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Abstract

The Boolean SATisfiability problem (SAT) is of central im-
portance in computer science. Although SAT is known to be
NP-complete, progress on the engineering side—especially
that of Conflict-Driven Clause Learning (CDCL) and Local
Search SAT solvers—has been remarkable. Yet, while SAT
solvers, aimed at solving industrial-scale benchmarks in Con-
junctive Normal Form (CNF), have become quite mature,
SAT solvers that are effective on other types of constraints
(e.g., cardinality constraints and XORs) are less well-studied;
a general approach to handling non-CNF constraints is still
lacking. In addition, previous work indicated that for specific
classes of benchmarks, the running time of extant SAT solvers
depends heavily on properties of the formula and details of
encoding, instead of the scale of the benchmarks, which adds
uncertainty to expectations of running time.
To address the issues above, we design FourierSAT, an
incomplete SAT solver based on Fourier analysis of Boolean
functions, a technique to represent Boolean functions by mul-
tilinear polynomials. By such a reduction to continuous op-
timization, we propose an algebraic framework for solving
systems consisting of different types of constraints. The idea
is to leverage gradient information to guide the search pro-
cess in the direction of local improvements. Empirical results
demonstrate that FourierSAT is more robust than other
solvers on certain classes of benchmarks.

1 Introduction

Constraint satisfaction problems (CSPs) are fundamen-
tal in mathematics, physics, and computer science. The
Boolean SATisfiability problem (SAT) is a special class of
CSPs, where each variable takes value from the binary set
{True,False}. Solving SAT efficiently is of utmost sig-
nificance in computer science, both from a theoretical and a
practical perspective.

As a special case of SAT, conjunctive normal forms
(CNFs) are a conjunction (and-ing) of disjunctions (or-ing)
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of literals. Despite the NP-completeness of CNF-SAT, there
has been a lot of progress on the engineering side of CNF-
SAT solvers. Mainstream SAT solvers can be classified into
complete and incomplete ones: A complete SAT solver will
return a solution if there exists one or prove unsatisfiabil-
ity if no solution exists, while an incomplete algorithm is
not guaranteed to find a satisfying assignment. Clearly, an
incomplete algorithm cannot prove unsatisfiability.

Most modern complete SAT solvers are based on the
the Conflict-Driven Clause Learning (CDCL) algorithm
(Marques-Silva and Sakallah 1999), an evolution of the
backtracking Davis-Putnam-Logemann-Loveland (DPLL)
algorithm (Davis and Putnam 1960; Davis, Logemann,
and Loveland 1962). The main techniques used in CDCL
solvers include clause-based learning of conflicts, random
restarts, heuristic variable selection, and effective constraint-
propagation data structures (Gong and Zhou 2017). Exam-
ples of highly efficient complete SAT solvers include Min-
iSat (Eén and Sörensson 2003), BerkMin (Goldberg and
Novikov 2007), PicoSAT (Biere 2008), Lingeling (Biere
2010), Glusose (Audemard and Simon 2014) and MapleSAT
(Liang 2018). Overall, CDCL-based SAT solvers constitute
a huge success for SAT problems, and have been dominating
in the research of SAT solving.

Local search techniques are mostly used in incomplete
SAT solvers. The number of unsatisfied clauses is of-
ten regarded as the objective function. Local search algo-
rithms mainly include greedy local search (GSAT) (Sel-
man, Levesque, and Mitchell 1992) and random walk GSAT
(WSAT) (Selman, Kautz, and Cohen 1999). During the
main loop, GSAT repeatedly checks the current assignments
neighbors and selects a new assignment to maximize the
number of satisfied clauses. In contrast, WSAT randomly se-
lects a variable in an unsatisfied clause and inverts its value
(Gong and Zhou 2017). On top of these basic algorithms,
several heuristics for variable selection have been proposed,
such as NSAT (McAllester, Selman, and Kautz 1997), Spar-
row (Balint and Fröhlich 2010), and ProbSAT (Balint and
Schöning 2012). While practical local search SAT solvers
could be slower than CDCL solvers, local search techniques
are still useful for solving a certain class of benchmarks,
such as hard random formulas and MaxSAT. Local search al-
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gorithms can also have nice theoretical properties (Bruegge-
mann and Kern 2004).

Non-CNF constraints are playing important roles in the-
oretical computer science and other engineering areas, e.g.,
XOR constraints in cryptography (Bogdanov, Khovratovich,
and Rechberger 2011) as well as cardinality constraints
(CARD) and Not-all-equal (NAE) constraints in discrete op-
timization (Costa et al. 2009) (Dinur, Regev, and Smyth
2005). The combination of different types of constraints
enhances the expressive power of Boolean formulas; e.g.,
CARD-XOR is necessary and sufficient for maximum likeli-
hood decoding (MLD) (Feldman, Wainwright, and Karger
2005), one of the most crucial problems in coding theory.
Nevertheless, compared to that of CNF-SAT solving, effi-
cient SAT solvers that can handle non-CNF constraints are
less well studied.

