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Abstract

Given a Boolean formula φ(x) in conjunctive normal form
(CNF), the density of states counts the number of variable
assignments that violate exactly e clauses, for all values of
e. Thus, the density of states is a histogram of the num-
ber of unsatisfied clauses over all possible assignments. This
computation generalizes both maximum-satisfiability (MAX-
SAT) and model counting problems and not only provides
insight into the entire solution space, but also yields a mea-
sure for the hardness of the problem instance. Consequently,
in real-world scenarios, this problem is typically infeasible
even when using state-of-the-art algorithms. While finding
an exact answer to this problem is a computationally inten-
sive task, we propose a novel approach for estimating den-
sity of states based on the concentration of measure inequal-
ities. The methodology results in a quadratic unconstrained
binary optimization (QUBO), which is particularly amenable
to quantum annealing-based solutions. We present the over-
all approach and compare results from the D-Wave quantum
annealer against the best-known classical algorithms such as
the Hamze-de Freitas-Selby (HFS) algorithm and satisfiabil-
ity modulo theory (SMT) solvers.

1 Introduction

The density of states (DOS) for a given propositional logic
(Boolean) formula not only provides insight into the com-
plete solution space but also serves as an accurate mea-
sure of the difficulty or hardness of the problem instance.
The ability to compute DOS of Boolean formula has criti-
cal applications in system-requirements engineering of com-
plex aerospace products. It provides a metric for require-
ments engineers to compare constraints, prescribed require-
ments (Ferrante et al. 2016), and requirements decomposi-
tions (Kirkman 1998). This computation is particularly ger-
mane to the design and optimization of complex aerospace
systems (Sommerville 2005). Current classical methods
for computing density of states (Wang and Landau 2001;
Ermon, Gomes, and Selman 2010; 2011) have limited scala-
bility. While the focus of this paper is on Boolean formulae,
we note that constrained programming and feasibility prob-
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lems can be easily mapped to equivalent Boolean satisfiabil-
ity instances (Walsh 2000; Tamura et al. 2009).

The DOS problem in the standard k-satisfiability (k-
SAT) setting can be elucidated as follows: instead of de-
ciding whether a given logical formula is satisfiable or not,
one aims to compute the entire histogram of the number
of clauses satisfied over all possible variable assignments.
Note the DOS, for a given instance of an optimization or
decision problem, captures its hardness (distributions with
a low footprint for all satisfied clauses are harder to com-
pute or satisfy). The DOS histogram sheds light on the fun-
damental nature of the feasible solution set and difficulty of
solving the optimization problem. Such problems frequently
arise when constructing complex systems for aerospace and
defense applications (Leveson and Weiss 2009).

The lack of methodical approaches that enable the com-
parison of competing safety-critical system requirements,
while optimizing performance, stymie the development of
next-generation complex systems. Note there are often mul-
tiple paths to decompose the overall system safety require-
ments down to subsystems requirements. Some of these de-
compositions may lead to costly design and redesign cycles
to achieve desired levels of performance. Decompositions
that have a higher DOS in the satisfiable range result in
greater freedom to optimize performance and, consequently,
result in quicker design cycles and fewer redesigns. The
ability to quickly estimate the DOS of satisfiability prob-
lems will enable the specification engineer to ensure the
prescribed requirements are satisfiable, internally consistent,
and amenable to design space exploration very early in the
design requirement step.

In this work, we aim to construct novel approaches for
rapidly computing the DOS for a SAT problem (Boolean
formula) (Biere, Heule, and van Maaren 2009). Our approx-
imate approach to estimate DOS of SAT instances exploits
the concentration of measure inequalities (Boucheron, Lu-
gosi, and Massart 2013). These inequalities provide bounds
on the tails of the distributions of random functions and
have been used to construct the theory of generalization in
machine learning (Abu-Mostafa, Magdon-Ismail, and Lin
2012) compute optimal bounds on uncertainty (Owhadi et
al. 2013), compute bias of statistical estimators (Gourgoulias
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et al. 2017), and derive results in random matrix theory (Tao
2012).

