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Abstract

Second-order optimization methods have desirable conver-
gence properties. However, the exact Newton method requires
expensive computation for the Hessian and its inverse. In this
paper, we propose SPAN, a novel approximate and fast New-
ton method. SPAN computes the inverse of the Hessian matrix
via low-rank approximation and stochastic Hessian-vector
products. Our experiments on multiple benchmark datasets
demonstrate that SPAN outperforms existing first-order and
second-order optimization methods in terms of the conver-
gence wall-clock time. Furthermore, we provide a theoretical
analysis of the per-iteration complexity, the approximation
error, and the convergence rate. Both the theoretical analy-
sis and experimental results show that our proposed method
achieves a better trade-off between the convergence rate and
the per-iteration efficiency.

1 Introduction

Mathematical optimization plays an important role in ma-
chine learning. Many learning tasks can be formulated as a
problem of minimizing a finite sum objective:

min
x∈Rd

F (x)
Δ
=

1

N

N∑
i=1

fi(x), (1)

where N is the number of samples, d is the dimension of pa-
rameters and fi(x) denotes the loss function for sample i. In
order to solve Eq.(1), many first- and second-order methods
have been proposed and has the following update paradigm:

xt+1 = xt − ηtH
−1(xt)g(xt), t = 0, 1, 2, . . . , (2)

where g(xt) is the gradient and ηt is the step size at t-th
iteration. The term H−1(xt) can be set differently in differ-
ent methods. First-order methods set H−1(xt) as an identity
matrix. The resulting updating procedure becomes gradient
descent (GD) or stochastic gradient descent (SGD) depending
on whether the gradient g(xt) is calculated over the whole
sample set or one random sample (Robbins and Monro 1985;
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Li et al. 2014; Cotter et al. 2011). A series of first-order lin-
early convergent methods and their variance reduction vari-
ants were proposed to accelerate the above iteration updates,
including SVRG (Johnson and Zhang 2013), SAGA (Defazio,
Bach, and Lacoste-Julien 2014), SDCA (Shalev-Shwartz and
Zhang 2014), etc. Their main intuition is to balance the com-
putational cost of g(xt) and the approximation gap between
the stochastic gradient g(xt) and the global gradient ∇F (xt).

Compared with first-order optimizers, second-order opti-
mization methods regard H−1(xt) in Eq. (2) as the Hessian
inverse (the standard Newton Method) or certain carefully
constructed Hessian inverse (quasi-Newton methods). The
matrix H−1(xt) can be thought to adjust the step size and
gradient coordinates through the high order information or
the quasi-Newton condition. Second-order methods usually
achieve a better convergence rate than first-order ones.

However, second-order algorithms are not widely used in
large-scale optimization problems due to expensive compu-
tation cost. Computing the Hessian matrix and its inverse
requires high computation complexity and consumes large
memory. Standard Newton method takes O(Nd2 + d3) per
iteration, where N and d are the number of samples and the
number of unknown parameters, respectively. Quasi-Newton
methods like BFGS and L-BFGS (Liu and Nocedal 1989) are
faster, but still requires O(Nd+ d2). However, they do not
maintain the local quadratic convergence rate. For problems
with large parameters, it is not affordable even if the inverse
calculation could fit in memory.

Our goal is to develop an approximate yet efficient Newton
method with provable convergence guarantee. We aim to
reduce per-iteration computation cost for the Hessian inverse
calculation while maintaining the approximation accuracy.
To this end, we propose Stochastic Projected Approximate
Newton method (SPAN), a novel and generic approach to
speed up second-order optimization calculation. The main
contributions of the paper are as follows:

• We propose a novel second-order optimization method,
SPAN, to achieve a better trade-off between Hessian ap-
proximation error and per-iteration efficiency. Inside the
method, we propose a stochastic sampling technique to
construct the Hessian approximately. Since it only requires
first-order oracles and Hessian-vector products, the Hes-
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sian and its inverse can be computed very efficiently.

• We present a theoretical analysis about the Hessian approx-
imation error and the convergence rate. SPAN achieves
linear-quadratic convergence with a provable Hessian ap-
proximation error bound.

• We conduct experiments on multiple real datasets against
existing state-of-the-art methods. The results validate that
our proposed method achieves state-of-the-art performance
in terms of the wall-clock time, with almost no sacrificing
on the construction accuracy of the Hessian.