One way to deal with non-CNF constraints is to encode
them in CNF. However, different encodings differ from the
size, the ability to detect inconsistencies by unit propagation
(arc consistency) and solution density (Prestwich 2009). It
is generally observed that the running time of SAT solvers
relies heavily on the detail of encodings. E.g., CDCL solvers
benefit from arc-consistency (Quimper and Walsh 2007),
while local search solvers prefer short chains of variable de-
pendencies (Kautz, Mcallester, and Selman 1997). Finding a
best encoding for a solver usually requires considerable test-
ing and comparison (Martins, Manquinho, and Lynce 2011).

Another way is to extend the existing SAT solvers to
adapt to non-CNF clauses. Work on this line includes Cryp-
tominisat (Soos, Nohl, and Castelluccia 2009) for CNF-XOR,
MiniCARD (Liffiton and Maglalang 2012) for CNF-CARD,
Pueblo (Sheini and Sakallah 2006) and RoundingSAT (Elf-
fers and Nordström 2018) for CNF-Pseudo Boolean and
MonoSAT (Bayless et al. 2015) for handling CNF-graph
properties formulas. Such specialized extensions, however,
often require different techniques for different types of con-
straints. Meanwhile, general ideas for solving hybrid con-
straints uniformly are still lacking.
Contributions. The primary contribution of this work is the
design of a novel algebraic framework as well as a versatile,
robust incomplete SAT solver—FourierSAT—for solv-
ing hybrid Boolean constraints.

The main technique we used in our method is the Walsh-
Fourier transform (Fourier transform, for short) on Boolean
functions (O’Donnell 2014). By transforming Boolean func-
tions into “nice” polynomials, numerous properties can be
analyzed mathematically. Besides the success of Fourier
transform in theoretical computer science (Linial, Mansour,
and Nisan 1989) (Wei and Ermon 2017), recently, this tool
has also found surprising uses in algorithm design (Achim,
Sabharwal, and Ermon 2016) (Xue et al. 2015). In (Warners
and van Maaren 1998), the authors used a polynomial repre-
sentation to design a SAT solver. However, their solver was
still DPLL-based and mathematical properties of polynomi-
als were not fully exploited. More algorithmic uses of this
technique are waiting to be discovered.

To our best knowledge, this paper will be the first algorith-
mic work to study Fourier expansions of Boolean functions
in the real domain instead of only Boolean domain. After

this relaxation, we find Fourier expansions well-behaved in
the real domain. Thus, we manage to reduce satisfiability
of Boolean constraints to continuous optimization and ap-
ply gradient-based methods. One of the attractive properties
of our method is, different types of constraints are handled
uniformly—we no longer design specific methods for each
type of constraints. Moreover, as long as the Fourier expan-
sions of a new type of constraints are known, our solver can
be extended trivially. In addition, we explain the intuition of
why doing continuous optimization for SAT is better than
doing discrete local search.

Furthermore, our study on the local landscape of Fourier
expansions reveals that the existing of saddle points is an
obstacle for us to design algorithms with theoretical guaran-
tees. Previous research shows that gradient-based algorithms
are in particular susceptible to saddle point problems (Ge et
al. 2015). Although the study of (Jin et al. 2019), (Lee et al.
2016) indicate that stochastic gradient descent with random
noise is enough to escape saddle points, strict saddle prop-
erty, which is not valid in our case, is assumed in the work
above. Therefore, we design specialized algorithms for op-
timizing Fourier expansions.

Finally, we demonstrate, by experimental results, that for
certain class of hybrid formulas, FourierSAT is more ro-
bust compared to existing tools.

We believe that the natural reduction from SAT to
continuous optimization, combined with state-of-the-art
constrained-continuous optimization techniques, opens a
new line of research on SAT solving.

2 Notations and Preliminaries

Boolean Formulas and Clauses

Let x = (x1, ..., xn) be a sequence of n Boolean variables.
A Boolean function f(x) is a mapping from a Boolean vec-
tor {True,False}n to {True,False}. A vector a ∈
{True,False}n is called an assignment and f(a) denotes
the value of f on a. A literal is either a variable xi or its
negation ¬xi. A formula f = c1 ∧ c2 ∧ · · · ∧ cm is the con-
junction of m Boolean functions, where each ci is called a
clause and belongs to a type from the list below:
• CNF: A CNF clause is a disjunction of elements in a lit-

eral set, which is satisfied when at least one literal is true.
E.g., (x1 ∨ x2 ∨ x3).

• CARD: Given a set L of variables and an integer k ∈ [n],
a cardinality constraint D≥k(L) (resp. D≤k(L)) requires
the number of True variables to be at least (resp. most)
k. E.g., D≥2({x1, x2, x3}): x1 + x2 + x3 ≥ 2.

• XOR: An XOR clause indicates the parity of the number
of variables assigned to be True, which can be computed
by addition on GF(2). E.g., x1 ⊕ x2 ⊕ x3.

