The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Transfer Reinforcement Learning Using Output-Gated Working Memory

Arthur S. Williams
Center for Computational Science
Middle Tennessee State University

Murfreesboro, TN, USA

asw3x@mtmail.mtsu.edu

Abstract

Transfer learning allows for knowledge to generalize across
tasks, resulting in increased learning speed and/or perfor-
mance. These tasks must have commonalities that allow for
knowledge to be transferred. The main goal of transfer learn-
ing in the reinforcement learning domain is to train and learn
on one or more source tasks in order to learn a target task
that exhibits better performance than if transfer was not used
(Taylor and Stone 2009). Furthermore, the use of output-
gated neural network models of working memory has been
shown to increase generalization for supervised learning tasks
(Kriete and Noelle 2011; Kriete et al. 2013). We propose
that working memory-based generalization plays a signifi-
cant role in a model’s ability to transfer knowledge success-
fully across tasks. Thus, we extended the Holographic Work-
ing Memory Toolkit (HWMtk) (Dubois and Phillips 2017,
Phillips and Noelle 2005) to utilize the generalization benefits
of output gating within a working memory system. Finally,
the model’s utility was tested on a temporally extended, par-
tially observable 5x5 2D grid-world maze task that required
the agent to learn 3 tasks over the duration of the training pe-
riod. The results indicate that the addition of output gating
increases the initial learning performance of an agent in tar-
get tasks and decreases the learning time required to reach a
fixed performance threshold.

Introduction

We take for granted our ability to adapt and respond appro-
priately to novel stimuli while performing a task. Similarly,
it is also routine for humans to use knowledge gained from
prior tasks in order to speed up the learning for new tasks.
For example, imagine trying to throw a baseball for the first
time. Even though a person might have never thrown a base-
ball, they can still use prior knowledge of “throwing” and
transfer that information to the current task of throwing a
baseball. Furthermore, if a person was unable to transfer
knowledge across these two task, they would be relegated to
relearning the process of “throwing” due to the novel context
presented by the baseball. This example presents a common
transfer reinforcement learning problem where a source task

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1324

Joshua L. Phillips
Department of Computer Science
Middle Tennessee State University
Murfreesboro, TN, USA
Joshua.Phillips @mtsu.edu

(e.g. throwing a football) is used to improve learning perfor-
mance on a target task (e.g. throwing a baseball).

Output gating is a mechanism for controlling how knowl-
edge retained in upstream neural processes influence down-
stream cognitive processes in computational cognitive neu-
roscience models, and has been utilized to improve general-
ization performance within tasks (Kriete and Noelle 2011;
Kriete et al. 2013). These models are based on estab-
lished interactions between the prefrontal cortex (PFC) and
mesolimbic dopamine system. Each PFC stripe (assumed
anatomical unit of storage) has the implied ability to al-
low or disallow maintained representations to flow both in-
side as well as outside of the PFC via input and output gat-
ing, respectively. It has been observed in a generalization
task that the addition of an output gate markedly improved
generalization (Kriete and Noelle 2011). Also, in that same
task it was shown that as the action space size increased,
the model’s generalization disparity between having an out-
put gate and not having one became more pronounced. This
suggests that as we increase task difficulty, the output gate’s
utility as it pertains to generalization also increases.

The n-task learning algorithm (nTL) (Phillips and Jo-
vanovich 2018) extended temporal difference (TD) learning
models (Barto and Sutton 1998; Sutton 1988) by utilizing
abstract representations to generate multiple policies allow-
ing for dynamic task switching. While nTL learns multiple,
disparate tasks, its metrics do not show transfer across tasks.
Here we propose a novel approach to the transfer learning
problem that utilizes the generalization benefits of output
gating coupled with the flexibility of the HWMtk (Dubois
and Phillips 2017; Phillips and Noelle 2005), a working
memory framework based on the putative interactions be-
tween the PFC and basal ganglia. The updated model’s util-
ity was tested on several variations of a temporally extended,
partially observable 5x5 2D grid-world maze task which
aim to demonstrate generalization (or lack thereof) across
tasks. We anticipate the output gating approach to be critical
to success.