In this paper, we make the following contributions:
1. We introduce a novel approach to estimate the density of

states for SAT problems by using concentration of mea-
sures (McDiarmid’s inequality), and bound the deviation
of the number of unsatisfied clauses (energy) from the
expected (mean) number of unsatisfied clauses for uni-
formly distributed assignments.

2. The deviation of the energy function from its expected
value depends on its diameter (function variability),
which can be computed by solving an optimization (max-
imization) problem (Owhadi et al. 2013). We show this
maximum deviation computation can be posed in the
form of a quadratic unconstrained binary optimization
(QUBO) that is particularly amenable to quantum anneal-
ers and results in tight bounds on the DOS histogram.

3. We demonstrate our approach on classical platforms by
computing the diameter and associated concentration of
measure bounds using Selby’s implementation (Selby
2013; 2014) of the Hamze-de Freitas- Selby (HFS) al-
gorithm (Hamze and de Freitas 2004).

4. We use satisfiability modulo theory (SMT) solvers (Bar-
rett et al. 2009) to solve the QUBO formulation as an al-
ternative approach on classical platforms. The solutions
from SMT solvers provide tighter estimates but require
significantly higher computational effort and do not scale.

5. We then compare the classical results to the computa-
tions on the D-Wave quantum annealer, a commercially
available noisy intermediate-scale quantum (NISQ) de-
vice (Preskill 2018). We find the D-Wave machine pro-
vides higher-quality solutions when compared to the HFS
algorithm, and scales better than SMT solvers. We fur-
ther note the search for useful problems that are appro-
priate for present day NISQ devices is a very active area
of research within quantum computing (Preskill 2018).
We propose the DOS computation task as a potential
test problem that can be used to benchmark current- and
next-generation quantum annealers against their classi-
cal counterparts.

2 Background
Logical specification is widely used in the design and verifi-
cation of hardware and software systems (Malik et al. 1988;
Jha et al. 2010) as well as interpretable abstraction of
machine learning models (Vazquez-Chanlatte et al. 2018;
Jha et al. 2018). In this paper, we focus on propositional
logic (Boolean) formula. A k-SAT Boolean formula φ(x) of
N Boolean variables and m clauses, φ : {0, 1}N → {0, 1},
written in the conjunctive normal form (CNF) (Biere, Heule,
and van Maaren 2009) as follows,

φ(x) =

m∧
i=1

Ci =

m∧
i=1

(xi1 ∨ xi2 ∨ . . . ∨ xik), (1)

where xil is the lth literal in clause Ci. A SAT formula is
said to be satisfiable if there exists an assignment for the bi-
nary variables x such that φ(x) = 1 (true). It is well known

that the satisfiability problem is NP-complete (Cook 1971).
A critical parameter associated with the satisfiability prob-
lem is the clause density α = m/N (Biere, Heule, and van
Maaren 2009). In particular, the probability that a random
k-SAT instance is satisfiable undergoes a phase transition
as a function of α (N → ∞) (Xu and Li 2000; Biere,
Heule, and van Maaren 2009). The MAX-SAT problem
(and the corresponding weighted version) (Krentel 1988;
Chieu and Lee 2009) requires one to find that assignment
(or assignments) that maximize the number (or the cumula-
tive weights) of satisfied clauses. Consider a SAT formula
φ, then every assignment x can be mapped to an “energy”
Φ(x) such that,

Φ(x) =
m∑
i=1

Ci, (2)

where Ci = 1, if the i-th clause evaluates to true. In other
words, the goal under the MAX-SAT problem is to find the
assignment for x such that the number of satisfied clauses
(or energy) is maximized. Using De Morgan’s laws, one can
easily show that,

Φ(x) = m−
m∑
i=1

k∏
l=1

f(xil), (3)

wheref(xil) =

{
xil , if xil is negated in the clause
(1− xi1), otherwise.