• NAE: A Not-all-equal (NAE) constraint is satisfied
when not all the variables have the same value. E.g.,
NAE(1, 1, 1, 1, 0) = 1; NAE(0, 0, 0, 0, 0) = 0

Let the set of clauses of f be C(f). Let m = |C(f)| and
n be the number of variables of f . A solution of f is an
assignment that satisfies all the clauses in C(f). We aim to
design a framework to find a solution of f .
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Clause Fourier Expansion

x1 ∨ x2 − 1
2 + 1

2x1 +
1
2x2 +

1
2x1x2

D≥2(x1, x2, x3)
1
2x1 +

1
2x2 +

1
2x3 − 1

2x1x2x3

x1 ⊕ x2 ⊕ x3 x1x2x3

NAE(x1, x2, x3) − 1
2 + 1

2x1x2 +
1
2x2x3 +

1
2x1x3

Table 1: Examples of Fourier Expansion on different clauses

Fourier Expansion of a Boolean Function

We define a Boolean function by f : {±1}n → {±1}. One
point which might be counter-intuitive is that −1 is used to
stand for True and +1 for False. An assignment now is a
vector a ∈ {±1}n.

Fourier expansion is a method for transforming a Boolean
function into a multilinear polynomial. The following theo-
rem shows that any function defined on a Boolean hyper-
cube has an equivalent Fourier representation.

Theorem 1. (Walsh-Fourier Transform) Given a function
f : {±1}n → R, there is a unique way of expressing f as
a multilinear polynomial, with at most 2n terms in S, where
each term corresponds to one subset of [n], according to:

f(X) =
∑
S⊆[n]

(
f̂(S) ·

∏
i∈S

xi

)
,

where f̂(S)’s∈ R are called the Fourier coefficients, given
S, and computed as:

f̂(S) = E
x∼{±1}n

[
f(x) ·

∏
i∈S

xi

]
=

1

2n

∑
x∈{±1}n

(
f(x) ·

∏
i∈S

xi

)

where x ∼ {±1}n indicates x is chosen uniformly from
{±1}n. The polynomial is referred as the Fourier expan-
sion of f .

Table 1 shows some examples of Fourier expansions.

3 A Reduction from SAT to Continuous

Optimization

In this section, we reduce finding a solution of a Boolean
formula to finding a minimum of a continuous multivariate
polynomial, based on Fourier expansion. Due to the space
limit, we delay most of the proofs to the supplemental mate-
rial.

A Reduction to a Minimization Problem

Our basic idea is to do continuous optimization on Fourier
expansions of formulas. However, in general, computing the
Fourier coefficients of a Boolean function is nontrivial and
often harder than SAT itself (for an example, see Proposition
1). Even if we are able to get the Fourier expansion of a
Boolean formula, the polynomial can have high degree—
and as a result, exponentially many terms—making it hard
to store and evaluate.

Proposition 1. Computing the Fourier Expansion of a
pseudo-Boolean constraint (a generalization of a cardinal-
ity constraint, e.g., 3x1 +2x2 +7(¬x3) ≥ 0, x ∈ {±1}3) is
#P-hard.

Instead of computing Fourier coefficients of a monolithic
logic formula, we take advantage of factoring, constructing
a polynomial for a formula by the Fourier expansions of
its clauses. Excitingly, Fourier expansions of many types of
clauses with great interest can be computed easily. Details
can be found in the proof of Proposition 2.
Proposition 2. Fourier expansions of CNF, XOR, NAE
clauses and cardinality constraints have closed form rep-
resentations.

For a formula f with clause set C(f), we define the objec-
tive function associated with f , denoted by Ff , by the sum
of Fourier expansions of f ’s clauses, i.e.,

Ff =
∑

c∈C(f)

FEc

where FEc denotes the Fourier expansion of clause c.
The degree (maximum number of variables in all the

terms) of Ff equals to the maximum number of literals
among all clauses. Note that, in general, Ff is not the Fourier
expansion of f . Instead, it can be understood as a substitute
of f ’s Fourier expansion which is relatively easy to compute.

Let us provide an example to illustrate the above ideas.
Example 1. Suppose f = (x1 ∨ x2) ∧ (x3) ∧ (x2 ∨ ¬x4).
Then, C(f) = {x1 ∨ x2, x3, x2 ∨ ¬x4} and

Ff =

(
−1

2
+

1

2
x1 +

1

2
x2 +

1

2
x1x2

)
+ x3

+

(
−1

2
+

1

2
x2 − 1

2
x4 − 1

2
x2x4

)
= −1 + 1

2x1 + x2 + x3 − 1
2x4 +

1
2x1x2 − 1

2x2x4.

Notice that the objective function is nothing special but a
polynomial. Therefore we relax the domain from discrete to
continuous. An assignment is now defined as a real vector
a ∈ [−1, 1]n. The reduction is formalized in Theorem 2.
Theorem 2. (Reduction) f is satisfiable if and only if

min
x∈[−1,1]n

Ff (x) = −m.

Theorem 2 reduces SAT to a multivariate minimization
problem over [−1, 1]n. In the rest of this subsection, we will
provide proof sketch of Theorem 2.
Definition 1. (Constant). A clause is constant if it is equiv-
alent to either True or False. The Fourier expansion of a
clause is constant if it always equals to −1 or 1.

