Augmenting the Power of (Partial) MaxSat Resolution with Extension


  • Javier Larrosa UPC
  • Emma Rollon UPC



The refutation power of SAT and MaxSAT resolution is challenged by problems like the soft and hard Pigeon Hole Problem PHP for which short refutations do not exist. In this paper we augment the MaxSAT resolution proof system with an extension rule. The new proof system MaxResE is sound and complete, and more powerful than plain MaxSAT resolution, since it can refute the soft and hard PHP in polynomial time. We show that MaxResE refutations actually subtract lower bounds from the objective function encoded by the formulas. The resulting formula is the residual after the lower bound extraction. We experimentally show that the residual of the soft PHP (once its necessary cost of 1 has been efficiently subtracted with MaxResE) is a concise, easy to solve, satisfiable problem.




How to Cite

Larrosa, J., & Rollon, E. (2020). Augmenting the Power of (Partial) MaxSat Resolution with Extension. Proceedings of the AAAI Conference on Artificial Intelligence, 34(02), 1561-1568.



AAAI Technical Track: Constraint Satisfaction and Optimization