(4)

Using the above formula, it is easy to see that if each literal
xil were random with equal probability for values {0, 1},
then the expected number of satisfied clauses is,

E[Φ(x)] =
m(2k − 1)

2k
. (5)

Thus, even though the satisfiability is NP-complete, a ran-
dom assignment is expected to satisfy a large fraction of the
clauses. For the 3-SAT, the above formula reduces to,

E[Φ(x)] = 7m/8. (6)

One can use this expected value of the number of satisfied
clauses to estimate the DOS using concentration of measure
inequalities. For SAT instances that arise from specific ap-
plication domains (thus, not random), one can estimate the
expected number of satisfied clauses by sampling over the
independent variables in the Boolean formula.

The DOS d(e) of a SAT formula φ is equal to the number
of assignments x for which Φ(x) = e. In other words, it is
the histogram of the number assignments as a function of e
satisfied clauses. Note the value of the number of satisfied
clauses e lies between 0 and m where m is the total num-
ber of clauses in the SAT formula. Following the terminol-
ogy from the physics community, we will also call this the
energy of SAT formula. Since the total number of possible
assignments is 2N , one can define the normalized density of
states as follows,

p(e) =
d(e)

2N
. (7)
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The normalized DOS acts as a discrete probability distribu-
tion. Note it is not necessary that all energies e have a valid
assignment. For example, if the SAT formula cannot be sat-
isfied then p(m) = 0. As explained previously, for a random
3-SAT, the mean of p(e) vs e is at 7m/8 (Ermon, Gomes,
and Selman 2010).

The density computation problem generalizes computa-
tionally hard problems of MAX-SAT and model count-
ing (Birnbaum and Lozinskii 1999). The state-of-the-art al-
gorithm for computing DOS is inspired by the Wang and
Landau random walk algorithm (Wang and Landau 2001).
In (Ermon, Gomes, and Selman 2010; 2011), the authors
propose an adaptive Markov Chain Monte Carlo (MCMC)
approach called MCMC-FlatSAT that aims to sample from
a steady-state distribution such that probability of a particu-
lar assignment σ is inversely proportional to its DOS. Thus,
the sampling approach effectively converges to a flat-visit
histogram (captured by a flatness parameter). In (Ermon,
Gomes, and Selman 2010; 2011), the authors test the algo-
rithm on multiple benchmark examples. We use this method
to compute the DOS for a series of random SAT instances
and compare the resulting histograms to estimated DOS us-
ing our concentration of measure-based approach.

Fig. 1 describes a simple example of the DOS problem for
a Boolean satisfiability problem with N = 100 and α = 4.0,
and shows an example output of the MCMC-FlatSAT algo-
rithm. In our experiments, we found that for k-SAT instances
close to the phase transition (Monasson et al. 1999), the mix-
ing times of the Markov chain (Levin and Peres 2017) in-
crease significantly.
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Figure 1: This example SAT problem has N = 100 vari-
ables, and the clause density ratio α is 4.0. The x-axis is
the number of UNSAT clauses and the y-axis provides a nu-
merical value for the number of assignments with the cor-
responding number of UNSAT clauses. The DOS over all
possible variable assignments are captured in the histogram.

3 SAT and Concentration of Measure

Inequalities

The concentration of measure phenomena bounds the de-
viation of functions of random variables around their

mean (Boucheron, Lugosi, and Massart 2013). There are
a host of inequalities associated with various situations,
see (Boucheron, Lugosi, and Massart 2013; Tao 2010) for
more details. For our setting, we use McDiarmid’s inequal-
ity (McDiarmid 1989) summarized in the theorem below.