Lemma 1 indicates the value of multilinear polynomials
is well-behaved in the cube [−1, 1]n.
Lemma 1. Let c be a non-constant clause and a be an as-
signment. Then:
1. if ai ∈ {−1, 1} for all i ∈ [n], then FEc(a) ∈ {−1, 1}.
2. if ai ∈ [−1, 1] for all i ∈ [n], then FEc(a) ∈ [−1, 1].
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3. if ai ∈ (−1, 1) for all i ∈ [n], then FEc(a) ∈ (−1, 1).
In order to formalize the procedure of converting a frac-

tional solution to a Boolean assignment, we define the con-
cept “feasibility”.
Definition 2. (Partially assigned function) Suppose [n] is
partitioned into two sets, J and [n] − J . Let z ∈ [−1, 1]|J|
be a real vector, we write FJ←z for the partially assigned
function of F given by fixing the coordinates in J to be the
values z in F .
Definition 3. (Feasible Solution). For an objective function
F of a Boolean formula and an assignment a ∈ [−1, 1]n,
let I = {i | ai ∈ {±1}}. a is a feasible solution of F if
FI←aI

is constant, where aI is the projected vector of a at
coordinates in I . We say a is feasible if F is clear in context.
Example 2. Let f = x1 ∧ x2; then

Ff = 1
2 + 1

2x1 +
1
2x2 − 1

2x1x2.

a = (1,−0.3) is a feasible solution because I = {1} and
FI←aI

= F1←1 = 1
2 + 1

2 + 1
2x2 − 1

2x2 = 1 is constant not
depending on x2.

By Definition 3 if we find a feasible solution a� of the
objective function, we can adjust it into a Boolean assign-
ment b� by modifying values of a� in (−1, 1) to {±1} in b�

arbitrarily. By feasibility of a�, Ff (a
�) = Ff (b

�).
Lemma 2. Let c be a non-constant clause and a be an as-
signment. If FEc(a) = −1, then a is a feasible solution of
FEc.

Now we are ready to prove Theorem 2.
Proof of Theorem 2. Note that by the second argument in
Lemma 1, we have Ff (a) ≥ −m for all a ∈ [−1, 1]n.
– ”⇒”: Suppose f is satisfiable and φ ∈ {±1}n is one of

its solution. φ is also a solution of every clause of f . Thus
for every c ∈ C(f), FEc(φ) = −1. Therefore Ff (φ) =
−m and min

x∈[−1,1]n
Ff (x) = −m.

– ”⇐”: Suppose min
x∈[−1,1]n

Ff (x) = −m. Thus ∃ a� such

that Ff (a
�) = −m. By the second argument in Lemma 1,

we have FEc(a
�) = −1 for every c ∈ C(f). By Lemma 2

a� is a feasible solution of FEc for every c ∈ C(f). Thus
a� is also a feasible solution of Ff . Therefore, by feasi-
bility, we can get a Boolean assignment which satisfies
all the clauses by arbitrarily rounding all the fractional
coordinates.

Local Landscape of Multilinear Polynomials

In this subsection we characterize the local landscape of
multilinear polynomials. We also show that, in our case, lo-
cal minima are meaningful and useful.

First, we formally define local minimum for constrained
problems in Definition 4.
Definition 4. (Local minimum for constrained problem) For
a vector a ∈ R

n, we define Nδ(a), the neighborhood of a
with radius δ as Nδ(a) = {x | ‖a− x‖22 ≤ δ}. Given a set
Δ, we say an assignment a is a local minimum of F in Δ if

∃δ > 0, ∀a′ ∈ Nδ(a) ∩Δ, F (a) ≤ F (a′).

For a multivariate function, a saddle point is a point at
which all the first derivatives are zero but there exist at least
one positive and one negative direction. Therefore, a saddle
point is not a local minimum in an unconstrained problem.

Lemma 3. Every critical point (where all the first deriva-
tives are zero) of a non-constant multilinear polynomial is a
saddle point.

Lemma 3 indicates for unconstrained, non-constant mul-
tilinear polynomials, no local minimum exists. On the other
hand, after adding the bound [−1, 1]n, intuitively, a local
minimum of F in [−1, 1]n can only appear on the boundary.
Lemma 4 uses feasibility again to formalize this intuition.

Lemma 4. If a� ∈ [−1, 1]n is a local minimum of F in
[−1, 1]n, then a� is feasible.

Lemma 4 indicates that every local minimum a� in
[−1, 1]n is meaningful in the sense that it can be easily con-
verted into a Boolean assignment b�. Moreover, since b� is
a Boolean assignment, it is easy to see that the number of
clauses satisfied by b� is m−F (a�)

2 , which is a special case
of Theorem 3 in the next section. Thus if a global minimum
is too hard to get, our method is still useful for some prob-
lems, e.g., MaxSAT.

