
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Clustering-Aware Multiple Graph Matching
via Decayed Pairwise Matching Composition

Tianzhe Wang,† Zetian Jiang,† Junchi Yan∗
Shanghai Jiao Tong University

{usedtobe, maple jzt, yanjunchi}@sjtu.edu.cn

Abstract

Jointly matching of multiple graphs is challenging and re-
cently has been an active topic in machine learning and
computer vision. State-of-the-art methods have been devised,
however, to our best knowledge there is no effective mecha-
nism that can explicitly deal with the matching of a mixture
of graphs belonging to multiple clusters, e.g., a collection of
bikes and bottles. Seeing its practical importance, we propose
a novel approach for multiple graph matching and cluster-
ing. Firstly, for the traditional multi-graph matching setting,
we devise a composition scheme based on a tree structure,
which can be seen as in the between of two strong multi-
graph matching solvers, i.e., MatchOpt (Yan et al. 2015a) and
CAO (Yan et al. 2016a). In particular, it can be more robust
than MatchOpt against a set of diverse graphs and more ef-
ficient than CAO. Then we further extend the algorithm to
the multiple graph matching and clustering setting, by adopt-
ing a decaying technique along the composition path, to dis-
count the meaningless matching between graphs in differ-
ent clusters. Experimental results show the proposed meth-
ods achieve excellent trade-off on the traditional multi-graph
matching case, and outperform in both matching and cluster-
ing accuracy, as well as time efficiency.

Introduction
Graph matching (GM) refers to finding node correspon-
dence over two or multiple graphs, based on the affinity in-
formation between nodes, edges (Cho, Lee, and Lee 2010;
Gold and Rangarajan 1996), and even hyperedges (Lee, Cho,
and Lee 2011; Ngoc, Gautier, and Hein 2015; Yan et al.
2015b) over graphs. As a robust tool for structural match-
ing against noise and outliers, graph matching has been ap-
plied in various computer vision tasks, and it has also been
an intellectual pursuit for devising effective techniques for
solving the problem in an approximate manner, as GM, in
general, is known NP-hard (Garey and Johnson 1990).

∗The first two authors contributed equally, whose order of au-
thorship is decided through dice rolling. Junchi Yan is the cor-
respondence author and he is also affiliated with MoE Key Lab
of Artificial Intelligence, AI Institute, Shanghai Jiao Tong Univer-
sity. This work is partly supported by NSFC 61972250, the Open
Projects Program of National Laboratory of Pattern Recognition.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

First, we consider the classic two-graph matching setting
involving graph Gi and Gj , in its quadratic assignment pro-
gramming (QAP) problem formulation (Loiola et al. 2007),
which is also termed by Lawler’s QAP (Lawler 1963):

J(X) = vec(X)�Kvec(X), X ∈ {0, 1}ni×nj , (1)

X1nj
= 1ni

, X�1ni
≤ 1nj

where the (partial) permutation matrix X indicates node cor-
respondence, and K ∈ Rninj×ninj is often called affin-
ity matrix (Leordeanu and Hebert 2005). The node-to-node
and edge-to-edge affinity information are stored on the di-
agonal elements and off-diagonal ones, respectively. Apart
from these second-order affinity model, there are meth-
ods for hypergraph matching (Chertok and Keller 2010;
Duchenne et al. 2011; Yan et al. 2015b; Zass and Shashua
2008), which often involve an affinity tensor and are shown
more robust against noise, at the cost of higher complexity.

Recently, there are also considerable efforts on multiple
graph matching for its practical utility. For real-world appli-
cations, one often has to face with many graphs for match-
ing, which also brings opportunities of fusing the informa-
tion across graphs to achieve more accurate matchings.

Given N graphs and affinity matrix Kij for each pair Gi

and Gj , (Yan et al. 2015a) shows the following objective:

X∗ = argmax
X

∑
i,j=1,i �=j

vec(Xij)
�Kijvec(Xij) (2)

s.t. Xij1n = 1n 1�
nXij = 1�

n Xij = X�
ji,

Xij ,Xji ∈ {0, 1}n×n ∀i, j = 1, ..., N

where X = {Xij}Ni,j=1 denotes the matchings for each pair
of graphs. Here the assumption is that all graphs contain the
same number of nodes and some may be outliers.

Most multi-graph matching solvers (Chen, Guibas, and
Huang 2014; Huang and Guibas 2013; Pachauri, Kondor,
and Vikas 2013; Wang, Zhou, and Daniilidis 2018) focus
on improving the initial matchings obtained by two-graph
matchings via the so-called cycle-consistency. In contrast,
another line of works tries to combine both affinity and con-
sistency for optimization (Yan et al. 2016a; 2015a).

Nevertheless, all these works assume that all the graphs
belong to the same cluster and contain common inliers (with

1660

a few outliers) for matching, which is often too ideal. For
example, different kinds of fruits are mixed, and matchings
of graphs extracted from apples and bananas can be mean-
ingless. Yet existing multi-graph matchings solvers cannot
discern such issues as they always enforce one-to-one node
matching on two graphs even they are totally different. In
this paper, we consider a practically important while surpris-
ingly almost ignored problem in literature: multiple graph
matching and clustering whereby the graphs inherently be-
long to multiple clusters, which is ubiquitous in reality.

First we introduce basic definitions as follows.

Definition 1. The set of graphs is defined as G =
{G1, . . . ,GN}, with number of nodes |Gi| = ni.

