+1(x∗(sk+1)),
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receiving a strictly greater payoff:

M(F sk(x)) ≥M(F sk+1(x∗(sk+1))) > M(F sk(x∗(sk)))

(here the first inequality follows from monotonicity condi-
tion (i)). Additionally, we must have

M(F sq (x∗(sq))) > M(F s1(x∗(s1))),

for otherwise, if M(F s1(x∗(s1))) ≥ M(F sq (x∗(sq))),
agent sq could deviate from x∗(sq) and choose some inad-
missible action x such that F sq (x) > F s1(x∗(s1)), receiv-
ing a strictly greater payoff:

M(F sq (x)) > M(F s1(x∗(s1))) ≥M(F sq (x∗(sq)))

(here the first inequality follows from monotonicity condi-
tion (ii)). Thus, we have an inconsistent cycle of inequalities

M(F s1(x∗(s1))) ≥M(F s2(x∗(s2))) ≥ . . .

≥M(F sq (x∗(sq))) > M(F s1(x∗(s1))).

We have reached a contradiction, so it must be that there are
no cycles containing any strict edges.

For the backward direction, let G be the imitation graph
with respect to some x∗, and assume that G has no directed
cycles containing any strict edges. We topologically sort the
strongly connected components of G in decreasing order,
and let v : S → {1, 2, . . . , |S|} give the index of each ver-
tex’s component in the topological sort (v already provides
a rough ranking of the agents). Let m : Rn

≥0 → R≥0 be the
function that takes the minimum value of all coordinates in
a vector, and let B ∈ R>0 be a strict upper bound on m(F )
for any feature vector F that is attainable by any agent in S.
Consider the mechanism

M(F ) := max
{
v(s) +

m(F − F s(x∗(s)))
B

∣∣∣
s ∈ S, F ≥ F s(x∗(s))

}
(1)

It is not hard to verify that M satisfies both conditions for
monotonicity.8 We claim that M incentivizes every s ∈ S to
play the admissible action x∗(s).

Suppose, toward a contradiction, that for some agent s1,
there existed some alternative, inadmissible effort profile x
yielding a strictly higher payoff, i.e.,

M(F s1(x)) > M(F s1(x∗(s1))).

By the definition of M , this means that

max
{
v(s2) +

m(F s1(x)− F s2(x∗(s2)))
B

∣∣∣
s2 ∈ S, F s1(x) ≥ F s2(x∗(s2))

}

> max
{
v(s3) +

m(F s1(x∗(s1))− F s3(x∗(s3)))
B

∣∣∣
8Technically speaking, the mechanism is undefined for off-

equilibrium-path strategies of scoring lower than any agent should
ever score. This can be fixed by adding a dummy agent with an
effort conversion rate of zero from every action to every feature.

s3 ∈ S, F s1(x∗(s1)) ≥ F s3(x∗(s3))
}
.

Taking any s2 on the LHS that realizes the maximum, and
plugging in s1 for s3 on the RHS, this becomes

v(s2) +
m(F s1(x)− F s2(x∗(s2)))

B
> v(s1).

Since m(F ) < B for any attainable feature vector F , it fol-
lows that v(s2) + 1 > v(s1). Since v is integer-valued, this
means v(s2) ≥ v(s1).

On the other hand, F s1(x) ≥ F s2(x∗(s2)) implies
(s1, s2) ∈ E(G), so v(s1) ≥ v(s2). Thus, we have v(s1) =
v(s2), meaning that s1 and s2 are in the same strongly con-
nected component of G. Also,

m(F s1(x)− F s2(x∗(s2)))
B

> v(s1)− v(s2) = 0,

which implies F s1(x) > F s2(x∗(s2)), so (s1, s2) is a strict
edge. But it is impossible to have a strict edge between two
vertices in the same strongly connected component, as this
would imply that G has a cycle containing that strict edge,
contradicting our hypothesis. We have a contradiction, so M
incentivizes all agents to play according to x∗.

Notice that the imitation graph in Example 2.2 with re-
spect to all agents investing all effort in action 1 consists of
a strict edge (sk′ , sk) whenever k′ > k. Since this graph has
no cycles, Theorem 3.1 implies there is a monotone mecha-
nism that incentivizes all agents to invest only in action 1, in
particular the mechanism specified in (1). Ignoring the small
payoff summand that is a fraction over B (which is only
necessary for satisfying condition (ii) of monotonicity), the
payoff of this mechanism is

M(F ) ≈ max
i∈[n]
{n− i+ 1 | Fi ≥ 2}.