In most multilinear polynomials generated from Boolean
formulas in practice, saddle points rarely exist. However,
there exist “pathological” polynomials that have unaccount-
ably infinite saddle points, as Example 3 shows.

Example 3. Let F (x) = x1x2x3x4. Then every point
which has form (x1, 0, 0, 0), (0, x2, 0, 0), (0, 0, x3, 0) or
(0, 0, 0, x4) is a degenerate saddle point where both the gra-
dient and Hessian are zero.

4 Why Continuous?

Before introducing our algorithm for minimizing multilinear
polynomials, we would like to illustrate why doing continu-
ous optimization might be better than discrete local search.

Our explanation is, compared to local search SAT solvers
which only make progress when the number of satisfied
clauses increases, our tool makes progress as long as the
value of the polynomial decreases, even by a small amount.

Theorem 3 formalizes the intuition. It indicates that when
we decrease the polynomial, we are in fact increasing the
expectation of the number of satisfied clauses, after a ran-
domized rounding.

Definition 5. (Randomized Rounding) The randomized
rounding function, denoted by R : [−1, 1]n → {±1}n is
defined by: {

P(R(a)i = −1) = − 1
2ai +

1
2

P(R(a)i = +1) = + 1
2ai +

1
2

where i ∈ [n] and a ∈ [−1, 1]n. Note that the closer ai is
to −1, the more likely R(a)i will be −1 and vise versa.

Theorem 3. Let f be a formula with m clauses and F be the
multilinear polynomial associated with f . For a ∈ [−1, 1]n,
let R(a) ∈ {±1}n be the vector given by rounding a. Let
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mSAT(R(a)) be the number of satisfied clauses by R(a),
then

E
R(a)

(mSAT(R(a)) = m−F (a)
2 .

In particular, if F (a) = −m then E
R(a)

(mSAT(R(a)) = m.

Since mSAT(b) ≤ m for any b ∈ {±1}n, mSAT(R(a)) = m
and R(a) is a solution of f .

Research showed that local search SAT solvers, such as
GSAT, spend most of the time on the so-called “sideway”
moves (Selman, Levesque, and Mitchell 1992). Sideway
moves are moves that do not increase or decrease the to-
tal number of unsatisfied clauses. Although heuristics and
adding noise for sideway moves lead the design of efficient
solvers, e.g., WalkSAT, local search SAT solvers fail to pro-
vide any guarantee when making sideway moves.

It is illustrative to think of a cardinality constraint, e.g.,
the majority constraint which requires at least half of all the
variables to be True. If we start from the assignment of all
False’s, local search solvers need to flip at least half of all
bits to make progress. In other words, local search solvers
will encounter a neighbourhood with exponential size where
their movements will be “blind”. In contrast, guided by the
gradient, our method will behave like “flipping” all the vari-
ables by a small amount towards the solution.

5 A Gradient Descend-Based Algorithm for

Minimizing Multilinear Polynomials

In this section, we propose an algorithm for minimizing mul-
tilinear polynomials associated with Boolean formulas. We
aim to show promising theoretical guarantees that gradient-
based algorithms can enjoy. In practice, there are elaborate
packages available and we used them in our experiments.

Since the objective function is constrained, continuous
and differentiable, projected gradient descent (PGD) (Nes-
terov 2014) is a candidate for solving our optimization prob-
lem. As a non-convex problem, the initialization plays a key
role on the result. We use random initialization for each iter-
ation and return the best result within a time limit.

Efficient Evaluation of Objective Function. Although
theoretically the objective function can have up to 2n terms,
we do not actually store all the coefficients and do a naive
evaluation to get F (a) for a ∈ [−1, 1]n. Instead, we lever-
age the symmetry of clauses to compute the value of Fourier
expansion of each clause c, denoted as FEc(a), separately.
By this trick, we are able to evaluate the objective function
in O(

∑
c∈C(f)

k2c ) time (in worst case O(n2m)), where kc is

the length of clause c. By this trick, we bypass considering
data structures that store the multilinear polynomials.

First note that for every negative literal, say ¬xi, we can
convert it to positive by flipping the sign of ai, since apply-
ing a negation on formulas is equivalent to adding a minus
sign to Fourier expansions (assume each variable appears at
most once in a clause c).

Now suppose c is a clause from {CNF, CARD, XOR,
NAE} with no negative literals. Then c is symmetric,

which means its Fourier coefficient at S only depends on
|S|. Thus the set of Fourier coefficients can be denoted
as Coef(FEc) = (κ(∅), κ([1]), κ([2]), . . . , κ([kc])). Let
s(a) =

(
1,
∑kc

i=1 ai,
∑

i<j aiaj , . . . ,
∏kc

i=1 ai

)
. One can

easily verify that FEc(a) = Coef(FEc) · s(a), where ”·”
represents the inner product of two vectors.
s(a) can be obtained by computing the coefficients of t0,

t1, · · · , tkc in the expansion of the following polynomial.

kc∏
i=1

(ai + t) = tkc +

(
kc∑
i=1

ai

)
· tkc−1 + · · ·+

kc∏
i=1

ai · t0

The coefficients of the polynomial above can be computed
in O(kc

2) time, given a ∈ [−1, 1]kc . Thus we can evaluate
the objective function in O(

∑
c∈C(f)

k2c ).