Definition 2. A cluster partition on G is denoted as Π =
{C1, . . . ,Cnc

}, where Ci∩Cj = ∅(∀i, j = 1, . . . nc∩i �=
j), Ci �= ∅(∀i = 1, . . . , nc),

⋃
Ci = Π and nc is the

number of clusters.

Formally, our problem becomes: given N graphs G with
mixtured clusters in Π, and pairwise affinity matrix Kij for
each pair Gi and Gj , one aims to find a partition Π

′
=

{C′
1, . . . ,C

′
nc
} with high clustering quality w.r.t. Π, and

achieve high matching accuracy for the matching result
Xk = {Xij}Gi,Gj∈Ck

within every cluster Ck. We assume
the pairwise affinity matrix K = {Kij}Ni,j=1 is given.

This paper makes the following main contributions:
i) We formally define the problem of robust matching of

a collection of graphs from multiple clusters, such that the
meaningful matchings are established within each cluster,
and the clusters also need to be automatically identified.
Such a joint-clustering-matching setting is practically im-
portant while are almost missing in existing literature.

ii) For traditional single-cluster multi-graph matching, we
present a solver called tree-based pairwise matching compo-
sition (TPMC). It can be seen as in the between of two strong
baselines MatchOpt (Yan et al. 2015a) and CAO (Yan et al.
2016a) whereby a maximum spanning tree is built to allow
for pairwise matching composition and propagation over the
tree. We show in Fig. 3 that it performs competitively in ac-
curacy while being significantly more efficient than one of
the best solvers: CAO (Yan et al. 2016a).

iii) For the multi-cluster multi-graph matching setting, we
further devise a weighted version (DPMC-C/A) to softly dis-
count the meaningless but unknown inter-cluster matchings,
in the hope of improving the intra-cluster matchings. We
show in Table 2 and Table 3 the superior performance of our
method on the new setting involving graphs from multiple
clusters. In particular, our methods outperform CAO (Yan et
al. 2016a), which is much more costly than ours.

Figure 1 shows the overall pipeline of our method.

Related Work

The following review focuses on multi-graph matching
(MGM), and a more broad survey for graph matching can
refer to the survey (Yan et al. 2016b).

For multi-graph matching, cycle-consistency has been a
popular regularizer which is based on the basic fact that node
correspondence between Gi and Gj shall be consistent with

another two-step matching from Gi to Gk and Gk to Gj ,
which is derived from the intermediate Gk: Xij = XikXkj .
Such a consistency has been an effective and popular side in-
formation as adopted in many multi-graph matching solvers.

A major line of works admit the pairwise matchings be-
tween each pair of graphs as putative input, and then post-
smoothing is performed to recover cycle-consistency so-
lutions. Among them, the spectral techniques are widely
used (Kim et al. 2012; Pachauri, Kondor, and Vikas 2013;
Huang and Guibas 2013). Further improvements are made
in the later works (Chen, Guibas, and Huang 2014; Zhou,
Zhu, and Daniilidis 2015; Wang, Zhou, and Daniilidis 2018)
to handle more flexible matching settings. In (Leonardos,
Zhou, and Daniilidis 2017), a decentralized version of the
spectral multi-graph matching (Pachauri, Kondor, and Vikas
2013) is devised. While (Hu, Thibert, and Guibas 2018)
presents a theoretically sound greedy construction method
for partitioning the graphs that allows for separate and par-
allel matching in each partition. Note in this work, it is as-
sumed that all the graphs still fall into one single cluster, and
the partition is enforced in brute-force. In (Yu et al. 2018),
incremental matching of graph sequence is addressed, as in-
spired by (Hu, Thibert, and Guibas 2018).

Different from the above works separating affinity based
matching and post-smoothing using cycle-consistency, the
work (Yan et al. 2016a; 2014) combines both affinity and
consistency for optimization. The authors show that their
strategy achieves state-of-the-art performance in terms accu-
racy over post-smoothing based methods (Pachauri, Kondor,
and Vikas 2013; Chen, Guibas, and Huang 2014). Hence we
mainly compare with (Yan et al. 2016a) in our experiments.

However, the consistency cannot be directly used in the
setting considered in this paper, as the matchings across
different clusters are meaningless, so for the derived con-
sistency. Hence we take a different solution, and perhaps
the most related work to this paper is (Yan et al. 2015a;
2013), whereby a central reference graph Gr is chosen, and
it spans a set of basis {Xrk}Nk=1 encoding two-graph match-
ings such that other matching can be represented by the cy-
cle: Xij = X�

riXrj . In this paper, we dismiss the concept
of hub graph and devise a more flexible matching approach
which can handle multiple clusters robustly.

Multi-graph Matching and Clustering

Preliminaries

First we follow the tradition in previous multi-graph match-
ing literature (Yan et al. 2015a; 2016a; Yu et al. 2018) which
define the term supergraph as follows.

Definition 3. Given matchings {Xij} and affinity matrices
{Kij}, the score matrix is defined as:

Sij =
(
vec(Xij)

�Kijvec(Xij)− Smin
ij

)
/(Smax

ij − Smin
ij)

where Smax
ij (Smin

ij) denotes the sum of ni × nj largest
(smallest) elements in Kij which can ensure the resulting
normalized Sij fall into [0, 1].

Definition 4. A supergraph H is an undirected complete
graph induced by graph set G and pairwise matching X.