Theorem 1. (McDiarmid’s inequality) Let x1, x2, . . . , xN

be independent random variables taking values in the range
R1, R2, . . . , RN and let F : R1 × R2 × . . . × RN → R

be a function with the property that if one freezes all but the
i-th variable, then F (x1, x2, . . . , xN ) fluctuates by at most
Di > 0,

Di = sup
x1,x2,...,xi,x̂i,...,xN

|F (x1, x2, . . . , xi, . . . , xN ))

−F (x1, x2, . . . , x̂i, . . . , xN ))| .
(8)

Then the probability that F deviates from its expected value
is given by,

P [|F (x1, x2, . . . , xN )− E[F (x1, x2, . . . , xN )]| ≥ ε]

≤ C exp(−c
2ε2

D2
), (9)

where D =
√∑

i D
2
i is called the diameter and C, c are

constants.

Proof. See (Boucheron, Lugosi, and Massart 2013; Tao
2010).

So instead of computing the DOS using the MCMC ap-
proach outlined in section 2, one can exploit McDiarmid’s
inequality to compute bounds on the histogram of number of
satisfied (or unsatisfied) clauses. In the setting of the k-SAT
problem, the x1, x2, . . . , xN in the McDiarmid’s inequality
are replaced by the variables x present in the logical for-
mula. That is, x1, x2, . . . , xN are the unique set of Boolean
variables that occur in the formula. The MCMC computa-
tion is now replaced by the set of optimization problems for
computing the diameter as shown in Eqn. 8. Note that for the
density of states computation, the variables are independent
(since we are searching over all possible assignments).

For ease of presentation, we focus on the 3-SAT problem
instead of the generic k-SAT formulation. Polynomial time
reductions from k-SAT to 3-SAT make this translation non-
restrictive. Every k-SAT instance can be converted to a 3-
SAT instance by introducing additional (ancillary) variables.
We now show that the diameter computations for the 3-SAT
problem give rise to a QUBO (Boros, Hammer, and Tavares
2007; Rieffel and Polak 2011) problem that is particularly
amenable to quantum annealers (Kochenberger et al. 2014).

4 QUBO formulation for diameter

computation

To estimate Di in Eqn. 8 for the 3-SAT setting, consider the
following form for the SAT formula,

φ(x) =
m∧
i=1

Ci =

m∧
i=1

(xi1 ∨ xi2 ∨ xi3),
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where xil is the l-th literal in clause Ci. It is easy to check
that the number of satisfied clauses can be expressed as:

Φ(x) =

m∑
i=1

Ci =

m∑
i=1

(xi1 + xi2 + xi3 − xi1xi2

− xi1xi3 − xi2xi3 + xi1xi2xi3).
(10)

While this expression has a cubic term, the cubic term dis-
appears when computing the diameter in Eqn. (8) (shown
later). We now state our central result that formulates the es-
timation of diameters Di needed for computing the DOS as
a quadratic unconstrained Boolean optimization problem.

Theorem 2. The diameter Di for the variable xi in McDi-
armid’s inequality can be computed by solving the following
optimization problem,

Di = max
x\x(i)

∣∣∣∣∣∣
∑
p∈S+

i

[1− xp2 − xp3 + xp2xp3 ]

−
∑
p∈S−

i

[1− xp2
− xp3

+ xp2
xp3

]

∣∣∣∣∣∣ ,

where S+
i and S−

i are the sets of clauses in which x(i) ap-
pears in direct and negated forms, respectively.