Since the gradient and Hessian of a multilinear polyno-
mial are still multilinear (O’Donnell 2014), we are able to
calculate them analytically by the method above. In experi-
ments, we observed feeding gradients to the optimizer sig-
nificantly accelerated the minimization process.

Our PGD-Based Multilinear Optimization Algorithm.
In Algorithm 1, we propose a PGD-based algorithm for mul-
tilinear optimization problem. In gradient descent, the itera-
tion for minimizing an objective function F is:

x′t+1 = xt − η · ∇F (xt), xt+1 = x′t+1,

where η > 0 is a step size.
For a constrained domain other than R

n, x′t+1 may be
outside of the domain. In PGD, we choose the point near-
est to x′t+1 in [−1, 1]n as xt+1 (He 2016), i.e., the Eu-
clidean projection of x′t+1 onto the set [−1, 1]n, denoted as
Π[−1,1]n(x′t+1).
Definition 6. The Euclidean projection of a point y, onto a
set Δ, denoted by ΠΔ(y), is defined as

ΠΔ(y) = argmin
x∈Δ

1
2‖x− y‖22.

In our case Δ ≡ [−1, 1]n; computing such a projection is
almost free, as shown in Proposition 3.
Proposition 3.

Π[−1,1]n(y)i =
{
yi, if yi ∈ [−1, 1],

sgn(yi), otherwise.

Combining the above, the main iteration of PGD can be
rewritten as

xt+1 = Π[−1,1]n (xt − η · ∇F (xt)) = xt − ηG(xt),

where G(x) = 1
η

(
xt −Π[−1,1]n (xt − η∇F (xt))

)
is re-

garded as the gradient mapping.
In Algorithm 1, we start at a uniformly random point in

[−1, 1]n. When gradient mapping G(·) is large, we follow it
to decrease the function value. Otherwise, it means the al-
gorithm either reaches a local minimum in [−1, 1]n, or falls
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Algorithm 1: PGD for multilinear F
Input : Polynomial F , η > 0, ε > 0.
Output: Approximately minimizer x̂.

1 for j = 1, . . . , J do
2 x0 ∼ U [−1, 1]n

3 for t = 0, . . . do

4 G(xt) =
1
η

(
xt −Π[−1,1]n (xt − η∇F (xt))

)
5 if ‖G(xt)‖2 > 0 then
6 xt+1 = xt − η ·G(xt)
7 else
8 if xt not feasible then
9 xt+1 = DecInnerSaddle(F, xt, η)

10 else
11 I = {i | (xt)i ∈ {−1, 1}}
12 if ∇F (xt)i �= 0, ∀i ∈ I then
13 Break // Prop. 5
14 else
15 (LocalMinFlag, xt+1) =

useHessian(F, xt)
16 if LocalMinFlag =True or

Unknown then
17 Break
18 Until convergence

19 return xj with the lowest F (x) after J iterators

into a saddle point where the original gradient ∇F (·) is neg-
ligible. If the first case happens we are done for this iterator.
Else, we still try to escape the saddle point by additional
methods.

In Theorem 4, we show that Algorithm 1 is guaranteed to
converge to a point where the projected mapping is small,
‖G(xt)‖2 = 0,1 and depends polynomially on n, m and
tolerance ε. In the proof, we used techniques from (Jin et al.
2019) and (He 2016).

Theorem 4. (Convergence speed) With the step size η =
1

nm , Algorithm 1 converges to a ε-projected-critical point
(where ‖G(x)‖2 < ε) in O(nm

2

ε2 ) iterators.

The proof of Theorem 4 relies on the fact that multilinear
polynomials on [−1, 1]n are relatively smooth as Proposi-
tion 4 indicates.

Proposition 4. (Lipschitz) Let F : [−1, 1]n → [−m,m] be
a multilinear polynomial. Then, for every x, y ∈ [−1, 1]n,

1. |F (x) − F (y)| ≤ m
√
n · ‖x − y‖2. I.e., F is (m

√
n)-

Lipschitz continuous.
2. ‖∇F (x)−∇F (y)‖2 ≤ mn · ‖x−y‖2. I.e., F has (mn)-

Lipschitz continuous gradients.

Proposition 5 shows that in Algorithm 1 we can identify
local minima by gradient information.

Proposition 5. When algorithm 1 reaches line 13, x is a
local minimum. i.e, if x is feasible, G(x) = 0 and ∇F (x)i �=
0 for all i ∈ I , then x is a local minimum in [−1, 1]n of F .

1In practice, a stopping criterion to use is ‖G(xt)‖2 < ε for a
small accuracy level ε > 0.

We design DecInnerSaddle and useHessian to es-
cape saddle points. DecInnerSaddle uses the idea from
Lemma 3 to give a negative direction, as long as the point is
not feasible. useHessian leverages second order deriva-
tives to give a negative direction, or identifies a local min-
imum when the first order derivatives are too small. Due
to space limit, we leave subprocedures DecInnerSaddle
and useHessian, as well as their properties, in the sup-
plemental material.