1661

Figure 1: The proposed pipeline (TPMC or DPMC-C/A) of solving multi-graph clustering and matching problem. Blue and
orange nodes denote different clusters e.g. object car vs. dog. A maximum spanning tree (see Definition 6) is built on the
supergraph (see Definition 4) whereby the edge weights denote the overall matching scores between two graphs (nodes). The
edges with higher weight (often within the same cluster) can be more likely chosen in maximum spanning tree.

Its nodes, edges and edge weights denote graphs, pair-
wise matchings, and pairwise matchings score, respectively:
H = {V = {G1, . . . ,GN}, E = X,W = {Sij}N,N

i,j=1}.

Definition 5. Given a supergraph H, a path from Gi to Gj

is denoted as Pij , which is a set containing the edges from
Gi to Gj . Specifically, Pij = {Xik1

,Xk1k2
, . . . ,Xksj}.

Definition 6. Given a supergraph H, a spanning tree T =
{V = {G1, . . . ,GN}, E = X′ � X} is a sub-supergraph,
which contains N −1 edges and satisfies that every two ver-
tices has exactly one path in T . Moreover, the spanning tree
with the highest accumulated pairwise affinity score over all
of its edges is called maximum spanning tree (MST).

We first discuss a simple pipeline for general discussion.
First, we use off-the-shelf multi-graph matching method,
such as MatchOpt (Yan et al. 2015a) and CAO (Yan et al.
2016a), to obtain the pairwise affinity score matrix. The
matching score between the two graphs is commonly as-
sumed proportional to their similarity. Then we can use
spectral clustering (Ding 2004) to obtain the final clustering
result given the pairwise score matrix as input.

On the one hand, for multi-graph matching with multiple
clusters, we extend Eq. 2 into the following form:

X∗ = argmax
X,Π

∑
Gi,Gj∈Ck,i �=j

vec(Xij)
�Kijvec(Xij) (3)

+α
∑

Gi∈Ck,Gj∈Cl,k �=l

vec(Xij)
�Kijvec(Xij)

s.t. Xij1n = 1n 1�
nXij = 1�

n

Xij = X�
ji ∈ {0, 1}n×n ∀i, j = 1, ..., N

where we use the constant penalty coefficient α to weight the
inter-cluster affinity score as they are in fact meaningless for
matching. When α = 1, it equals to Eq. 2 and in the ideal
case i.e., the clusters are given, one can safely set α = 0.
However, the challenge is that the true clusters are unknown
hence we may still have to consider all the pairwise match-
ing terms for optimization. To fulfill that goal, we will show
a soft decaying based approach to fulfill such a goal.

Simplified Analysis. One basic assumption is that intra-
cluster graphs can obtain higher pairwise affinity score than
inter-cluster graphs, and we analyze this idea as follows.

Proposition 1. For graphs from multiple clusters, the ex-
pectation of the affinity score from graph pairs in the same
cluster, will be higher than the expectation score of those
from different clusters, given the clusters are well separated.

Proof. Readers are referred to the experiment part for the
details of how to construct a synthetic dataset for analysis.
Here we give a quick study without loss of generality.

Given two graphs as cluster centers from two clusters
a, b and their weighted adjacency matrices Ea,Eb, whose
elements qa0

ij , q
b0
ij are generated randomly from Gaussian

U(0, 1). Using the center graph, a new graph in one cluster a
can be generated by adding Gaussian perturbation to the ref-
erence graph to get its edge weights: qa1

ij = qa0
ij + N(0, υ).

Since the only part of expectation in overall affinity score
that varies from inter-cluster and intra-cluster is the affin-
ity score of the same edge pair, e.g., affinity score of edge
(i, j) in graph pair (Ga, Gb), we only need to consider
the affinity score of same edge pair. Then for the pair of
graphs in the same cluster a, this affinity score is bounded
by Ea = E[exp(− (x−y)2

σ2)], where x, y ∼ N(0, υ), whereas
the expectation score of the graph pairs across the clusters
a and b is bounded by Eb = E[exp(− (x+z−y)2

σ2)], where
x, y ∼ U(0, 1), z ∼ N(0, υ). Obviously, Ea > Eb as
υ → 0, which exactly indicates the proposition.

Under this circumstance, traditional multi-graph match-
ing solvers or pairwise matching by traversing all pairs
may still obtain distinctive affinity score matrix which can
be used to build an appropriate maximum spanning tree
on supergraph (see Fig. 1). This observation is important
to devise an effective and tailored method for matching
graphs with multiple clusters. We further discuss two meth-
ods MatchOpt (Yan et al. 2015a) and CAO (Yan et al. 2016a)
under the supergraph view, which are mostly related to ours.

Specifically, MatchOpt (Yan et al. 2015a) takes a refer-
ence node r on the supergraph and generates every match-
ing Xru between r and another node u to be updated. Such a
single-hub updating scheme inherently can not well handle
the mixtured multi-graph matching setting as there are mul-
tiple clusters of graphs for matching. The other solver CAO
(Yan et al. 2016a) takes a more distributed policy which
builds composition pairwise matching to boost the overall

1662

(a) matching updating along maximum spanning tree (b) counter example for clustering purity

Figure 2: (a) our tree based method: the edge updated in this iteration is u = 1, r = 2. Nu,Nr are showed. Green and red
dashed lines denote Fiu, Fir, respectively. (b) counter example of clustering purity. The bottom partition is better than the
upper one. CA is more distinctive than CP in this case.

accuracy. It takes a much higher time cost and still can-
not handle the mutli-cluster multi-graph matching setting.
In summary, MatchOpt and CAO are based on star-shape
structure and fully-distributed structure for pairwise match-
ing propagation, respectively. Seeing their pros and cons, we
now propose a tree based mechanism which can be seen as in
the between for the trade-off of accuracy and time cost. Per-
haps more importantly, it is obvious that the star-like model
can be fragile to the data with multi-clusters, while we be-
lieve the tree-structure is a more robust solution. While the
fully distributed design adopted in CAO cannot effectively
capture the underlying clustering structure. In the follow-
ing, we first present our tree-structured multi-graph match-
ing solver, and then its tailored version for the multi-graph
mutli-cluster setting is described in detail.