2 Related Work

In order to improve the per-iteration efficiency, several
stochastic second-order methods have tried to seek the trade-
off between per-iteration computational complexity and con-
vergence rate, which can be divided into two main categories.

Stochastic Newton Methods. A series of sub-sampled
Newton methods are proposed to solve the problems where
the sample size N is far larger than the feature size d. In
these methods, the Hessian matrix is approximated with a
small subset of training samples. NewSamp (Erdogdu and
Montanari 2015) and similar methods by (Roosta-Khorasani
and Mahoney 2016; Byrd et al. 2011) sample from func-
tion set {fi} randomly and construct a regularized m-rank
approximate Hessian with truncated singular value decompo-
sition to improve the per-iteration efficiency. However, they
need to compute the sub-sampled Hessian, which has an
O(d2) computational cost even if there is only one single
instance. Removing the requirements of second-order oracle
in NewSamp-type methods, our SPAN further accelerates the
iteration with stochastic low-rank approximation techniques,
which improves the complexity by a factor nearly O(d/m).

Sketch Newton method in (Pilanci and Wainwright 2017)
adopts sketching techniques to approximate Hessian. A non-
uniform probability distribution was introduced to sample
rows of

√∇2F (x) in (Xu et al. 2016). Both of them use
new approximate Hessian construction and proper sampling
methods to improve Hessian estimation efficiency. Differ
from such sketch Newton methods, our SPAN does not need
the Hessian Decomposition assumption for sketched updates
in (Xu et al. 2016; Pilanci and Wainwright 2017).

Rather than estimating the Hessian, LiSSA by (Agarwal,
Bullins, and Hazan 2017) approximates the Hessian inverse
with matrix Taylor expansion. The most elegant part of LiSSA
is that the Hessian inverse estimation is unbiased, and the ap-
proximation error only depends on the matrix concentration
inequalities. Compared with LiSSA, SPAN guarantees more
robust per-iteration complexity when the objective function is
not Generalized Linear Model (GLM). Moreover, we do not
require the initial solution is close to the optimum. Addition-
ally, the procedure of calculating the approximate Hessian
for each sample in SPAN is independent, which means our
method has better parallelism compared with LiSSA.

Stochastic Quasi-Newton Methods. The quasi-Newton
methods can also be improved with stochastic approxima-

Symbols Description

N The number of samples in Eq.(1)
d The dimension of decision variables in Eq.(1)
B A subset with B ⊆ [N ] = {1, 2, . . . , N}
b The size of B with b = |B|
F The objective function in Eq.(1)
fi(x) The loss function for sample i in Eq.(1)
fB(x) The batch loss with fB(x) =

1
b

∑
i∈B fi(x)

gB(x) The gradient of batch loss with gB(x) = ∇fB(x)
HB(x) The batch Hessian with HB(x) = ∇2fB(xt)
σi(A) The i-th top non-zero singular vector of matrix A
pi(A) The singular vector of matrix A corresponding to σi(A)
rank(A) The rank number of matrix A
‖·‖ The Euclidean norm of a vector or L2 norm of a matrix

Table 1: Important mathematical notations in this paper.

tion techniques. S-LBFGS by (Moritz, Nishihara, and Jordan
2016) adopts the randomization to the classical L-BFGS
and integrates the widely used gradient variance reduction
techniques. Subsequently, SB-BFGS in (Gower, Goldfarb,
and Richtárik 2016) extends BFGS with matrix sketching to
approximate Hessian inverse. Stochastic quasi-Newton meth-
ods have a better per-iteration complexity compared with
stochastic Newton methods. However, most of them cannot
explicitly demonstrate the benefit of introducing the curva-
ture information in the convergence analysis. Such problem is
solved in our SPAN by establishing the Hessian approxima-
tion error bound which can hardly be analyzed in stochastic
quasi-Newton methods.

3 The Proposed SPAN Method

In this section, we will first present the overall idea and
intuition of our proposed SPAN. Then, we will describe
three technical components and the full algorithm. For bet-
ter illustration, we list some important notations and their
descriptions in Table 1.