Weighted Case

The weighted version of the objective function is defined as

Ff =
∑

c∈C(f)

wf (c) · FEc

where wf : C(f) → R is the weight function. It is easy to
verify that the weighted version of Theorem 2 and Lemma 4
still hold. The weighted case is useful in two cases:
• Vanishing Gradient. When a clause contains too many

of variables (e.g., a global cardinality constraint), we ob-
served that the gradient given by this clause on a single
variable becomes negligible at most points. By assigning
large weights to long clauses, gradient varnishing can be
alleviated.

• Weighted MAX-SAT. By returning a local minimum, our
tool can be used to solve weighted MAX-SAT problems.

6 Experimental Results

In this section we compare our tool, FourierSAT with
other SAT solvers on random and realistic benchmarks. The
objective of our experimental evaluation is to answer these
three research questions:
RQ1. How does FourierSAT compare to local search
SAT solvers with cardinality constraints and XORs encoded
in CNF?
RQ2. How does FourierSAT compare to specialized
CARD-CNF solvers with respect to handling cardinality con-
straints?
RQ3. How does FourierSAT compare to CDCL SAT
solvers with cardinality constraints/XORs encoded in CNF?

Experimental Setup

We choose SLSQP (Kraft 1988), implemented in scipy
(Jones et al. 2001) as our optimization oracle, after com-
paring available algorithms for non-convex, constrained op-
timization.

Since random restart is used, different iterators are inde-
pendent. Thus, we parallelized FourierSAT to take ad-
vantage of multicore computation resources. Each experi-
ment was run on an exclusive node in a homogeneous Linux
cluster. These nodes contain 24-processor cores at 2.63 GHz
each with 1 GB of RAM per node. The time cap for each job
is 1 minute.

We compare our method with the following SAT solvers:
• Cryptominisat (Soos, Nohl, and Castelluccia 2009)

(CMS), an advanced SAT solver supporting CNF+XOR
clauses by enabling Gauss Elimination.
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• WalkSAT (Selman, Kautz, and Cohen 1999), an efficient
local search SAT solver. We used a fast C implementation
due to (Cai, Su, and Luo 2013).

• MiniCARD (Liffiton and Maglalang 2012), a MiniSAT-
based CARD-CNF solver. It has been implemented in
pysat (Ignatiev, Morgado, and Marques-Silva 2018).

• MonoSAT (Bayless et al. 2015), a SAT Modulo Theory
solver which supports a large set of graph predicates.

MiniCARD can handle cardinality constraints natively. For
MonoSAT, we reduced cardinality constraints to max-flow.
For CMS and WalkSAT, we applied a set of cardinality en-
codings, which includes Sequential Counter (Sinz 2005),
Sorting Network (Batcher 1968), Totalizer (Bailleux and
Boufkhad 2003) and Adder (Eén and Sörensson 2006). For
solvers that do not support XORs, we used a linear encoding
due to (Li 2000) to decompose them into 3-CNF. To address
vanishing gradient, the weight of each clause equals to its
length.

Benchmarks

We generated hybrid Boolean constraints using natural en-
codings of the following benchmark problems.

Benchmark 1: Approximate minimum vertex cover-
ing. Minimum vertex covering is a well-known NP-
optimization problem (NPO) problem. For each n ∈
{50, 100, 150, 200, 250}, we generated 100 random cubic
graphs. For each graph, Gurobi (Gurobi Optimization
2019) was used to compute the minimum vertex cover, de-
noted by Opt. Then we added one cardinality constraint,
D≤k(X) where k = �1.1 · |Opt|� to the CNF encoding of
vertex covering.

Benchmark 2: Parity learning with error. Parity Learn-
ing is to identify an unknown parity function given I/O sam-
ples. Technically, in this task one needs to find a solution of
an XOR system while tolerating some constraints to be vi-
olated. Suppose there are n candidate variables and m I/O
samples (XOR constraints). A solution to this problem is
allowed to be incorrect on at most (e · m) I/O samples.
For e = 0 the problem is in P (Gaussian Elimination); for
0 < e < 1

2 , whether the problem is in P still remains open.
Parity learning is a well-known hard for SAT solvers as well,
especially for local search solvers (Crawford and Kearns
1994).

We chose N ∈ {8, 16, 32}, e = 1
4 and m = 2N to gener-

ate hard cases. For FourierSAT, this problem can be en-
coded into solving M XOR clauses where we allow at most
eM clauses to be violated. For WalkSAT and CMS, we used
the encoding due to (Hoos and Stützle 2000).