In words, all agents are incentivized to focus all of their ef-
fort on raising the feature of smallest index in which they
can score at least 2. For each agent, this feature is always the
one with an edge from x1 in the effort graph (see Figure 2),
so all agents will invest only in action 1.

3.2 Incentivizing All Agents

Theorem 3.1 directly leads to a simple algorithm to solve
Problem 1.
Corollary 3.2. There is a polynomial-time algorithm to find
a monotone mechanism that incentivizes all agents to choose
a specific effort profile, or determine that no such mechanism
exists.

Proof. Since |A| = 1, there is only one possible x∗ :
S → A to choose from, and thus only one possible imi-
tation graph G. For each strict edge (s1, s2) ∈ E(G), we
just check to see if there is a path in G from s2 to s1. By
Theorem 3.1, it is possible to jointly incentivize all agents if
and only if none of these paths exist.

The only potential difficulty lies in constructing this imi-
tation graph in the first place. We show in Lemma B.1 of Ap-
pendix B that this can be accomplished in polynomial time
using linear programming.
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Solving Problem 2 is trickier, since to use our characteri-
zation we must search for an assignment x∗ : S → A pre-
scribing which admissible action profile we would like each
agent to choose. While at first glance this might appear hope-
lessly intractable, we make an observation that turns out to
help when the number of features is constant: If there exists
any x∗ : S → A such that the imitation graph with respect
to x∗ has no cycles containing any strict edges, then there
exist profiles for some nonempty subset of agents T ⊆ S
such that
1. no agents in S \ T can imitate any agents in T , and
2. no agents in T can strictly imitate any agents in T .
Informally, the observation follows from topologically sort-
ing the strongly connected components of the imitation
graph, and noticing that the first component must have these
two properties. Given the observation, if such a subset of
agents T and their effort profiles can be found in polyno-
mial time, those agents can be removed, since they can no
longer create a cycle with any of the remaining agents. If
it is then possible to keep removing sets of agents in this
manner, then the final imitation graph will have no cycles
containing strict edges; otherwise, we can conclude impos-
sibility for the given problem instance.

Finding a subset T and corresponding profiles can be
achieved using an iterative marking algorithm, formally pre-
sented in Appendix C.1. However, it relies on the ability to
efficiently answer the simple question, “Is there some ad-
missible profile that s1 can play that no agent in some given
set R can (strictly) imitate?” Formally, this predicate is,

∃x1 ∈ A, ∀s2 ∈ R,

¬ (∃x2 ∈ X \ A, ∀i ∈ [n], F s2(x2)i ≥ F s1(x1)i
)

(for the strict version, we have a strict inequality). It turns
out that this is computable in polynomial time for a constant
number of features n, but is NP-hard in general, and so is
Problem 2 (see Appendix C for the details).
Theorem 3.3. The problem of finding a monotone mecha-
nism that incentivizes all agents to choose admissible ac-
tions, or determining that no such mechanism exists, is

1. solvable in polynomial time for a constant number of fea-
tures n, and

2. NP-complete for unbounded n.

3.3 Incentivizing a Maximum Number of Agents

Once the imitation graph for all agents has been constructed,
Theorem 3.1 implies that we can incentivize any subset of
agents whose induced subgraph has no cycles with strict
edges. When all edges are strict, this is an instance of the
NP-complete Feedback Vertex Set problem: given a graph,
it asks for a minimum-size subset of vertices whose deletion
would eliminate all cycles. It turns out that there is a reduc-
tion in the other direction too, since all directed graphs can
be constructed as imitation graphs — even with just two fea-
tures! This proves that Problems 3 and 4 are NP-complete.
Theorem 3.4. The problems of finding a monotone mech-
anism that incentivizes a maximum number of agents to

Figure 3: An input graph G and the corresponding evalua-
tion problem produced by the reduction.

choose admissible actions / a specific admissible profile are
NP-complete even for a constant number of features.