The goal of SPAN method is to optimize Eq. (1) with
respect to the decision variable x (i.e., model parameters)
using the mini-batched iterative update:

xt+1 = xt − ηtH
−1
B (xt)gB(xt), (3)

where t is the iteration index. Note that the straightforward
calculation of Eq. (3) requires O(Nd+ bd2 + d3) which is
time-consuming for models with a large d.

To make the computation faster, instead of calculating
the batch Hessian HB (the abbreviation of HB(xt)) and
then taking the inverse explicitly, our idea is to replace HB

in Eq. (3) with an approximate Hessian ĤB . Ideally, ĤB

should be bounded within a small region around the true
Hessian HB . We propose to use the projected approxima-
tion for the Hessian ĤB = PHBP

T where P is a carefully
constructed orthogonal projector (Horn and Johnson 2012).
To further ensure ĤB invertible, we add an additional per-
turbation term ΔH , ĤB = PHBP

T +ΔH . Note that such
formulation is sufficient to approximate HB , since we can
consider P ∗ = Σk

i=1pi(HB)pi(HB)
T to obtain the optimal

k-rank approximation of HB . However, in practice, we can
hardly find pi(HB) exactly without knowing the batch Hes-
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sian. Thus, it is challenging to construct P with desired effi-
ciency and approximation accuracy. At the first glance, this
seems infeasible, while our main intuition is based on the
observation that affine transformation A over random vectors
tends to have larger components on the top singular vectors of
A. Such intuition is helpful to find an accurate approximation
of orthonormal projector P ∗. More details follow later.

In the remaining of this section, we present the construc-
tion of an approximate Hessian and the resulting optimization
algorithm. In particular, we design the algorithm components
guided by the following questions.

1. How to design a structure for P so that ĤB = PHBP
T

can be computed efficiently without knowing HB?

2. How to make the inverse robust — permitting ĤB to be
invertible in any circumstance?

3. How to balance the Hessian approximation error ‖ĤB −
HB‖ and iteration complexity flexibly?

3.1 Stochastic Projected Approximation

We construct the approximate Hessian as ĤB = PHBP
T

which can be calculated without knowing HB . A proper
P essentially decides the direction where the Hessian HB

would project onto. We decompose P into the product of the
form P = UUT , where U ∈ R

d×l is an orthonormal matrix.
With that, we construct an approximate Hessian ĤB by

ĤB(x) = UUTHB(x)UUT . (4)

One can easily verify that the Moore-Penrose inverse of ĤB

can be computed efficiently via Ĥ†
B = U

(
UTHBU

)−1
UT

since the size of UTHBU ∈ R
l×l is much smaller than HB

and can be calculated by the product of UT and HBU .
In the following, we develop a method to obtain a U while

keeping ‖ĤB −HB‖ small. We derive a method to calculate
HBU without requiring Hessian HB .

Our method is to randomly choose a set of column vectors
Ω and project them to the space expanded by the singular
vectors of HB . From the projection, one can extract an or-
thonormal basis U to expand a low-dimensional space for
HB to project to. The procedure is inspired by the Proto-
Algorithm (Halko, Martinsson, and Tropp 2011), combining
with the secant equation for Hessian-vector products calcula-
tion. We utilize the standard Gaussian distribution to generate
such Ω ∈ R

d×l and calculate the projection Y = HBΩ di-
rectly. To make the computation more efficient, the set of
random vectors Ω only contains l elements where l � d.

Notice that for any matrix V whose i-th column vector is
presented as vi, the extended Hessian-vector product on a
sample batch B, denoted as ΨB(x, V ), is

ΨB(x, V ) � HB(x)V = [HB(x)v1 HB(x)v2 . . .] ,

HB(x)vi =
d

dα
gB(x+ αvi)

∣∣∣
α=0

.

In practice, the Hessian-vector product HB(x)vi can be cal-
culated by the finite difference of gradients like Algorithm 1.

U is then constructed as follows:

Algorithm 1 The Hessian-Vector Product
Input: F , B, x̂, v
Choose a large constant C → ∞
Calculate residual perturbation v̂ = v/C
Form the gradient difference δ = gB(x̂+ v̂)− gB(x̂)
Return: Cδ

1. calculate the extended Hessian-vector product of Ω to get
Y = HB(x)Ω = ΨB(x,Ω);

2. calculate the basis U via QR decomposition Y = UR.