Background
Working Memory Models

Working memory plays an important role in cognitive neu-
roscience. Working memory allows the ability to hold on to
task-relevant information needed for further processing. An
example of this can be shown by the task of storing some-
ones phone number into your cell phone. When you are
entering their number, you must maintain each number in
memory. Once all the numbers have been entered, the phone
number is no longer maintained and flushed out of memory.
Once out of memory, the phone number is forgotten and is
unavailable for recall. This example illustrates how working
memory keeps active representations of relevant information
while likewise ignoring distracting information (such as a
horn blast from a passing car). The neural network keeps
these representations active by making concepts available
for rapid updating while having them readily accessible for
ongoing processing.

Attractor dynamics is the process of achieving a stable
activation state from a range of different starting states in a
neural network (O’Reilly and Munakata 2000). Each stable
attractor could be used to actively maintain information over
a period of time. In the prefrontal cortex (PFC), attractors
provide a mechanism for robust active maintenance of in-
formation while counteracting the interference presented by
ongoing processing. This allows the firing rate of the neu-
rons to encode representations that will then be maintained
in working memory. In previous models, the neural firing
rate encoding of representations was handled by a complex
multilayer artificial neural network (ANN). In our model,
we represent the encoding of representations in the form of
holographically reduced representations (HRRs). The use of
HRRs in our model reduces the complexity of the network
down to a single layer, having the HRRs provide the encod-
ing instead of using multiple layers within an ANN.

The interaction between the prefrontal cortex and
mesolimbic dopamine system is key to the emergent be-
havior of working memory. Additionally, the use of rein-
forcement learning is also important as it pertains to work-
ing memory. Literature in the cognitive sciences suggest that
learning is driven by rewards and punishments in response to
the changes in expectation of future events (Schultz, Dayan,
and Montague 1997). The mesolimbic dopamine system is
a neural substrate responsible for reinforcement learning in
the brain. This system consists of the basal ganglia and ven-
tral tegmental area (VTA). Recorded data from the firing of
dopamine cells in monkeys show that dopamine cells fire in
response to adjustments in expected future reward (Schultz,
Dayan, and Montague 1997). The basal ganglia is responsi-
ble for broadcasting dopamine signals to the PFC. The inter-
action between the PFC and basal ganglia create a feedback
loop where internal memory updates are chosen based on
dopamine.

Our working memory model captures the PFC and
dopamine system through the use of the temporal difference
(TD) algorithm (Barto and Sutton 1998). TD learning sim-
ulates the modulation of the dopamine system through the
use of TD error (J) signals. A TD ¢ of zero is given if the

1325

environment behaves as expected, positive TD § in reaction
to unexpected reward, and negative TD ¢ in response to the
absence of expected reward (Smith et al. 2007). These TD §
signals aim to simulate how the basal ganglia computes the
firing of dopamine neurons. TD has traditionally been used
to learn action selection, making it well suited for leaning
internal action selection as well. This would consist of the
opening or closing of circuits in the PFC for either flushing
working memory contents or maintaining them.

The Holographic Working Memory Toolkit (HWMtk) im-
proved upon the Working Memory Toolkit (WMtk)(Phillips
and Noelle 2005) by providing an interface between the dis-
tributive encoding of artificial neural networks and symbolic
encoding (Dubois and Phillips 2017). Previously, using the
WMtk required the user to manage the conversion between
distributive encoding (DE) and symbolic encoding (SE). An
example of DE is the use of a vector in an artificial neural
network. An example of SE is the use of a word or phrase
as a representation of a concept. Through the use of holo-
graphically reduced representations (HRRs), the HWMtk
was able to automate the SE/DE conversion problem. In or-
der to solve this problem a HRR engine was developed to fa-
cilitate the conjunctive encoding and decoding of concepts.
Holographic reduced representations (HRRs) are created us-
ing a vector of real values taken from a Normal distribution
with mean zero and standard deviation 1//n, with n being
the length of the vector (Plate, 1995). HRRs can be used to
encode a particular concept within a model. Circular convo-
lution allows for complex representations by combining two
representations together into a single HRR of the same vec-
tor length. The circular convolution operation can be com-
puted using Fast Fourier transforms which takes O(nlog(n))
time. Another operation is correlation which uses a HRR as
a key in order to retrieve information from complex HRRs
containing multiple combined HRR representations.