Proof. To compute the diameter Di, pick the i-th variable
of x denoted as x(i) and compute the worst-case variation
in the number of satisfied clauses. Since Φ(x) is a sum over
different clauses, only those clauses that include x(i) in their
literal set will contribute to the diameter. S+

i and S−
i are the

sets of clauses in which x(i) appears in direct and negated
forms respectively, that is,

S+
i = {p : Cp = x(i) ∨ xp2 ∨ xp3},

S−
i = {p : Cp = ¬x(i) ∨ xp2 ∨ xp3},

are the set of clauses in which the variable x(i) appears in
the corresponding literal sets as either x(i) or ¬x(i), re-
spectively. Furthermore, because ∨ is commutative, we can
assume without loss of generality that the variable x(i) ap-
pears as the first literal of the clause. Therefore, the expres-
sion for the number of satisfied clauses in the 3-SAT instance
is:

∀p ∈ S+
i Φp =x(i) + xp2 + xp3

− x(i)xp2 − x(i)xp3 − xp2xp3 + x(i)xp2xp3 ,

∀p ∈ S−
i Φp =(1− x(i)) + xp2 + xp3

− (1− x(i))xp2 − (1− x(i))xp3

− xp2xp3 + (1− x(i))xp2xp3 . (11)

Let S0
i = {1, . . . ,m} \ (S+

i ∪ S−
i ) be the set of clauses

within which x(i) does not occur, thus,

Φ(x) =
∑
p∈S0

i

Φp +
∑
p∈S+

i

Φp +
∑
p∈S−

i

Φp.

The first term in the above sum is not affected by chang-
ing x(i) and does not contribute to the diameter and can-
cels in the subtraction in Eqn. 8. Now, since x(i) can only
take one of two values, {0, 1}, the number of clauses sat-
isfied by setting x(i) to 1 in S+

i is
∑
p∈S+

i

[1], and in S−
i is

∑
p∈S−

i

xp2
+ xp3

− xp2
xp3

(computed using Eqn. 11). Sym-

metrically, the number of clauses satisfied by setting x(i) to
0 in S+

i is
∑
p∈S−

i

[1], and in S+
i is

∑
p∈S+

i

xp2
+ xp3

− xp2
xp3

.

Di is the maximum deviation between the two, that is,

Di = max
x\x(i)

∣∣∣∣∣∣
∑
p∈S+

i

[1] +
∑
p∈S−

i

[xp2
+ xp3

− xp2
xp3

]

−
∑
p∈S+

i

[xp2 + xp3 − xp2xp3 ]−
∑
p∈S−

i

[1]

∣∣∣∣∣∣ .

We get the following optimization problem to compute Di

by collecting the terms for summing over S+
i and S−

i ,

Di = max
x\x(i)

∣∣∣∣∣∣
∑
p∈S+

i

[1− xp2
− xp3

+ xp2
xp3

]

−
∑
p∈S−

i

[1− xp2 − xp3 + xp2xp3 ]

∣∣∣∣∣∣ . (12)

This result makes sense intuitively, because the expres-
sion inside each bracket is logically equivalent to ¬(xp2 ∧
xp3

), and if either of the other literals is true, the disjunc-
tive clause Cp remains false regardless of x(i), and therefore
does not contribute to the diameter.

The expression inside the absolute value in (12) is a
quadratic form in x \ x(i). Note that Eqn. 12 can easily
be cast into a purely quadratic form xTQx as the linear
terms can be absorbed into the diagonal of the matrix be-
cause xp = x2

p for binary variables.

Remark 1. The computation for Di involves the maximiza-
tion of an absolute value. To address the absolute value,
we simply perform two separate maximizations as follows
supx |f(x)| = max{supx f(x),− supx f(x)}. Thus, we
compute the two maximizations and choose the larger result
to obtain the diameter. Note that for a 3-SAT instance with N
unique variables, one needs to perform 2N optimizations.

Remark 2. Besides providing a novel approach for esti-
mating the DOS of k-SAT problems, the diameter computa-
tion can be used to benchmark optimization algorithms and
computing platforms. In particular, by comparing the value
of the computed diameter by different approaches, one can
quantify their performance. Higher diameter values corre-
spond to “better” solutions of the optimization problem.
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Remark 3. Using the density of states, one can extract the
probability of a random assignment being at least ε (in terms
of energy or number of clauses satisfied) away from the av-
erage value Ē =

∑m
e=0 p(e)e. Thus,

P
[ ∣∣E − Ē

∣∣ ≥ ε
]
=

m∑
Ē+ε

p(e) . (13)

This quantity can be computed numerically from d(e).