With the above-constructed U , ĤB(x) can be further con-
structed again using the extended Hessian-vector product,
ĤB(x) = UUTΨB(x, U)UT . But there is no need to calcu-
late ĤB explicitly, it suffices to calculate its Moore-Penrose
inverse. One can verify that with such constructed ĤB , the er-
ror in the term of ‖ĤB(x)−HB(x)‖ is well-bounded (Halko,
Martinsson, and Tropp 2011).

3.2 Robust Hessian Inversion

The above constructed approximate Hessian is simplified
with one flaw (ĤB is actually not invertible) since the or-
thonormal matrix U is low-rank. This can be alleviated with
a perturbed version of Eq.(4).

ĤB(x) = UUTHB(x)UUT + λ
(
I − UUT

)
(5)

where λ is a carefully chosen constant with λ > 0.
The purpose of the perturbation term λ

(
I − UUT

)
is to

introduce the invertibility of the approximate matrix ĤB(x)
presented in Eq. (4). We will give an informal analysis here to
show the importance of choosing a proper λ. On one hand, a
large λ will impair captures of the main actions of HB , since
it increases the lower bound of the Hessian approximation
error ‖ĤB −HB‖ as∥∥UUTHB(x)UUT + λ

(
I − UUT

)−HB(x)
∥∥

≥ ∥∥λ (I − UUT
)∥∥− ∥∥UUTHB(x)UUT −HB(x)

∥∥ .
On the other hand, from an iteration perspective, we can

neither choose a tiny λ since it will lose the benefit of the cur-
vature information induced by approximate Newton. In par-
ticular, if we regard the SVDs of I − UUT and UTHB(x)U
as follows

I − UUT = U⊥UT
⊥ , UTHB(x)U = ÛΛÛT .

The SVD of constructed Hessian ĤB(xt) in Eq. (5) and its
inverse can be formulated as

ĤB(x) =
[
UÛ U⊥

] [Λ 0
0 λI

] [
ÛTUT

UT
⊥

]

Ĥ−1
B (x) =

[
UÛ U⊥

] [Λ−1 0
0 λ−1I

] [
ÛTUT

UT
⊥

]
.

It can be observed that a tiny λ will make the singular vectors
associated with λ−1 dominate the action of Ĥ−1

B (x), which
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Figure 1: The normalized projection, i.e., HBΩ, H4
BΩ and

H10
B Ω (LTR) of standard gaussian vectors Ω (blue points)

where HB = diag{1, 2, 3}.

impairs the introduction of curvature information taken by
UÛ and Σ.

Hence, a proper λ is needed to balance the Hessian approx-
imation error and the l2 norm of constructed Hessian inverse.
Specifically, we will further discuss λ(see Theorem 4.2) and
the Hessian approximation error ‖ĤB(x) − HB(x)‖(see
Lemma 4.1) in Section 4. Rigorous proof will be deferred to
our full version.

3.3 Power Iteration

In this part, we introduce a power iteration technique to bal-
ance ‖ĤB − HB‖ and iteration complexity more flexibly.
That is to say, with limit iteration complexity sacrificing, the
construction of ĤB in Eq. (5) can be improved through some
auxiliary steps in the main algorithm. Generally speaking,
any matrix U obtained as in Section 3.1 is valid for ĤB’s
construction. However, in practice, a better orthogonal projec-
tor UUT maintains that top singular vectors of HB(xt) are
rotated less after performing the projection on HB(xt), e.g.,
UUTHB(xt)UUT . The matrix U is usually obtained from
the projection HB(xt)Ω of random vectors. Thus, we hope
basis vectors of the projection have larger components on
top singular vectors e.g., p1(HB), p2(HB), compared with
those on pd−1(HB) and pd(HB). Such a requirement can be
satisfied by taking the power of the Hessian.

Specifically, as shown in Figure 1 showed, normalized
HBΩ (green dots) seems to like a unit ball, while they de-
generate to a unit circle (red dots) when random vectors
Ω are projected through H4

B (red dots) because the com-
ponent of projection on [1, 0, 0] almost have become 0. A
similar phenomenon also happens for the component of pro-
jection on [0, 1, 0] when taking a larger power for Hessian,
i.e., H10

B Ω (yellow dots). As a result, the normalized projec-
tions nearly collapse to two points (yellow dots), i.e., [0, 0, 1]
and [0, 0,−1]. That is to say, the component of projection on
bottom singular vectors tends to vanish. Besides, such a phe-
nomenon becomes more significant as the power of Hessian
increases. With such an observation, we can calculate a better
U with the following steps:
1. generate a standard Gaussian matrix Ω and set Y0 = Ω;
2. iteratively use the extended Hessian-vector product to get

Yj = [HB(x)]
jΩ = ΨB(x, Yj−1);

3. calculate the basis U via QR decomposition Yq = UR.