Transfer Learning

Transfer learning requires generalization to occur not just
within tasks but across tasks (Taylor and Stone 2009). There-
fore, the goal of transfer learning is to train on a source
task and then exploit that knowledge within the target task.
The source task you choose can positively or negatively af-
fect performance on the target task. If the source and tar-
get tasks are not adequately related then performance on
the target task may not show improvement. This is known
as negative transfer (Weiss, Khoshgoftaar, and Wang 2016;
Taylor and Stone 2009). Common metrics used to evaluate
a transfer learning method’s efficacy are as follows: jump-
start, asymptotic performance, total reward, transfer ratio,
and time to threshold (Taylor and Stone 2009). First, the
metric jumpstart relates to increasing the initial performance
on the target task. Second, asymptotic performance is con-
cerned with testing the improvements of the final accuracy
of the agent. Third, the metric for fotal reward compares the
total reward accumulated by transfer as opposed to without
transfer. Fourth, transfer ratio is a ratio of the total reward
acquired with and without transfer. Finally, time fo threshold
deals with how fast the agent can reach a predefined perfor-
mance threshold (Taylor and Stone 2009). We decided to use

the jumpstart and time to threshold metrics to show trans-
fer performance because we were interested in showing our
models ability to reduce training time on a target task.

The PFC and basal ganglia (BG) interact with one another
in order to flexibly and dynamically update information in
a working memory system. The PBWM model (O’Reilly
and Frank 2006) demonstrates this interaction by utilizing
a dynamic gating mechanism that sits in between the PFC
and BG. This gate is modulated by the dopaminergic sys-
tem through the use of reinforcement learning. The PBWM
model was proven to reach performance criteria faster and
have the lowest error when compared to SRN, RBP, and
LSTM networks. Even though PBWM shows superior gen-
eralization, it was not tested for generalization across tasks,
which is a key feature of transfer learning. It was then ob-
served that with the addition of a PFC stripe based output
gating mechanism, the model became markedly better as
simulated in a vocabulary task (Kriete and Noelle 2011).
Output gating was even proven to assist in tasks that are hier-
archical in nature (Unger et al. 2016). Unlike the tasks used
on the previously discussed models, some domains may con-
tain multiple competing optimal policies and temporally-
delayed feedback. Moreover, this increases the complexity
of solving the task. We hypothesize that the addition of out-
put gating mechanisms to the HWMtk can overcome these
difficulties.

Methods
Source and Target Tasks

In order to show our model’s ability to transfer knowledge,
we utilize a 5 x 5 2-D grid-world maze task containing 25
states as our source task (see Figure 1). In this task the agent
starts off by being randomly placed in the lower half of the
maze which is located below the barriers. Once spawned,
the agent is flashed a color and then released to explore the
grid-world maze on its own. The available colors that the
agent can experience during the initial spawn consist of red
or green. These colors are cues that signal the location of the
goal state. As displayed in Figure 1, if the agent is flashed
the color red then the goal state will be located in the upper
left corner of the grid-world. Also, if the agent is flashed the
color green, then the goal state is positioned in the upper
right corner. Finally, located 2 rows from the top of the grid-
world is a barrier with a single opening. We intend to use
this single point of entry onto the other side of the grid-world
as the basis for forming a shared representation between our
source task and target task since both tasks share an identical
optimal policy for the lower half of the maze.