Maximum Spanning Tree Multi-Graph Matching

In this subsection, we show a method which assumes all the
graphs belong to a single cluster. There are multiple paths
from Gi to Gj , each of which can yield a composition X̄ij as
shown in Eq. 4 (Yan et al. 2015a). Therefore we simplify the
supergraph into a spanning tree T , where any two graphs are
connected by exactly one path. Let Pij denote the unique
path from Gi to Gj on H, and X̄ij denote the composition
matching yielded along Pij . The objective then becomes:

X∗ = argmax
X

∑
i,j=1,i �=j

vec(X̄ij)
�Kijvec(X̄ij) (4)

s.t. X̄ij = Xik1
Xk1k2

. . .Xksj ;Xik1
,Xktkt+1

,Xksj ∈ Pij

As higher affinity score for a pairwise matching often in-
dicates better matching accuracy, we hereby use Kruskal’s
Algorithm (Kruskal 1956) to generate a maximum spanning
tree (MST) to reserve the edges with the highest affinity
score on the supergraph. Then, we update the total N − 1
edges on T by a certain order. In each iteration, we fix the
other N − 2 edges and optimize the chosen edge. We can
further derive the following objective by dropping some con-
stant terms from Eq. 4 which consists of the right part (Nr)

and left part (Nu) of Gu, as sketched in Fig. 2(b):

Jtree(X̄ur) =J(X̄ur) +
∑
f∈Nr

J(X̄uf) +
∑
f∈Nu

J(X̄rf)

=J(Xur) +
∑
f∈Nr

J(XurXrk1
. . .Xksf)

+
∑
f∈Nu

J(XruXuk1
. . .Xksf) (5)

where J(X̄ij) = vec(X̄ij)
�Kijvec(X̄ij), and the right part

(see Fig. 2(a)) Nr = {f |f �= r∩|Pf,r| < |Pf,u|}, so for the
left part Nu = {f |f �= u ∩ |Pf,u| < |Pf,r|}.

Consider all f ∈ Nr, X̄uf can be decomposed into
XurX̄rf . Let Ffr = X̄fr ⊗ I, we will have:

vec(X̄uf) = (X̄fr ⊗ I)vec(Xur) = Ffrvec(Xur) (6)

Likewise, for all f ∈ Nu, we can represent vec(X̄rf) with
vec(Xur) by a permutation matrix M:

vec(X̄rf) = Ffuvec(Xru) = FfuMvec(Xur) (7)

Then, the objective can be rewritten into:

Jtree(Xur) = vec(Xur)
�

⎛
⎝Kur +

∑
f∈Nr

F�
frKufFfr

+
∑
f∈Nu

M�F�
fuKrfFfuM

⎞
⎠ vec(Xur)

(8)

The resulting sub-problem equals to a standard QAP for-
mulation and can be readily solved using off-the-shelf two-
graph matching solver e.g., RRWM (Cho, Lee, and Lee
2010). We call the above algorithm as tree based pairwise
matching composition (TPMC). In the following, we will
further develop a tailored approach against multiple clusters
of graphs based on the above analysis.

1663

Algorithm 1: Decayed Pairwise Matching Composition
for Multi-cluster Multi-graph Matching

Input: affinity matrix {Kij}Ni,j=1, pairwise matching X
obtained by a certain means e.g., two-graph
matching solver RRWM (Cho, Lee, and Lee
2010) or multi-graph matching solver CAO (Yan
et al. 2016a), and the resulting affinity score
{Sij}Ni,j=1.

1 Use {Sij}Ni,j=1 to generate a MST T and update order
Oupd by Kruskal’s Algorithm (Kruskal 1956).

2 if use Constant-Decay then
3 Set γ(e) = c (0.7) for all e ∈ T and calculate

γ(Pij).
4 else if use Weighted-Decay then
5 Set γmin(default=0.3), γmax(default=0.9).
6 Set γ(e) following Eq. 10 and calculate γ(Pij).
7 for i = 1 . . . iterMax do
8 for each edge Xur in Oupd do
9 Obtain Ffr and Ffu using depth-first search on

T .
10 Refine the matching Xur by solving Eq. 9 with

a pairwise matching solver e.g. RRWM.
11 for each pair of Gi and Gj in H do

12 Set Xij = X̄ij via Pij to update each pairwise
matching.

Output: Optimized matching X.

Decayed Pairwise Matching Composition for
Multi-cluster Multi-graph Matching

Unknowing the cluster label of each graph makes the ob-
jective difficult to optimize. We circumvent the explicit ob-
jective in Eq. 3 and resort to the maximum spanning tree T
that leads to an implicit and (conceptually) soft-α version
as an approximation to Eq. 3. The hope is that, two intra-
cluster graphs are adjacent or close on T , while those from
different clusters have a longer path in T . In particular, the
inter-cluster matching is meaningless whose contribution to
the overall objective in Eq. 8 shall be suppressed.