Algorithm 2 Stochastic Projected Approximate Newton
1: Input: F , x0, T , m, l, q, ηt
2: for t = 0 to T do
3: Select a uniformed sample batch B ⊆ [N ]
4: Generate a standard Gaussian matrix Ω ∈ R

d×l, and
set Y0 = Ω

5: for j = 1 to 2q + 1 do
6: Yj = ΨB(xt, Yj−1)
7: end for
8: Compute the QR decomposition Y2q+1 = UR
9: Set Z = ΨB(xt, U) , λmin,t =

1
2σmin(Z

TU)
and λ ≤ min {σm+1,t, λmin,t}

10: Recover the Hessian approximation inverse
Ĥ−1

B (xt) = U
(
ZTU

)−1
UT + λ−1

(
I − UUT

)
11: Calculate xt+1 = xt − ηtĤ

−1
B (xt)∇F (xt)

12: end for
13: Return: xT+1

3.4 Details of SPAN
In this section, we show the complete algorithm about SPAN
in Algorithm 2. Also, we explain the iteration complexity of
SPAN, and compare it with the state-of-the-art optimizers.

In Algorithm 2, we use σi,t as the abbreviation of
σi(HB(xt)). At each iteration, we first select a sample batch
(Step 3) and generate some random matrix (Step 4). With
the random matrix Ω, a proper U can be found through the
process we introduced in Section 3.3 (Step 5 to Step 8). Af-
ter that, we compute HB(xt)U (Step 9) as an intermediate
variable and select the perturbation constant λ. Finally, we
calculate the constructed Hessian inverse Ĥ−1

B (xt) (Step 10)
like Eq. (5) and update the decision variables (Step 11).

Iteration Efficiency. In order to illustrate the computa-
tional complexity of each iteration, we first introduce some
condition numbers, which are designed with respect to the
component functions, i.e., fi(·) and fB(·). In such case,
one typically assumes that each component is bounded by
βb,k(x) � maxB σk(HB) and αb,k(x) � minB σk(HB)
like LiSSA (Agarwal, Bullins, and Hazan 2017), we define

κb,k � max
x

βb,k(x)

αN,d(x)
, κ̂b,k � maxx βb,k(x)

minx αN,d(x)
,

κ̃b,k � max
x

βb,k(x)

αb,d(x)
and κ̇b,k � max

x,B

σk(HB(x))

σd(HB(x))
.

Such condition numbers have the following relations

κb,k ≤ κ̂b,k and κ̇b,k ≤ κ̃b,k. (6)

We compare per-iteration complexity among state-of-the-
art optimizers, including SPAN, and list the results in Ta-
ble 2 where we ignore log terms of d and different κs for
brevity. The iteration complexity of SPAN consists of three
terms. The first term O(Nd) represents the time complex-
ity of the full gradient computation (Step 11). The second
term indicates the complexity of power iteration (Step 5 to
Step 7). The calculation of ΨB(·) in Step 6 requires O(bld)
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where the fact q ∝ log d and b = Θ(κ̇2
b,1κ̇

2
b,m log d) will be

detailedly demonstrated in our full version. The last term
O(l2d) shows the complexity of QR decomposition (Step 8).
In particular, the most time-consuming step in constructing
Ĥ−1

B (xt) is to calculate (ZTU)−1 , which leads to an O(l3)
time complexity. For a given g(xt), the computational cost
of Ĥ−1

B (xt)g(xt) is only O(ld) when the order of matrix
multiplication is appropriately arranged. Owing to the fact
that l � d, such computational cost is much smaller than
O(l2d) (the third term).