In our experiments, we solved this QUBO formulation us-
ing quantum and classical computing methods. We describe
these in detail in the next section.

5 Results

In our experiments, we attempt to answer the following
questions.

• How does the proposed DOS approach of using concen-
tration of measures and QUBO compare with the baseline
MCMC-FlatSAT approach (Ermon, Gomes, and Selman
2010; 2011)?

• How do the quantum and classical implementations of the
proposed DOS approach compare with one another?

To analyze the performance of the proposed ap-
proach, we generate 20 random 3-SAT instances for ev-
ery possible combination of the following sizes (N =
[30, 50, 75, 100, 125, 150, 200]) and clause density (α =
[4.0, 4.25, 4.5, 5]). As mentioned earlier, although the pro-
posed technique can also be easily applied to non-random
SAT instances, the choice of random SAT instances allows
variation from easy-to-hard problems. Our choice of α val-
ues span the phase transition at α ≈ 4.24 that demar-
cates “easy” and “hard” instances of the satisfiability prob-
lem (Monasson et al. 1999). Thus, in total, we generate 560
random 3-SAT instances, and for each instance we compute
the baseline DOS using MCMC-FlatSAT. These results are
then compared with the proposed concentration of measure
inequality approach. Additionally, the 2N diameter compu-
tations for each instance are performed classically using the
HFS algorithm and the D-Wave quantum annealer. The per-
formance of the D-Wave device is then compared with the
classical results. We also implemented an SMT-based opti-
mization approach on classical platforms, and compared the
D-Wave results with the standard classical solver.

MCMC-FlatSAT results

We implemented the MCMC-FlatSAT (Ermon, Gomes, and
Selman 2010; 2011) algorithm in C++. Depending on the
mixing time of the Markov chain (Levin and Peres 2017),
there was a large variation in the performance of the code.
The computation time ranged from hours to several days (in
some instances the code took 3− 10 days to converge). The
computations were performed for all of the 560 instances as
outlined above. A few instances of the resulting density of
states are shown in Fig. 2. In general, the MCMC approach
was found to have a high computational cost.

SMT results

We used the Z3 SMT solver (Bjørner, Phan, and Flecken-
stein 2015) to encode the QUBO problem as a bitvector
problem exploiting the fixed range of discrete values that
can be taken by the diameters. The resulting problem is a
pseudo-Boolean optimization problem that we solve itera-
tively using satisfiability solving by binary search (between
0 and the number of clauses in which the variable occurs)
over the optimization goal. We allow the SMT solver a time-
out of 100 seconds for every trial to find a larger diameter.
The 560 instances took 8 days to compute. The SMT solver
found better solutions for the QUBO compared to quantum
annealing, and hence placed more accurate bounds on the
histogram. However, the scalability declined sharply with
the increase in the number of variables. In particular, we
found that the Z3 solver took hours to days to complete
several instances. The diameters computed using the SMT
solver can be seen in Fig. 5 for a few values of N and α.

Quantum annealing results

We use the D-Wave 2X (DW2X) annealer (Johnson et al.
2011) located at the USC Information Science Institute in
Marina del Rey as our quantum platform for computations.
This DW2X processor is an 1152-qubit quantum annealing
device made using superconducting flux qubits (Bunyk et al.
2014). It has 1098 functional qubits that function at 12 mK.
The annealer implements the transverse Ising Hamiltonian,

H(s) = A(s)
∑
i

σx
i +B(s)