As such, we introduce a decaying mechanism to penal-
ize the pairs believed belonging to different clusters. Specif-
ically, we modify the objective Jtree(Xur) into:

vec(Xur)
�

⎛
⎝Kur +

∑
f∈Nr

γ(Prf)F
�
frKufFfr

+
∑

f∈Nu

γ(Puf)M
�F�

fuKrfFfuM

⎞
⎠ vec(Xur) (9)

where γ(Pij) =
∏

e∈Pij
γ(e) ∈ [0, 1] is the decay rate.

We suggest two mechanisms for γ(e). The first is setting
constant γ(e) ∈ [0, 1]. The other is a weight-decay version:

γ(e) = λγmax + (1− λ)γmin, (10)

λ =
Se −mint∈T (St)

maxt∈T (St)−mint∈T (St)
, 0 < γmin < γmax ≤ 1

The detailed processes of this algorithm can be seen in Alg.
1 and the algorithms based on the above two variants are
abbreviated as DPMC-C and DPMC-A, respectively.

Experiments

Protocols for Peer Methods, Metrics and Datasets.

We mainly compare two competitive multi-graph match-
ing solvers i.e., MatchOpt (Yan et al. 2015a) and CAO-C
(and its approximate but efficient variant CAO-PC) (Yan et
al. 2016a) as the source code is publicly available. More-
over, CAO is one of the state-of-the-art multi-graph match-
ing solvers and in our experiments it outperforms many con-
sistency smoothing methods e.g. (Chen, Guibas, and Huang
2014; Zhou, Zhu, and Daniilidis 2015) hence for clarity we
mainly compare it in our experiments.

Our experiments need to evluate both matching accuracy
and clustering quality. We first employ Cluster Purity and
Rand Index as well-defined metrics for data clustering.

1) Clustering Purity (CP): average of the por-
tion of true positive class in each cluster, given by
(Schütze, Manning, and Raghavan 2008): Purity =
1
N

∑K
k=1 maxi∈{1,...,K′} |Wk∩Ci|, where Wk is the learned

index set belonging to cluster k, Ci is the real index set of
graphs belonging to class i, N is the total number of graphs.
Higher purity indicates more concentration in each cluster.

2) Rand Index (RI): By treating the labels as a cluster-
ing ground truth, RI can be used as clustering accuracy (the
higher the better), measuring the similarity between the clus-
tering and real labels (Rand 1971): RI = n11+n00

n ∈ [0, 1],
where n11 is the number of graph pairs that are in the same
cluster with the same label, and n00 is the number of pairs
that are in different clusters with different labels.

However, these two metrics have their own limitations
when evaluating some extreme case, i.e., a high score not
always indicates good performance.

i) Clustering Purity: This metric is not able to deal with
unbalanced data in certain cases, whereby a bad clustering
result may lead to good CP score, as shown in Fig. 2(b).

ii) Rand Index: It is within [0,1], while has different lower
bounds for different cases e.g., it can never be lower than 0.8
when nc × ng = 10× 10. Hence it may not be a consistent
metric for evaluating clustering performance across different
numbers of cluster and cluster sizes.

Therefore we further propose two metrics: Affinity Con-
trast (AC) and Clustering Accuracy (CA).

For convenience, we use A, B, ... to denote the ground-
truth clusters, A′, B′, ... for the clusters derived by the above
methods and Ga, Gb, Ga′ , Gb′ ,... as a single graph.

3) Affinity Contrast (AC), quotient of intra-cluster aver-
age score and inter-cluster average score, measures the rela-
tive discrimination between intra-cluster and inter-cluster:

AC =

∑
A
∑

Ga �=Gb∈A Sab∑
A
∑

Ga �=Gb∈A 1
×

∑
A�=B

∑
Ga∈A,Gb∈B 1∑

A�=B
∑

Ga∈A,Gb∈B Sab

(11)
4) Clustering Accuracy (CA), which evaluates the rel-

ative clustering performance by calculating the intra-class

1664

and inter-class score of every pair (Gi,Gj), as given by:

CA = 1− 1

C

⎛
⎝∑

A

∑
A′ �=B′

|A′ ∩ A||B′ ∩ A|
|A| · |A|

+
∑
A′

∑
A�=B

|A′ ∩ A||A′ ∩ B|
|A| · |B|

⎞
⎠ (12)

Moreover, we adapt the accuracy for single cluster to multi-
cluster by only considering the intra-cluster matchings,
which we call Matching Accuracy (MA) as given by:

Matching Accuracy =
1∑

A′ |A′|
∑
A′

|A′| ·Acc(A′) (13)

where Acc(A′) denotes the accuracy for single cluster A′.
Note that all the experiments are performed on a laptop

with 2.60GHZ 4-core CPU and 12G memory.
1) Synthetic dataset. We first randomly generate nc ‘ref-

erence’ adjacency matrices Er
i , i = 1, 2, .., nc of a com-

plete graph. For each ‘reference’ adjacency matrix, we add
Gaussian perturbation to each ‘reference’ edge to generate
ng graphs belonging to this cluster. Specifically, the ‘per-
turbed’ edge weight qpij is calculated by: qpij = qrkij +

N(0, υ), k = 1, 2, ..., nc, where υ is a hyperparameter of de-
formation. The edge affinity can be calculated by Kac;bd =

exp(− (qab−qcd)
2

σ2), where σ2 is the similarity sensitivity pa-
rameter. For outlier test, we follow the common inlier set-
ting, whereby equal number of no outliers are added in
each graph with the same number of inliers. As such, the
matching matrix is always a permutation one to facilitate
the derivation of our technique. This protocol has also been
widely used in (Yan et al. 2016a; Yu et al. 2018). For differ-
ent numbers of outliers, one can introduce dummy nodes to
make equal size of graphs (Zhou and Torre 2012).