Comparing with the NewSamp (Erdogdu and Montanari
2015) which updates decision variables with a sub-sampled
constructed Hessian inverse, SPAN takes a significant accel-
eration at each iteration through the only first-order oracle
and the Hessian-vector product requirements when the m-
th singular value is close to the minimum singular value
with κ̇2

b,m ≤√d/m. In addition, per-iteration complexity in
LiSSA (Agarwal, Bullins, and Hazan 2017) is even worse
than NewSamp in general cases. However, in GLM models,
LiSSA has better performance because of the fast calculation
of Hessian-vector products. Even in GLM models, our SLAN
can still be faster than LiSSA when the approximate Hes-
sian is good enough, or the condition number κb,1 is large
with κ̇2

b,ml ≤ κb,1. Notice that, the condition numbers of
batch loss chosen, i.e., κ̇2

b,1 ≥ d, will not be too large. Oth-
erwise, per-iteration efficiency is governed by batch Hessian
or Hessian-vector products calculation, which impairs the
acceleration achieved by matrix approximation techniques.

4 Theoretical Results
We will give a theoretical analysis of our results in this section.
We will first introduce some standard assumptions for the
optimization problems, and then bound the error between our
approximate Hessian and the sub-sampled one. Finally, we
will show the local linear-quadratic convergence of our main
algorithm (Algorithm 2), with the detailed coefficients of the
convergence rate. We further compare the convergence rate of
our method with NewSamp (Erdogdu and Montanari 2015)
and LiSSA (Agarwal, Bullins, and Hazan 2017). Due to space
limitations, the details of proof arguments are provided in the
full version.
Assumption 1. (Hessian Lipschitz Continuity) For any sub-
set B ⊂ [N ] and a second-order differentiable objective
function F like the Eq.(1), there exists a constant Mb depend-
ing on b, such that ∀x, x̂ ∈ D

‖HB(x)−HB(x̂)‖ ≤ Mb ‖x− x̂‖ .
Assumption 2. (Gradient Lipschitz Continuity and Strong
Convexity) For any subset B ⊂ [N ] and a second-order
differentiable function F like the Eq.(1), there exists constants
μb and Lb depending on the b, such that for any x, x̂ ∈ D

μb ‖x− x̂‖ ≤ ‖∇fB(x)−∇fB(x̂)‖ ≤ Lb ‖x− x̂‖ .
Assumption 3. (Bounded Hessian) For any i ∈
{1, 2, ..., N}, and the Hessian of the function fi(x) in Eq. (1),
∇2fi(x) is upper bounded by an absolute constant K, i.e.,

max
i≤N

∥∥∇2fi(x)
∥∥ ≤ K.

Lemma 4.1. Suppose the Assumption 1, 2 and 3 hold. For
every iteration t in Algorithm 2, if the parameters satisfy:
m ≤ l − 4, λ ≤ min

{
σm+1,t,

1
2σmin(Z

TU)
}

and

q ≥
⌈
1

2
log 3

2

(
34

√
l

l −m
+

16
√

l(d−m)

l −m+ 1

)⌉
∝ log d,

with probability at least 1− 6em−l, we have∥∥∥ĤB(xt)−HB(xt)
∥∥∥ ≤ 3σm+1,t � εH .

As far as we know, if we approximate the Hessian with an
m-rank+sparse construction, the optimal Hessian approx-
imation error will be σm+1,t − σd,t which comes from
NewSamp (Erdogdu and Montanari 2015). Corresponding to
such an approximation error, the construction complexity of
NewSamp requires O(κ̇b,1d

2 +md2) which can hardly be
endured with a slightly larger instance dimension. While,
from Lemma 4.1, SPAN improves the complexity by a
factor at least O(d/(lκ̇2

b,m)) (l � d) when the stochastic
Hessian can be well approximated and keeps the approxi-
mation error nearly three times the optimal (σn,t is a tiny
constant). Such a guarantee cannot be promised for any
quasi-Newton method. Although LiSSA (Agarwal, Bullins,
and Hazan 2017) has a similar error bound for the approxi-
mate Hessian inverse, that approximation error is not com-
parable because it depends almost entirely on the concen-
tration inequalities of the sub-sample processing but not
the matrix approximation techniques. Additionally, we only
bound the Hessian approximation error when q = O(log d)
and λ ≤ min

{
σm+1,t,

1
2σmin(Z

TU)
}

. In fact, such upper
bounds on q and λ are possibly pessimistic and can likely
be improved to a more average quantity. However, since the
parameters q = O(1) and λ = 1

2σm+1(Z
TU) suffice for

convergence in our experimental settings, we have not tried
to optimize it further.