Benchmark 3: Random CNF-XOR-CARD formulas. For
each n ∈ {50, 100, 150}, r ∈ {1, 1.5}, s ∈ {0.2, 0.3},
l ∈ {0.1, 0.2} and k ∈ {0.4n, 0.5n}, we generated ran-
dom benchmarks with rn 3-CNF clauses, sn XOR clauses
with length ln and 1 global cardinality constraint D≤k(X).
Those parameters are chosen to guarantee that all problems
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Figure 1: Results on 500 vertex covering problems

0 50 100 150 200 250 300

Number of problems solved

0

10

20

30

40

50

60

R
u

n
n

in
g

 t
im

e
 (

in
 s

e
c
o
n

d
s
)

FourierSAT

CMS+CNF-XOR

CMS+CNF

WalkSAT+CNF

Figure 2: Results on 300 parity learning with error problems

are satisfiable (Dudek, Meel, and Vardi 2016) (Pote, Joshi,
and Meel 2019).

Results

The experimental results of three benchmarks above are
shown in Figure 1, 2 and 3 respectively.
RQ1. Figure 1 shows FourierSAT solved more prob-
lems than WalkSAT did with all the cardinality encod-
ings except SeqCounter. For parity learning problem, Walk-
SAT with CNF encoding only solved 79 problems, while
FourierSAT was able to solved all 300 problems. For
the random hybrid constraints benchmarks shown in Fig-
ure 3, FourierSAT solved 2957 problems while WalkSAT
with SeqCounter, SortNetwork and Totalizer solved 2272,
2444 and 2452 problems respectively. In our experiment,
FourierSAT is more robust than WalkSAT, which agrees
on our intuition in Section 4.
RQ2. In Figure 1 it is clear that FourierSAT solved more
problems (472) than MonoSAT (420) and MiniCard (261)
did, which indicates that FourierSAT is capable of han-
dling cardinality constraints efficiently.
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Figure 3: Results on 4800 random CNF-XOR-CARD prob-
lems

RQ3. For the parity learning problem shown in Figure 2,
the competition of FourierSAT and CMS with CNF+XOR
formula is roughly a tie, while FourierSAT outperformed
CMS with pure CNF formula. For other two benchmarks
shown in Figure 1 and 3, we observed that CMS has the
best performance, especially for solving random hybrid con-
straints, despite of the choice of encodings.

Due to the maturity of CMS, it is not surprising that CMS
performed better than FourierSAT did on some bench-
marks, especially when dealing with long XOR clauses.
However, the experimental result shows that as a versatile
solver, FourierSAT is comparable with many existing,
well-developed, specialized solvers.

Furthermore, we notice that although FourierSAT is
usually slower than other solvers on easy problems, it seems
to scale better. One potential reason is, due to the continu-
ous nature of FourierSAT, it avoids suffering from scal-
ing exponentially too early. This behavior of FourierSAT
increases our confidence in that algebraic methods are worth
exploring for SAT solving in the future.

7 Conclusion and Future Directions

In this paper, we propose a novel algebraic framework for
solving Boolean formulas consisting of hybrid constraints.
Fourier expansion is used to reduce Boolean Satisfiability
to multilinear optimization. Our study on the landscape and
properties of multilinear polynomials leads to the discovery
of attractive features of this reduction. Furthermore, to show
the algorithmic benefits of this reduction, we design algo-
rithms with certain theoretical guarantee. Finally, we imple-
ment our method as FourierSAT. The experimental re-
sults indicate that in practical, FourierSAT is comparable
with state-of-the-art solvers on certain benchmarks of hybrid
constraints by leveraging parallelization.

We also list a few future directions in the following:

• Complete algebraic SAT solvers. Besides giving solu-
tions to satisfiable formulas, we also aim to prove unsatis-
fiability algebraically. In other words, we hope to design

a complete SAT solver based on algebraic approaches.
Several theoretical tools, such as Hilbert’s Nullstellensatz
and Gröebner basis (e.g., see (Cox, Little, and O’shea
1994)) can be used for giving an algebraic proof of un-
satisfiability. Previous algorithmic work on this direction
considered specific polynomial encodings on problems
such as graph coloring (Romero Barbosa, Julian 2016)
(Loera et al. 2011). We are interested to see the behavior
of these algebraic tools on more problems with Fourier
transform as the encoding in practice.

• Escaping local minima and saddle points. As a local-
information-based approach, FourierSAT suffers from
getting stuck in local minima and relies heavily on ran-
dom restart as well as parallelization. We believe the idea
of “sideway moves” from Local Search SAT solvers (Sel-
man, Levesque, and Mitchell 1992) is a good direction to
address these issues. For example, one can use the solu-
tion of WSAT/FourierSAT as the initial point of Fourier-
SAT/WSAT. We will also consider purely first-order gra-
dient descent approaches, probably with random noise
(Jin et al. 2019), and how they perform on escaping saddle
points both in theory and practice.

• Alternative objective functions. The Fourier expansions
of clauses with large number of variables and low solu-
tion density can be much less smooth, which is one of the
main difficulties for FourierSAT in practice. To refine the
objective function, one possible way is to develop better
weight functions, which can be static or dynamic.
Due to the techniques for learning Fourier coefficients
(Bruck and Smolensky 1992) (Linial, Mansour, and Nisan
1989), it is also promising to use the low-degree approxi-
mation of Fourier expansions as the objective function.
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