For knowledge transfer to take place, there must be some
shared characteristics between the source task and target
task. In our target task, we will maintain the same 5 x 5 2-D
grid-world maze as that of the source task. The agent will
spawn in a random position on the lower half of the maze
below the barriers. Now instead of 2 colors (red and green)
available at the initial state, another color (purple) is added
to the list of possible cues. The addition of the color purple
means that there is another task that can be present during
a trial. Additionally, if purple is flashed then the goal state

1326

Red Task
4

I

4

Goal State

Goal State

— | — —

a~

urple Task

Goal State

I
I

I
@ |

Figure 1: Grid-world environment for the Red, Green, and
Purple tasks. The agent is indicated by the colored dot. The
dot color is based on the initial flashed cue at beginning of
the trial. Based on the initial cue color, the goal state will
be in the upper far left corner (red cue) the upper far right
corner (green cue), or the upper middle (purple cue). The
grid is divided into 25 states. The thick blue lines represent
barriers that restrict how the agent can transition within the
grid world. The agent’s goal is to reach the colored goal state
in an optimal manner. The arrows show an optimal path that
can be taken by the agent to reach the goal. All tasks share
the same optimal policy for the lower half of the grid.

—)

will be located in the upper middle portion of the grid-world
maze as illustrated in Figure 1. Both the source task and tar-
get task share the lower half of the grid-world. We utilize
this shared representation to demonstrate transfer learning
between our source task and target task.

Transfer Learning Model

A detailed diagram of our model is provided in Figure 2. Pre-
sented in that diagram, we see that the input gate controls
the flow of information into WM Maint. The slots in WM
Maint represent stripes in the PFC. The input gate, output
gate and the agent’s motor output are each controlled by a
separate neural network that store the () values. We modu-
late the opening and closing of the gates using the tempo-
ral difference learning algorithm (Barto and Sutton 1998).
Holographic Reduced Representations (HRRs) (Plate 1995)
are used to encode the actions (both internal and external)
and the states. HRRs key utility is that it allows the con-
junction and disjunction of features without an increase in
dimensionality. Also each representational vector is approx-
imately orthogonal, which enables the use of an efficient sin-
gle layer network. Furthermore, each slot in WM Maint is
mapped to its own input gate and output gate. This means
that an input gate designated for one slot cannot interfere
with the updating of another slot’s contents. Finally, the out-
put gate for that slot would not be able to gate out the con-
tents of another slot.

The input gate governs whether or not information will be
ignored or stored for maintenance by the agent. The input
gate’s neural network receives the state information of the
environment as input. It also receives as input the role asso-
ciated with the cue it is presented with. This role information
serves as an abstract representation of the cue. For example,
in Figure 2 we see that the cue green is bound with the role
color. Furthermore, if different cues are presented, the role
will still be that of color. This feature allows the model
to effectively generalize to new cue representations. Next,
the input gate’s neural network determines whether the gate
should open or close as detailed in Figure 3. This action my,
is selected by choosing the highest (-value in the input gate
network at time ¢. The formula can be computed as follows:

my, = argmax((s; xay) - wy + b) (1)

ar€Ay

t

where m;, represents the highest ()-value for the input gate
at time ¢, sy is the state information for the input gate, a;
is an action vector for the input gate, A; is the set of all
possible action vectors for the input gate, w; is the weight
vector for the input gate network and b is the bias for the
input gate. If opened, the cue is stored and maintained in WM
Maint as depicted with the purple arrow in Figure 2. Oth-
erwise, the cue information is ignored and the WM Maint
slot does not get updated.

Downstream processing is influenced by whether or not
the contents in WM Maint are allowed to pass the output
gate. The neural network for the output gate takes as input
the state information of the environment and a representa-
tion that signifies whether the WM Maint slot is empty or
filled. The output gate then decides to open or close using

1327

cue state role
green
Sentas inputto Input-Gate network
° / ° e |nput-Gate
lot 1 Slot 2 Slot 3
] — WM
Maint
Slot Status

state (Empty/Filled)

Sentas inputto Output-Gate network

: /.