Theorem 4.2. Suppose λmin ≤ 2σm+1,t. Frame the hypothe-
ses of Lemma. 4.1, if the parameters satisfy:

ηt ≤ σd,t

96λmin,t − 16σd,t

and b = Θ
(
K2σ2

m+1,tσ
−4
d,t log(d)

)
,

with probability at least 1− 6em−l, we have

‖xt+1 − x∗‖ ≤ c1,t ‖xt − x∗‖+ c2,t ‖xt − x∗‖2 .
The coefficients c1,t and c2,t are

c1,t = 1− σ2
d,t

36λ2
min,t

ηt and c2,t =
Mbηt
λmin,t

.

Remark. Notice that, we require λmin,t ≤ 2σm+1,t in The-
orem 4.2, which is only introduced to simplify the formu-
lation of coefficients, i.e., c1,t and c2,t. For any λmin,t ≤
γσm+1,t (γ ≥ 2), we can obtain a similar convergence rate
by setting λ = γ−1λmin,t. Thus, the theorem is without loss
of generality.
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Algorithm Per-iteration Complexity
SVRG, SAGA, SDCA O (Nd+ (κ̂b,1d))

NewSamp(Erdogdu and Montanari 2015) O
(
Nd+ κ̇2

b,1d
2 +md2

)
LiSSA(Agarwal, Bullins, and Hazan 2017) O

(
Nd+ κ̃2

b,1κb,1d
2
)

SPAN (ours) O
(
Nd+ κ̇2

b,1κ̇
2
b,mdl + l2d

)
Table 2: Per-iteration complexity comparisons among stochastic first-order optimization methods, sub-sampled Newton Methods,
LiSSA and ours. Notice that κb,k ≤ κ̂ and κ̇b,k ≤ κ̃b,k.

Figure 2: Training loss versus running time. The first two columns are for MNIST4-9 dataset. The last two are for CovType
dataset. Note SPAN achieves the best or near the best performance with respect to wall-clock time.

Theorem 4.2 shows that SPAN has a similar composite
convergence rate like NewSamp (Erdogdu and Montanari
2015) and LiSSA (Agarwal, Bullins, and Hazan 2017) where
ct1 and ct2 are coefficients of the linear and quadratic terms,
respectively. Comparing the convergence with NewSamp
whose first-order coefficient c1,t is abbreviated as 1−α, ours
can be similar to 1 − α/6. In particular, truncated SVD is
introduced in NewSamp to find an optimal m-rank approx-
imate Hessian so that ct1 in NewSamp can be regarded as
the optimal coefficient in most stochastic Newton method
settings. For LiSSA, its convergence rate is constrained by
the initial decision variable x0 and the sample size for cal-
culating Hessian-vector product strictly, which causes that
we cannot compare its convergence rate with ours directly.
However, SPAN has a better convergence wall-clock time
which is validated in our experimental results (see Section 5).
In addition, during the analysis of the convergence rate, we
notice that promoting the Hessian approximation error εH not
only reduces the first-order coefficient in the linear-quadratic
convergence rate but also expands the range of step size.
This coincides with our intuition that a faster convergence
usually requires a smaller Hessian approximation error. In
summary, SPAN is designed to achieve a better trade-off
between the iteration complexity and the convergence rate.
With randomizing the process of constructing the special ap-
proximate Hessian, SPAN both accelerates the iteration and
limits Hessian approximation error.

5 Experiments

To evaluate the performances and fully demonstrate the ad-
vantages of our proposed method, we conduct our experi-
ments on several machine learning tasks with different ob-

jective functions, including binary image classification and
text classification. As we get similar conclusions on these
two tasks, we only present the experimental result on the
binary image classification in this section. We will further
show all experimental details, including the parameters of all
optimizers and the results on text classification tasks in the
full version due to space limitations.

For the image classification tasks, we refer to the experi-
mental settings in (Agarwal, Bullins, and Hazan 2017) and
(Erdogdu and Montanari 2015). We utilize the following
objective function:

min
x

− 1

N

N∑
i=1

log
1

1 + exp
(−yiθTi x

) + 1

2
a ‖x‖2 ,

where θi ∈ Rd and yi ∈ {−1, 1} are the instances and labels,
respectively, and a is the L2 regularization parameter which
influences the condition number of the objective.