We will sketch the proof of NP-hardness for an un-
bounded number of features, leaving the more complicated
reduction with only two features for Appendix E. Suppose
we are given an instance of Feedback Vertex Set, that is, a
graph G with n vertices. For convenience, assume V (G) =
[n]. We construct an instance of the evaluation problem with
agents s1,s2, . . . ,sn, features F1,F2, . . . ,Fn, and 2 actions,
where action 1 is admissible and action 2 is inadmissible.
For each i, j ∈ [n], define

αk
1,i :=

{
1 i = k

0 otherwise
, αk

2,i :=

{
2 (k, i) ∈ E(G)

ε otherwise

(see Figure 3 for an example where n = 3).
It is proved in Appendix D that, for 0 < ε < 1, G is

the imitation graph with respect to the profile assignment
of (1, 0) for all agents, and all edges are strict edges. By
Theorem 3.1, G has a feedback vertex set of size at most
q if and only if at least n − q agents (namely, those not in
the feedback vertex set) can be jointly incentivized to invest
only in action 1.

4 Linear Mechanisms

While nonlinear monotone mechanisms can incentivize ar-
bitrarily more agents than linear ones (see Example 2.2),
there are still many reasons to consider the problem of find-
ing a linear mechanism to incentivize multiple agents. For
one, what we call a linear mechanism coincides with tra-
ditional contracts investigated in contract theory (see Ap-
pendix A). Linear mechanisms also bear more similarity
to the kinds of grading schemes commonly used in prac-
tice. Furthermore, one might hope that, since linear mecha-
nisms are simpler than monotone mechanisms, finding lin-
ear mechanisms might be an easier problem. This intuition
turns out to be partially correct: under the very reasonable
assumption that the number of features is held constant, each
problem we consider in this section has a polynomial time
algorithm, although some are hard in general.
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4.1 Algorithmic Results

Observe first that, when responding to a linear mechanism,
agents can simply compute the marginal payoff toward each
of their actions, and invest effort only in the most profitable
ones. Therefore, an agent may only split their effort among
multiple actions if they are all tied for the highest marginal
payoff. If we only care about an agent investing in any one of
a set of multiple admissible actions, we need only ensure that
one of those admissible actions gives the highest marginal
payoff.

Motivated by these observations, we introduce the fol-
lowing notation: when, for a given agent sk, some action
j1 yields a weakly greater marginal payoff under a linear
mechanism β ∈ R

n than some other action j2, we say that
β satisfies the constraint h(k, j1, j2). Since each h(k, j1, j2)
can be written as a linear constraint over the space of lin-
ear mechanisms Rn, we immediately have an algorithm for
Problem 5.
Theorem 4.1. There is a polynomial-time algorithm to find
a linear mechanism that incentivizes all agents to choose a
specific effort profile, or determine that no such mechanism
exists.

Proof. To solve this problem, we must determine if there
exists β ∈ R

n such that, for every agent sk ∈ S and every
action j1 in the support of the admissible profile, for every
alternative action j2 ∈ [m] the constraint h(k, j1, j2) is sat-
isfied (i.e., αk

j1
· β ≥ αk

j2
· β). This reduces to testing the

feasibility of a linear program with n variables and at most
�m2 constraints (were � is the number of agents), which is
solvable in polynomial time.

Jumping to Problem 7, we do not require that β satisfy
these constraints for all k ∈ [�], just for as many k as pos-
sible. Let Lk be the polytope in R

n consisting of all points
β that satisfy h(k, j1, j2) for all actions j1 in the support
of the admissible profile, and for all actions j2 ∈ [m]. Our
objective is then to find a point in the intersection of a max-
imum number of the Lk polytopes. This is no longer a con-
vex optimization problem like Problem 5. Yet we can solve
it efficiently when n is a constant, using a geometric data
structure known as a hyperplane arrangement (Goodman
and O’Rourke 1997, Chapter 28).

An arrangement decomposes R
n into connected open

cells, where each cell is a maximal connected region in the
intersection of a subset of the hyperplanes that is not inter-
sected by any other hyperplane. The key property that we
will use is that all points within a given cell are equivalent in
terms of which of the linear constraints they satisfy. This im-
plies that, to test whether a given predicate on the constraints
holds for any point in R

n, it suffices to check only one point
from each cell. This is tractable when n is constant, since
it is known that the arrangement of p hyperplanes decom-
poses Rn into O(pn) cells, and that the arrangement can be
computed in O(pn) time.
Theorem 4.2. Assuming a constant number of features,
there is a polynomial-time algorithm to find a linear mecha-
nism that incentivizes a maximum number of agents to invest
in a specific admissible profile.