⎛
⎝∑

i

hiσ
z
i +

∑
ij

Jijσ
z
i σ

z
j

⎞
⎠ ,

(14)
where s = t/tf is the normalized time, tf is the total evo-
lution time, and A(s) and B(s) are the annealing schedules
that modulate the transverse field and Ising field strength, re-
spectively. The total annealing time tf can be set in the range
[5, 2000] μs. The coupling strengths Jij between qubits i
and j can be set in the range [−1, 1], and the local fields
hi can be set in the range [−2, 2]. Initially, A(0) 
 B(0)
and the system starts in the superposition of all possible
computational states. During the evolution from s = 0 to
s = 1, the transverse field is reduced and the Ising field
strength is increased such that A(1) � B(1). If tf is large
enough, the adiabatic theorem (Born and Fock 1928) guar-
antees that the final state of the system will be the ground
state of H(s = 1). The device has been used for machine
learning (Biamonte et al. 2017; Adachi and Henderson 2015;
Mott et al. 2017), image recognition (Neven, Rose, and
Macready 2008), and combinatorial optimization (Ushijima-
Mwesigwa, Negre, and Mniszewski 2017; McGeoch and
Wang 2013; Neukart et al. 2017; Venturelli, Marchand, and
Rojo 2015) to name a few.

We use the above platform to compute the diameters for
all the 560 instances of random satisfiability problems and
compared the results to MCMC-FlatSAT. As noted in re-
mark 1, each instance of an N -dimensional 3-SAT problem
gives rise to 2N optimizations for Di. We chose the smallest
possible annealing time tf = 5μs. For each QUBO instance
of this study, we did 1000 readouts with 10 gauge transforms
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Figure 2: Density of states for random satisfiability instances with varying size and clause density. The X-axis is the number of
unsat clauses, Y-axis is the DOS showing number of assignments in log scale. (a) N = 125, α = 5.0, (b) N = 150, α = 4.25.
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Figure 3: Comparison of the density of states computed by MCMC and the concentration of measure bounds.
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Figure 4: Comparison of diameters computed by the D-Wave quantum annealer and HFS algorithm.

each (Boixo et al. 2014). Additional details of this particu-
lar process can be found in, for example, Ref. (Mishra, Al-
bash, and Lidar 2018). Note that the total wall clock time
to optimize each instance, which includes overheads such
as initializing the qubits and measurements, was ≈ 0.1 sec-
ond. Additionally, 1000 readouts are on the low side; how-
ever, we were restricted due to the sheer number of QUBOs
(≈ 120, 000 instances) coupled with limited affiliate time on

the DW2X annealer.
We map each diameter computation to a QUBO.

Qi(�x) =
∑
p∈S+

i

[1− xp2
− xp3

+ xp2
xp3

]

−
∑
p∈S−

i

[1− xp2
− xp3

+ xp2
xp3

] .
(15)
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Figure 5: Comparison of diameters computed by the D-Wave quantum annealer and SMT solver.

The size of this QUBO problem depends on the size of
the sets S+

i and S−
i (see Section 4 of the paper). If the SAT

problem has N variables and α clause density, the number
of clauses M = Nα is a loose upper bound on the size
of these QUBO problems. Since the clauses can contain ar-
bitrary variables, for which DW2X has a finite connectiv-
ity graph, we need to find a minor embedding of the D-
Wave graph that can fit this QUBO problem (Choi 2008;
2011). In such embedding, each xpi in Eqn. 15 is repre-
sented by a chain of physical qubits connected via an ferro-
magnetic couplings. We used the sapiFindEmbedding
function provided by the D-Wave application program in-
terfaces (API) to find such embeddings. We used the
sapiEmbedProblem function to submit the jobs to the
processor and sapiUnembedAnswer function with the
minimize energy option to optimally decode the em-
beddings back to the variables �x. We used the heuristic fer-
romagnetic chain coupling provided by the API. To find
higher-quality solutions, one can optimize this ferromag-
netic coupling value such that the chain of physical qubits
representing each variable is consistent at the end of the an-
neal. Thus, our results provide a lower bound on the diame-
ter. Potentially, one may be able to obtain improved results
by performing the actions suggested above and optimizing
the annealing process.