_ Output-Gate

Slot1 Slot2 Slot3
Storage
WM
Output state

Sentas inputto Agentnetwork

Agent

Action
Selection

1] ==

Figure 2: This diagram shows the flow of information within
our model. Initially, the agent is presented with a color. The
role associated with the cue, along with state information, is
sent as input to the input gate’s network where a decision to
open or close the gates is determined. If the gate is open, the
color is then stored in working memory and maintained, oth-
erwise the slot remains empty. Each working memory slot
has its own dedicated input gate and associated output gate.
The output gate’s network uses the knowledge of whether or
not the working memory slot is empty or filled as input. The
output gate’s network then decides to either open the output
gate or have the output gate stay closed. If opened, the con-
tents of the working memory slot associated with the gates
are then propagated as output. The output and state infor-
mation is then sent to the agent network where an action is
determined.

Input Vector

location

S = location*role

Q-Values

argmax

Action
Output

Figure 3: This diagram shows the mechanisms for the single
layer neural network used to store the ()-values of the input
gate, output gate, and agent network. The orange triangles
represent vectors; the green circles represent scalar values;
and the blue bar represents a function. The blue arrows show
the direction in which data is flowing within the network.
The input vector is created when location is convolved
with role creating the vector S. Next, the ()-values are
computed by convolving the S vector with all combinations
of actions (Open and Close). The dot product of the previous
result and the weight vector W is computed and the bias b is
added thus creating the ()-values of Q1 and Q2. Finally, the
(2-values are passed to the argmax function and the high-
est (Q-value is selected resulting in an action selection (e.g.
Open or Close) signified by Action Output.

this formula:

@

mo, = argmax((sp *ap) - wo + b)
ap€EAo

where mo, represents the highest ()-value for the output
gate at time 7, Sg is the state information for the output gate,
ap is an action vector for the output gate, Ao is the set of all
possible action vectors for the output gate, wo is the weight
vector for the output gate network and b is the bias for the
output gate.

If the gate is open, then the contents of WM Maint is al-
lowed to affect the downstream processing of input at the
motor output layer or action selection stage. In Figure 2 we
see the purple arrow illustrating the transition of slot con-
tents from the maintenance layer to the output layer. Finally
if the gate is selected to be closed, then the slot will be empty
and the working memory contents will have no affect on
the agent’s motor action. The agent then makes an action

1328

to move in a particular direction. This action is governed by
the formula:

mya, = argmax((sa xa4) - Wwa +b)
ap€AH

3)

where m 4, represents the highest ()-value for the agent at
time ¢, s 4 is the state information for the agent, a4 is an ac-
tion vector for the agent, A 4 is the set of all possible actions
for the agent, w 4 is the weight vector for the agent network
and b is the bias for the agent. Once the agent has completed
an action, we calculate ¢ for each network using the follow-
ing formulas:

64 = (r+9ma,) —ma,_,
50 = (7" + ’ymAt) —mo,_,
or = (r+9ma,) —my,_,

“4)

where 7 is the reward given for the current state and -y is
the discount factor. We use the agent’s action as the target
and force the input gate and output gate to adjust their error
accordingly. This helps to correlate the agent’s action to the
gates’ actions. We then update the input gate network, output
gate network, and agent network as follows:

WA =Wgu + Oz(SAXAt
Wo = Wo + aéoXot
Wi = Wy + adaX,

&)

with x4,, Xo, and Xx;, being the value of the input vec-
tor for each of the networks at time ¢. Table 1 details the
hyperparameters and corresponding values used for the in-
put gate, output gate, and agent networks. Also, the source
code is available online at: https://github.com/arthurw125/
AAAI20_Transfer.