Algorithm 1: An algorithm for Problem 7.
Input: An instance of the evaluation problem with a

single admissible profile x∗
Output: A linear mechanism β that incentivizes a

maximum number of agents to invest effort
according to x∗

1 R ← arrangement of all hyperplanes for constraints
h(k, j1, j2) for all k ∈ [�], j1 ∈ S(x∗), and j2 ∈ [m];

2 max← −1;
3 for each cell C ∈ R do
4 β′ ← any point in C;
5 numIncentivized← |{sk ∈ S | all actions in

S(x∗) yield the (weakly) greatest marginal payoff
for sk under β′}|;

6 if numIncentivized > max then
7 max← numIncentivized;
8 β ← β′;
9 end

10 end
11 return β;

Proof. Using the notation of Kleinberg and Raghavan, for
an effort profile x, let S(x) denote the support of x. Re-
call that, to incentivize a given profile x∗ for all agents,
we must ensure all actions in S(x∗) are weak best re-
sponses. Based on our discussion of arrangements above,
Algorithm 1 solves this problem in polynomial time when n
is constant. Note that the predicate on line 5 is easy to com-
pute for a fixed β′, and does not depend on which β′ ∈ C is
chosen, since whether a given sk ∈ S satisfies the predicate
is completely determined by the constraints from line 1.

With very minor adjustments to Algorithm 1, this same
technique can be used to solve Problems 6 and 8 as well
(see Appendix G).

Theorem 4.3. Assuming a constant number of features,
there is a polynomial-time algorithm to find a linear mech-
anism that incentivizes a maximum number of agents to
choose admissible actions (and consequently, to determine if
all agents can be incentivized to choose admissible actions).

4.2 Hardness Results

Since these algorithms for Problems 6, 7, and 8 all rely
on the ability to efficiently enumerate all cells in a low-
dimensional hyperplane arrangement, it is natural to ask
what happens when the number of features is part of the in-
put, making this technique no longer viable. As it turns out,
all three problems are NP-complete in general.

Theorem 4.4. The following problems are NP-complete:

1. Finding a linear mechanism that incentivizes a maximum
number of agents to invest only in admissible actions / a
specific admissible profile.

2. Finding a linear mechanism that incentivizes all agents
to invest only in admissible actions.9

9The hardness of the problem in part (2) of the theorem implies
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Part (1) follows from the same reduction outlined in Sec-
tion 3.3 since the instances produced by that reduction have
a special property: whenever a particular subset of agents
can be incentivized to choose admissible actions using a
monotone mechanism, they can, in fact, be so incentivized
using a linear mechanism. The hardness in part (2) is of a
completely different nature, and is proved via a separate re-
duction from 3SAT. See Appendices D and F for the proofs.

5 Discussion
Designing an evaluation scheme for a group of agents is
broad practical dilemma. It comes up in credit scoring,
principal-agent relationships without money (commanders
and soldiers, teachers and students), employment under col-
lective agreements, etc. In these cases, designing a single
evaluation rule for all agents is the only realistic approach.
This paper addresses the challenge of multi-agent evaluation
from a computational perspective, answering an open ques-
tion of Kleinberg and Raghavan (2019). Our main contri-
bution is in showing that the evaluation problem with more
than one agent is “a whole new ball game”: for example,
monotone mechanisms now have more power than linear
ones, and the goal of incentivizing admissible actions is now
separate (and often harder) than incentivizing a particular ef-
fort profile.

There are many directions for future research. A natural
one is approximating the optimal number of incentivized
agents when maximizing is NP-hard. Our techniques are
able to provide insights in this direction, since we show a
close connection to the Feedback Vertex Set problem, for
which both approximations and lower bounds are known
(Bar-Yehuda et al. 1998). Other future directions include set-
tings with hidden types as well as hidden actions, incentiviz-
ing agent cooperation (by allowing features like scores on a
group project), or accommodating complex effects of com-
binations of agent actions.
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