2) Real-world dataset. Willow-ObjectClass (Cho, Ala-
hari, and Ponce 2013) contains images from Caltech-256
and PASCAL VOC2007, which are categorized into 5
classes: 109 Face, 66 Winebottle, 50 Duck, 40 Car and 40
Motorbike. We choose the three clusters except for ‘Face’
and ‘Winebottle’ as they are too easy for matching. With
10 points manually labeled for each image, we additionally
randomly generate no outliers for outlier test. The adjacency
matrix is constructed by sparse Delaunay triangulation. We
set the affinity matrix re-weighted by β ∈ [0, 1] for both
length and angle affinity. We randomly choose ng graphs
for each cluster and mix them together as our real dataset.

Sparsification on affinity score matrix.

To make the input matrix more suitable for clustering, we
adopt the standard processing (Ding 2004) to sparsify the
matrix. For each pair of two graphs whose matching score
corresponding to the element in S, if either one is among the
k-nearest neighbors of the other, or vice versa, the element
is unchanged. Otherwise, it is zeroed. The parameter k is set
to 10. There is another way of sparsifying via thresholding
(Ding 2004), by which we find similar results are obtained
hence we only report the results using k-NN preprocessing.

Table 1: Parameter setting details for experiments. Inlier #:
ni, outlier #: no, deform: υ, k-neighbor: k, sensitivity: σ2,
reweight: β, cluster #: nc, cluster size: ng .

Fig. 3: deform nc = 1, ng = 30, ni = 10, no = 0, υ = 0.15, σ2 = .05
Fig. 3: outlier nc = 1, ng = 30, ni = 6, no = 4, υ = 0.00, σ2 = .05

Fig. 3: real nc = 1, ng = 30, ni = 10, no = 2, β = 0.9, σ2 = .1

Table 2: syn nc = 5, ng = 6, ni = 10, no = 2, υ = 0.1, σ2 = .05, k = 10
Table 2: real nc = 3, ng = 10, ni = 10, no = 2, β = 0.9, σ2 = .03, k = 10

Fig 4: syn nc = 5, ng = 6, ni = 10, no = 2, υ = 0.1, σ2 = .05, k = 10
Fig 4: real nc = 4, ng = 10, ni = 10, no = 1, β = 0.9, σ2 = .03, k = 10

Table 3: syn ni = 10, no = 2, υ = 0.1, σ2 = .03, k = 10
Table 3: real ni = 10, no = 1, β = 0.9, σ2 = .03, k = 10

Evaluation Results

Results on single cluster multi-graph matching. Fig. 3
shows TPMC’s performance as a traditional graph match-
ing solver on synthetic and real-world datasets. We compare
TPMC with MatchOpt and CAO-based methods in accuracy
and time metrics. Note that the accuracy is identical to the
accuracy metric for existing graph matching problem.

Specifically, TPMC has a significant improvement over
MatchOpt on the accuracy, e.g., the accuracy increases about
11% to 19% on the car and deform dataset in Fig. 3(c) and
Fig. 3(b). Compared with CAO-PC, it achieves nearly the
same performance with a smaller time cost: TPMC has 1%
to 2% accuracy loss than CAO-PC and nearly 2× faster with
regard to time cost across all dataset, as shown in Fig. 3(d).
Moreover, significant speedup is spotted in Fig. 3(d) when
comparing with CAO-C: it has nearly 3× speedup with 6%
accuracy cost on the real dataset. In general, TPMC gains
better accuracy than MatchOpt and achieves competitive ac-
curacy with CAO-based methods with a much small cost of
time. Detailed settings can be found in Table 1.

Results on multi-cluster multi-graph matching setting.
We further compare our decay algorithms with some state-
of-the-arts, CAO-C, CAO-PC and RRWM for multi-clusters
in graph matching. We use the sparsification technique as
mentioned above to get the score matrix. We can see in
Table 2 that both CAO and our DPMC-A outperform raw
pairwise matching algorithm. Our algorithm, which has a
smaller time cost than CAO, achieves competitive perfor-
mance in all metrics. On the real dataset, one can see the sig-
nificant accuracy and clustering metric improvement from
the raw pairwise matching solver. It is also worth noting that
our algorithms consistently surpass CAO-PC in every met-
ric: the accuracy improves 3% to 6%, well as 20% speedup,
as shown in Table 2. Compared with CAO-C, our methods
take a small accuracy cost, i.e., 1% to achieve the compet-
itive clustering result and nearly 3× speedup: the cluster-
ing accuracy increases 4% to 6%, affinity contrast improves
about 0.5, as well as consistent increment of CP and RI.