Table 1: Parameter Descriptions and Values

Name Value Description

n 1024 Size of HRR vectors

€ 0.1 Probability of non-greedy action choice
~ 0.9 Discount factor

o 0.1 Learning rate

A 0.9 Trace decay

b 1 Network bias

Model Constraints and Features

In order for the model to generate a shared representation
within the task, some constraints had to be placed on the
input gate and the output gate. In the earlier stages of build-
ing the model, we allowed both the input gate and output
gate to have full control and autonomy over their actions.
We provided both gates with the ability to open or close re-
gardless of the environment encountered during each time
step. We observed that the model was unable to learn on
tasks that were more than 10 states large. The input gate’s
ability to overwrite working memory contents played a ma-
jor part in causing the model to fail. Using this knowledge,
we constrained the input gate such that it only has the option
to open if the environment of the agent presented features

available for storage. This constraint allowed our model to
solve the 5 x 5 2-D grid-world maze task presented in Fig-
ure 1 which contains 25 states. Even though the model was
able to solve the task, it did not exhibit the behavior that we
had expected. Our desired policy was one in which the out-
put gate would stay closed on the shared side of the maze
and only open once the agent passed through the opening in
the barrier. In actuality, the output gate learned a policy that
allowed it to toggle actions (open or close) from one state
to the next. This prevented the model from learning a shared
representation, which is a feature we needed to exploit for
transfer learning given its necessity for the model of Kriete
and Noelle to perform generalization.

In our previous output gate model, the working memory
contents were not affected by the actions of the output gate.
But due to the toggling of actions between state transitions,
we changed our approach of the output gate’s functionality
as well. In our current model, if the output gate chooses to
open then the contents of working memory is utilized only
once and is then flushed and is no longer available for use
by the agent. The previous iteration of our output gate model
allowed for multiple uses of working memory contents for
downstream processing. By constraining memory usage, the
agent is forced to learn when to use its memory contents. If
the output gate stays closed then the working memory con-
tents are maintained. Once the output gate opens, working
memory is used by the agent for action selection and then
flushed. The goal is to learn the state in which to gate out
what is maintained in working memory so that it yields the
most reward.

One main feature of our current output gate model is the
ability to create a shared representation. The output gate
model creates these shared representations by partitioning
the state space into 3 parts. The first state space partition-
ing occurs by having the agent internally monitor whether
or not there is anything loaded into the working memory
slot. An internal query happens on each time step and the
agent is presented with a HRR vector for remembering
if the working memory slot is full or not _remembering
if the working memory slot is empty. This representation is
presented to the agent until the output gate is opened or the
trial ends. If the agent is maintaining something in memory
and gates it out, the agent is then presented with a HRR vec-
tor memory_used. The item stored in working memory is
also presented to the agent and then flushed out of working
memory, unable to be used by the agent in future time steps.
Finally the memory_used representation persists with the
agent there on after until the trial ends. This mechanism is
a weak form of episodic memory which helps the agent un-
derstand the context of its own working memory decisions.

Results

To test our model’s ability to transfer knowledge across
tasks, we observed whether or not there was significant
Jjumpstart provided to the target task. The jumpstart metric
deals with the reduction of initial error from training on the
source task relative to the target task. Also, we measured the
time to threshold metric for the target task and the source

1329

Qutput-Gate Model's Initial Error for Red-Green-Purple Gridworld Task

Error (Optimal steps - Actual steps)
w
]

——
RG RP R P

No Transfer

Source Tasks

(a) Jumpstart metrics for the output gate model

Input-Gate Model's Initial Error for Red-Green-Purple Gridworld Task

50
a0

30

20

10

Error (Optimal steps - Actual steps)

a

No Transfer RG RP P

Source Tasks
(b) Jumpstart metrics for the input gate model
Jumpstart differential for Red-Green-Purple Gridworld Task
50

40

30

20

Jumpstart Gained in Steps

10

Input-Gate Output-Gate

Models

(c) Compares jumpstart between the input gate model and
the output gate model

Figure 4: Jumpstart metrics for the output gate model (a) and
the input gate model (b) display the initial error for the Red-
Green-Purple gridworld task. Each model trained on a set
of source tasks where RG is the Red-Green source task; RP
is the Red-Purple source task; R is the red source task; and
P is the purple source task. No Transfer means that no
source task was used to train the model. Furthermore, these
values come from taking the mean of 100 training sample
runs. Next, jumpstart is compared between models (c) by
taking the difference between the No Transfer training
run and the lowest training run in which a source task was
used for transfer.