After computing all the Di’s for a given instance, we
can plot the concentration of measure bounds for the DOS.
Note that in McDiarmid’s inequality (Eqn. 9), two constants
appear that can be used to make the bounds on the DOS
tight. In particular, we find C = 1 and c = 56.16 −
12.08 exp(−0.07(N − 29.78)) + 6.88(α − 4.46) give rise
to very close approximations of the density of states in the
range of 30 ≤ N ≤ 200 (as shown in Fig. 3). These param-
eters were computed using the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm (Liu and Nocedal 1989). The
functional form for c was obtained empirically by finding
the best c for each of the 560 instances and performing re-
gression with respect to N and α (see Fig. 6).

Comparison of D-Wave and HFS

We repeat the Di computations for each of the 560 instances
by forcing the classical device to compute the best possible
solution using the HFS algorithm. We again run the com-

Figure 6: Concentration of measure constant as a function of
α. The different lines correspond to different values of N.

putation for 0.1 secs, repeated 1000 times for each Di. The
best Di is saved and the rest are discarded. We then com-
pare the Di values obtained using quantum annealing with
those computed classically. Note that higher diameter val-
ues correspond to “better” solutions as they correspond to
higher quality solutions of the QUBO. Note we intend to
conduct a comprehensive benchmarking study for the D-
Wave quantum annealer (Albash and Lidar 2018) (using our
DOS framework) in future work.

Out of the 560 random satisfiability instances, the D-
Wave quantum computer computes higher quality solu-
tions (higher diameter values) in 306 instances. However,
as shown in Fig. 4, the D-Wave provided a marginal im-
provement on the diameter values. In particular, we found
that the average solution computed by the D-Wave machine
was around 0.7% higher than the HFS algorithm. The most
favorable result for the D-Wave was the computation of a so-
lution that was 7% better than the HFS algorithm. Whether
this improvement holds for larger instances remains to be
seen and will be tested in higher qubit settings. We would
like to point out, however, that in no instance did the HFS
algorithm find a higher quality solution when compared to
the D-Wave machine. As shown in Fig. 5, the SMT solver
does find significantly better solutions than the D-Wave ma-
chine. Note that the computational cost of the solver is sig-
nificantly higher (taking hours to days to compute the diam-
eter of some instances). More detailed results can be found
in (Sahai et al. 2019).
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6 Conclusion

We have developed a novel concentration of measure
inequalities-based approach for estimating the density of
states of the k-SAT problem. Existing state-of-the-art
Markov Chain Monte Carlo methods for computing density
of states are stymied by computational intractability. Our ap-
proach provides estimates for the density of states histogram
by converting the problem into a set of optimization prob-
lems that bound the maximum variability of the cost func-
tion. For the 3-SAT, these optimization problems reduce to
quadratic unconstrained binary optimizations, thereby mak-
ing them amenable for commercially available quantum an-
nealers such as the D-Wave machine.

In summary, we propose a new approach for estimating
density of states of the k-SAT problem that can be imple-
mented on both classical and quantum platforms. Moreover,
the problem is a particularly interesting test for comparing
quantum platforms (annealers and other noisy intermediate-
scale quantum devices) to classical computation. This is
because the diameter values provide a real number metric
for comparison. In other words, the quality of solution is
a real number as opposed to the standard satisfiability tests
for benchmarking quantum devices that yield inconclusive
results of the form “no satisfiable assignments found” for
most instances. We hope this problem and the outlined ap-
proach can be used to analyze complex aerospace system re-
quirements from a satisfiability standpoint as well as to test
emerging quantum platforms against their classical counter-
parts. DOS estimation can be used for probabilistic inference
and, thus, an efficient quantum algorithm for the density of
states estimation will enable development of quantum artifi-
cial intelligence.
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