We choose state-of-the-art first- and second-order op-
timization methods as baselines, including SVRG (John-
son and Zhang 2013), NewSamp (Erdogdu and Montanari
2015), S-LBFGS (Moritz, Nishihara, and Jordan 2016),
SB-BFGS (Gower, Goldfarb, and Richtárik 2016), and
LiSSA (Agarwal, Bullins, and Hazan 2017). We implement
all the methods in C++ and Intel Math Kernel Library(MKL).
All the code for our experiments can be found in our full
version.

We adopt two datasets in our experiment, including the
MNIST4-9 dataset (Agarwal, Bullins, and Hazan 2017) con-
sisting of approximate 1.2 × 104 instances, and CovType
dataset (Erdogdu and Montanari 2015) consisting of approxi-
mate 5.0× 105 instances. For each dataset, we evaluate all
the methods on two different condition numbers, respectively.
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Figure 3: Hessian approximation error. Notice that SPAN achieves near lowest error.
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Figure 4: Empirical convergence rate comparison on MNIST4-9 dataset. Four columns represent different batch-size for
sub-sampled Hessian.

Besides, for the fairness of comparison, in each set of ex-
periments, we pick the optimal hyperparameters for every
method and present the wall-clock time of all the methods in
Figure 2.

From Figure 2, we can find that our method SPAN
achieves the best results in almost all experimental settings.
NewSamp gets a very close performance on the CovType
dataset but consumes a lot of time on the MNIST dataset.
LiSSA performs very close on the MNIST dataset but does
not perform well on the CovType dataset. Meanwhile, there
are significant gaps between SPAN and the other methods in
all the experimental settings.

To further explain the gaps between the second-order base-
lines and SPAN, we evaluate the empirical approximation er-
ror between the real full Hessian and the constructed approxi-
mate Hessian in Figure 3. We can see that the approximation
error of our method is very close to that of the theoretical op-
timal solution (NewSamp) but much more accurate than the
other methods. The results of the experiment demonstrates
that our constructed approximate Hessian in SPAN makes
better use of second-order information than other stochastic
second-order optimizers (S-LBFGS, SB-BFGS, and LiSSA).
Moreover, Figure 4 illustrates the empirical convergence rate
of these methods. As we can see, the empirical convergence
rate of our proposed method is much better than LiSSA but
slightly worse than NewSamp, which confirms our theoretical
results and insights again.

Even though NewSamp guarantees an excellent conver-

gence rate, the efficiency of the algorithm mainly depends on
the number of parameters. NewSamp needs a long time to
perform an iteration, even when there are only 784 parame-
ters in MNIST dataset. As a comparison, our proposed SPAN
is much more competitive in terms of the robustness of the
feature dimension and the per-iteration efficiency in various
scenarios.

Considering the experiments mentioned above, SPAN has
a tolerable Hessian approximation error which results in the
runner up with respect to the empirical convergence rate. Be-
sides, it enjoys the benefit of per-iteration efficiency, which
makes it outperform others in practice. In summary, we con-
clude that SPAN achieves a better trade-off between per-
iteration efficiency and convergence rate. Furthermore, it is
robust for the sub-sampled batch size.

6 Conclusion and future work

Newton and quasi-Newton methods converge at faster rates
than gradient descent methods. However, they are often ex-
pensive, computationally. In this paper, we propose SPAN, a
novel method to optimize a smooth-strongly convex objec-
tive function. SPAN utilizes the first-order oracle for Hessian
approximation. Therefore, it is much faster than Newton
method and its alike. We give a theoretical analysis of its ap-
proximation accuracy and convergence rate. Experiments on
several real datasets demonstrate that our proposed method
outperforms previous state-of-the-art methods.

For the future work, the constructed approximate Hessian
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of SPAN can be combined with advanced first-order methods,
i.e., SVRG (Johnson and Zhang 2013) and SAGA (Defazio,
Bach, and Lacoste-Julien 2014), or help to introduce second-
order information to complex objective functions, e.g., cubic
regularization (Nesterov and Polyak 2006; Kohler and Lucchi
2017; Tripuraneni et al. 2018), neural networks with low
complexity and competitive convergence rate.
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