Output-Gate Model's Time to Threshold Metric

35740
32008

19762
16178

Number of training episodes

0 No Transfer RG RP R P

Source Tasks
(a) Time to threshold metrics for the output gate model
Input-Gate Model's Time to Threshold Metric

3500 3455

w
=]
5]
=)

2749

2500 2366

'S 2000

ining episodes

1500
1108

Number of tra
"

w o

[=3 =]

g 8

0~ No Transfer

RG RP R P

Source Tasks
(b) Time to threshold metrics for the input gate model

Figure 5: Time to threshold metrics for the output gate model
(a) and the input gate model (b) displays the training time re-
quired to reach an error threshold for the Red-Green-Purple
grid-world task. Each model trained on a set of source tasks
where RG is the Red-Green source task; RP is the Red-
Purple source task; R is the red source task; and P is the
purple source task. No Transfer means that no source
task was used to train the model. Furthermore, these values
come from taking the mean of 100 training sample runs.

task for comparison on both the input gate model and out-
put gate model. The time to threshold metric calculates how
long it takes the error to reach a fixed error threshold for the
system. For both metrics the error was determined by calcu-
lating the optimal number of steps to get to the goal minus
the actual steps taken by the agent. We then took the mean
of this step difference across 100 sample runs of learning.
Our goal is to determine whether or not output gating can
provide significant transfer across similar task sets.

The first metric we will discuss is the jumpstart crite-
rion. In our experiment, we used 4 different source tasks re-
spectively to test the utility of our output gate model. These
source tasks consist of the Red-Green task, the Red-Purple
task, the Red task, and the Purple task. Looking at Figure
4(a) and Figure 4(b), we see that both the output gate model
and the input gate model both achieved a noticeable level of
Jjumpstart as compared to the task with no source task train-

1330

Table 2: Time to Threshold Statistics

input gate output gate
No Transfer 3.46k 32k
Red-Green 0.83k 16.18k
Red-Purple 1.11k 19.76k
Red 2.37k 35.74k
Purple 2.75k 1

ing. Also when we compare the jumpstart criterion between
both the input gate model and output gate model, we see that
the jumpstart differential is larger for the output gate (see
Figure 4(c)). Jumpstart differential is measured by taking
the difference between the NO Transfer training run and
the lowest training run utilizing a source task. This is com-
puted for each model respectively. Our findings show that
the output gate model is more robust to transferring knowl-
edge that aids in improving initial learning performance.

The time to threshold metric measures the time it takes
to learn to a specified threshold level. This metric aims to
see a decreased training time relative to the NO Transfer
task, which is trained without source task knowledge. Also,
we chose an error threshold of 1 which relates to the agent
being 1 step off of being optimal within a 25 state grid-
world maze. In Figure 5(a) and Figure 5(b) we see the time
to threshold metrics for both the output gate model and the
input gate model. These metrics were computed by logging
the error of each episode of a simulation run. In Figure 5(a)
we see that the we were able to achieve transfer that re-
sulted in one-shot learning when the purple task was used
as a source task with the output gate model. This is made
evident by the output gate model’s Purple source task only
requiring 1 episode to reach the error threshold as indicated
in Table 2 and Figure 5(a). Conversely, the input gate model
is unable to achieve this level of performance, even though it
requires significantly less training episodes to reach the error
threshold. This shows that an output gate model is capable
of robustly transferring knowledge resulting in immediate
generalization to novel tasks.