Results on varying the decay rate γ for DPMC-C. Fig.
4 shows the matching performance with various decay rates.
As one can see, the overall performance remains stable when
decay rate is in range [0.1, 0.7]. However, further increasing
the decay rate will result in a significant performance drop:
the clustering metric MA drops about 0.1 and 0.2 on the real
and synthetic dataset, respectively. This means our DPMCF

1665

(a) accuracy: outlier (b) accuracy: deform (c) accuracy: car (d) time: car

Figure 3: Evaluation on synthetic data (deform, outlier) and objects from Willow ObjectClass for single-cluster multi-graph
matching. Our method TPMC performs more efficient and accurate than CAO-PC, while significantly faster than CAO-C.

Table 2: Evaluation of intra-cluster matching accuracy (MA) and clustering metric for the multi-cluster multi-graph matching.

metric real-world dataset synthetic dataset
RRWM DPMC-C DPMC-A CAO-C CAO-PC RRWM DPMC-C DPMC-A CAO-C CAO-PC

MA 0.715 0.887 0.887 0.877 0.843 0.651 0.767 0.796 0.769 0.752

CP 0.907 0.963 0.963 0.937 0.937 0.653 0.820 0.839 0.767 0.771
RI 0.902 0.956 0.956 0.930 0.928 0.812 0.894 0.903 0.866 0.870
AC 1.511 1.874 1.885 1.373 1.351 1.081 1.322 1.346 1.091 1.091
CA 0.858 0.936 0.936 0.899 0.896 0.545 0.744 0.765 0.676 0.686

time 0.804 2.868 2.838 9.358 4.064 1.657 5.045 5.022 11.465 3.421

Table 3: Intra-cluster matching accuracy by varying cluster number and number of graphs in cluster or unbalancing cluster size.

real-world dataset synthetic dataset
nc × ng RRWM DPMC-C DPMC-A CAO-C CAO-PC nc × ng RRWM DPMC-C DPMC-A CAO-C CAO-PC

2× 15 0.887 0.940 0.936 0.906 0.903 4× 10 0.751 0.838 0.847 0.874 0.860
3× 10 0.858 0.936 0.936 0.899 0.896 5× 8 0.547 0.713 0.717 0.658 0.667
4× 8 0.681 0.746 0.779 0.686 0.704 6× 7 0.496 0.672 0.675 0.578 0.605
5× 6 0.616 0.701 0.700 0.621 0.606 7× 6 0.437 0.581 0.609 0.512 0.511

1× [5, 10, 20] 0.578 0.597 0.601 0.575 0.571 4× 5, 1× 20 0.440 0.506 0.519 0.490 0.503
3× 5, 1× 15 0.605 0.680 0.673 0.630 0.623 3× 5, 1× [10, 15] 0.542 0.613 0.617 0.576 0.613

(a) real data (b) synthetic data

Figure 4: Evaluation on synthetic data and objects from Wil-
low ObjectClass for DPMC-C by varying the decay rate
γ. When the decay rate increases more than 0.7, the per-
formance of matching will be largely affected. Here AC/2
means the value of Affinity Contrast divided by 2.

is necessary for obtaining a good clustering result, and veri-
fies the performance gain led by introducing a decay rate to
punish the node in supergraph with lareger distance.

Results on varying cluster number and cluster size. Ta-
ble 3 verifies the robustness of our methods with CAO-based

Table 4: Clustering accuracy (CA) after DPMC by different
methods for initialization. It is insensitive to initialization.

CA RRWM CAO-C CAO-PC MatchOpt

Init 0.541 0.689 0.658 0.351
DPMC 0.731 0.762 0.768 0.350

methods on different cluster numbers and unbalanced clus-
ter size. For cluster number test, our decay methods con-
sistently outperforms CAO-C on clustering accuracy, while
achieves a greater advantage over other methods as cluster
number increases: the clustering accuracy gap with CAO-
based methods goes from 3% to 8% when more clusters are
split. In unbalanced cluster size test, nearly the same accu-
racy is achieved by both our two decay methods, which sur-
passes CAO-C by 3% to 5% on clustering accuracy.

Results on initialization of DPMC. Table 4 verifies the
robustness of our DPMC against different affinity matrices
for MST construction. We obtain four different initializa-
tions via RRWM, CAO-C, CAO-PC, MatchOpt and evalu-
ate their clustering performance (CA) by applying spectral

1666

clustering on each initial matrix. Then we apply DMPC to
get final affinity matrices and evaluate them in the same way.

Note that when the initialization is reasonable (RRWM,
CAO), DPMC can achieve good clustering performance
given a decrease of 0.14 on initialization: CA only decreases
0.03 in RRWM initialization compared with CAO-PC ini-
tialization. However, if the initialization is bad (MatchOpt),
DPMC still has difficulty in further improvement.

Time complexity analysis. The speedup compared with
CAO benefits from lower time complexity bound: our
method, similar with MatchOpt, updates each edge along
spanning tree T , generally costs O(N2 logN + n4N2) in
total, where N and n denote the number of graphs and
nodes, respectively. Specifically, it takes O(N2 logN) to
construct the maximum spanning tree and O(n3N2) to up-
date edges via depth-first searching. In contrast, CAO based
methods update every edge for iterations via composition
paths, and suffer a lot of calculation time for pair consis-
tency, i.e., it takes O(nN) time cost for each pair. Admit-
tedly, due to the tree construction and depth-first searching,
our method is relatively slower than MatchOpt, which only
costs O(n4N2+n3N3). We leave out the time cost of initial
pairwise matching since it is used in all the methods.

Conclusion

This paper strikes an endeavor for robust matching of mul-
tiple graphs from a mixture of clusters (or clusters), which
has not been addressed but important for practical applica-
tions. We have presented a tree based framework whereby
compositional pairwise matching can be derived and the
technique can be viewed as in the between of two strong
baselines MatchOpt (Yan et al. 2015a) and CAO (Yan et
al. 2016a) which achieves strong cost-effectiveness on tra-
ditional multi-graph matching problem. We then develop a
decaying version that focuses more on within-cluster match-
ing and show the first solver, to our best knowledge, for the
multi-cluster multi-graph matching task. It outperforms by a
significant margin against the existing multi-graph matching
methods. Source code will be made publicly available.

References

Chen, Y.; Guibas, L.; and Huang, Q. 2014. Near-optimal joint
object matching via convex relaxation. In ICML.
Chertok, M., and Keller, Y. 2010. Efficient high order matching.
TPAMI.
Cho, M.; Alahari, K.; and Ponce, J. 2013. Learning graphs to
match. In ICCV.
Cho, M.; Lee, J.; and Lee, K. M. 2010. Reweighted random walks
for graph matching. In ECCV.
Ding, C. 2004. A tutorial on spectral clustering. In Talk presented
at ICML.(Slides available at http://crd. lbl. gov/ cding/Spectral/).
Duchenne, O.; Bach, F.; Kweon, I.; and Ponce, J. 2011. A tensor-
based algor ithm for high-order graph matching. PAMI.
Garey, M. R., and Johnson, D. S. 1990. Computers and Intractabil-
ity; A Guide to the Theory of NP-Completeness. W. H. Freeman &
Co.
Gold, S., and Rangarajan, A. 1996. A graduated assignment algo-
rithm for graph matching. TPAMI.

Hu, N.; Thibert, B.; and Guibas, L. 2018. Distributable consistent
multi-graph matching. In CVPR.
Huang, Q., and Guibas, L. 2013. Consistent shape maps via
semidefinite programming. In Proc. Eurographics Symposium on
Geometry Processing (SGP).
Kim, V. G.; Li, W.; Mitra, N. J.; DiVerdi, S.; and Funkhouser, T.
2012. Exploring collections of 3d models using fuzzy correspon-
dences. In SIGGRAPH.
Kruskal, J. B. 1956. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the American
Mathematical society 7(1):48–50.
Lawler, E. L. 1963. The quadratic assignment problem. Manage-
ment Science.
Lee, J.; Cho, M.; and Lee, K. M. 2011. Hyper-graph matching via
reweighted randomwalks. In CVPR.
Leonardos, S.; Zhou, X.; and Daniilidis, K. 2017. Distributed con-
sistent data association. ICRA.
Leordeanu, M., and Hebert, M. 2005. A spectral technique for
correspondence problems using pairwise constraints. In ICCV.
Loiola, E. M.; de Abreu, N. M.; Boaventura-Netto, P. O.; Hahn,
P.; and Querido, T. 2007. A survey for the quadratic assignment
problem. EJOR.
Ngoc, Q.; Gautier, A.; and Hein, M. 2015. A flexible tensor block
coordinate ascent scheme for hypergraph matching. In CVPR.
Pachauri, D.; Kondor, R.; and Vikas, S. 2013. Solving the multi-
way matching problem by permutation synchronization. In NIPS.
Rand, W. M. 1971. Objective criteria for the evaluation of clus-
tering methods. Journal of the American Statistical association
66(336):846–850.
Schütze, H.; Manning, C. D.; and Raghavan, P. 2008. Introduction
to information retrieval, volume 39. Cambridge University Press.
Wang, Q.; Zhou, X.; and Daniilidis, K. 2018. Multi-image seman-
tic matching by mining consistent features. In CVPR.
Yan, J.; Tian, Y.; Zha, H.; Yang, X.; Zhang, Y.; and Chu, S. 2013.
Joint optimization for consistent multiple graph matching. In
ICCV.
Yan, J.; Li, Y.; Liu, W.; Zha, H.; Yang, X.; and Chu, S. 2014. Grad-
uated consistency-regularized optimization for multi-graph match-
ing. In ECCV.
Yan, J.; Wang, J.; Zha, H.; Yang, X.; and Chu, S. 2015a.
Consistency-driven alternating optimization for multigraph match-
ing: A unified approach. TIP.
Yan, J.; Zhang, C.; Zha, H.; Liu, W.; Yang, X.; and Chu, S. 2015b.
Discrete hyper-graph matching. In CVPR.
Yan, J.; Cho, M.; Zha, H.; Yang, X.; and Chu, S. 2016a. Multi-
graph matching via affinity optimization with graduated consis-
tency regularization. TPAMI.
Yan, J.; Yin, X.; Lin, W.; Deng, C.; Zha, H.; and Yang, X. 2016b.
A short survey of recent advances in graph matching. In ICMR.
Yu, T.; Yan, J.; Liu, W.; and Li, B. 2018. Incremental multi-graph
matching via diversity and randomness based graph clustering. In
ECCV.
Zass, R., and Shashua, A. 2008. Probabilistic graph and hypergraph
matching. In CVPR.
Zhou, F., and Torre, F. D. 2012. Factorized graph matching. In
CVPR.
Zhou, X.; Zhu, M.; and Daniilidis, K. 2015. Multi-image matching
via fast alternating minimization. In ICCV.

1667