Discussion

We utilize transfer learning throughout our everyday life
without thinking about it. The mechanisms that allow the
transfer of knowledge from source task to target task are
pivotal as it relates to cognition. Output gate models have
been shown to provide added levels of generalization as ob-
served in several tasks (Kriete and Noelle 2011; Kriete et
al. 2013). But the question is whether such generalization
is a key component of transfer? Furthermore, does gener-
alization as it pertains to output gating provide noticeable
utility in transfer learning? We propose that generalization
and specifically, the ability to control downstream process-
ing provided through output gating mechanisms, are integral
to solving the transfer learning problem.

Our claims were validated when our model exhibited
transfer learning by illustrating a marked performance in-
crease in 2 transfer metrics: time to threshold and jumpstart.
We noticed that our model was able to achieve jumpstart by

a large margin. Additionally, our model dramatically outper-
formed the input gate model for that same criterion. Next,
we observed that our model displayed positive transfer as
it relates to the time to threshold criterion and was able to
immediatle generalize to new tasks using the Purple source
task for transfer.

In the future, we intend to use our model on more tasks
to test where transfer is possible. Moreover, we hope to test
transfer on known cognitive science tasks such as the AX-
CPT task and its variant the 1-2-AX-CPT task. By exploring
these tasks, we might also be able to start comparing our
transfer data with human and animal performance data.

References

Barto, A. G., and Sutton, R. S. 1998. Reinforcement learn-
ing: An introduction. [EEE transactions on neural net-
works / a publication of the IEEE Neural Networks Council
9(5):1054.

Dubois, G. M., and Phillips, J. L. 2017. Working Memory
Concept Encoding Using Holographic Reduced Representa-
tions. In Proceedings of the 28th Modern Artificial Intelli-
gence and Cognitive Science Conference.

Kriete, T., and Noelle, D. C. 2011. Generalisation benefits
of output gating in a model of prefrontal cortex. Connection
Science 23(2):119-129.

Kriete, T.; Noelle, D. C.; Cohen, J. D.; and O’Reilly, R. C.
2013. Indirection and symbol-like processing in the pre-
frontal cortex and basal ganglia. Proceedings of the National
Academy of Sciences 110(41):16390-16395.

O’Reilly, R. C., and Frank, M. J. 2006. Making Working
Memory Work: A Computational Model of Learning in the
Prefrontal Cortex and Basal Ganglia. Neural Computation
18(2):283-328.

O’Reilly, R., and Munakata, Y. 2000. Computational Ex-
plorations in Cognitive Neuroscience. MIT Press.

Phillips, J. L., and Jovanovich, M. 2018. n-task Learning
: Solving Multiple or Unknown Numbers of Reinforcement
Learning Problems. Proceedings of the 40th Annual Meeting
of the Cognitive Science Society, Madison, WI.

Phillips, J. L., and Noelle, D. C. 2005. A Biologically In-
spired Working Memory Framework for Robots *. In Pro-
ceedings of the 27th Annual Meeting of the Cognitive Sci-
ence Society.

Plate, T. A. 1995. Holographic Reduced Representations.
IEEE Transactions on Neural Networks 6(3).

Schultz, W.; Dayan, P.; and Montague, P. R. 1997. A neu-
ral substrate of prediction and reward. Science 275(June
1994):1593-1599.

Smith, A. J.; Li, M.; Becker, S.; and Kapur, S. 2007. Link-
ing animal models of psychosis to computational models of
dopamine function. Neuropsychopharmacology 32(1):54—
66.

Sutton, R. S. 1988. Learning to Predict by the Methods of
Temporal Differences. Machine Learning 3:9—44.

1331

Taylor, M. E., and Stone, P. 2009. Transfer Learning for Re-
inforcement Learning Domains: A Survey. Journal of Ma-
chine Learning Research 10:1633-1685.

Unger, K.; Ackerman, L.; Chatham, C. H.; Amso, D.; and
Badre, D. 2016. Working memory gating mechanisms ex-
plain developmental change in rule-guided behavior. Cogni-
tion 155:8-22.

Weiss, K.; Khoshgoftaar, T. M.; and Wang, D. 2016. A
survey of transfer learning. Journal of Big Data 3(1):9.

