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Abstract

Planning is useful. It lets people take actions that have de-
sirable long-term consequences. But, planning is hard. It re-
quires thinking about consequences, which consumes limited
computational and cognitive resources. Thus, people should
plan their actions, but they should also be smart about how
they deploy resources used for planning their actions. Put an-
other way, people should also “plan their plans”. Here, we
formulate this aspect of planning as a meta-reasoning prob-
lem and formalize it in terms of a recursive Bellman objective
that incorporates both task rewards and information-theoretic
planning costs. Our account makes quantitative predictions
about how people should plan and meta-plan as a function
of the overall structure of a task, which we test in two experi-
ments with human participants. We find that people’s reaction
times reflect a planned use of information processing, consis-
tent with our account. This formulation of planning to plan
provides new insight into the function of hierarchical plan-
ning, state abstraction, and cognitive control in both humans
and machines.

Introduction

Suppose you have to catch a flight in three hours, and you
are in your bedroom packing. How would you plan your next
move? You might reason, “I will finish packing my bag.
Then, I will get a car to take me to the airport.” This plan
seems intuitive and straightforward. However, many details
have been left out: Which taxi or ride-sharing company will
you use? How are you going to get from security to your
gate? If you reach the gate and get hungry, can you pick up
a snack in time to still make your flight? Clearly, you did
not imagine every possible contingency from now until your
flight departs. Instead, you sketched out a partial plan that
considers the information most relevant to your current cir-
cumstance, and delayed thinking about other details to when
they become more relevant. For instance, rather than think-
ing of a detailed path from your bedroom to the flight gate
right now, you might plan to later think about the route to
the gate once you get through airport security.

As this example suggests, human decision making not
only involves planning one’s actions, but also planning one’s
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plans. But why plan one’s plans? Why not just plan one’s ac-
tions? We propose that planning one’s plans emerges from
two aspects of human decision making. First, plans can in-
clude different details at different times and change as time
moves on. Second, representing detailed plans is itself costly
(in terms of time and memory). Thus, people should con-
sider what details they include in a plan and when to include
those details. That is, they should plan their plans.

Here, we develop and empirically evaluate this idea in hu-
mans. We first discuss how planning one’s plans relates to
existing ideas in psychology and machine learning. Then,
we formalize the relation between planning one’s plans and
the cost of planning by defining a general Bellman objective
that includes both task rewards and information-theoretic
planning costs. We then discuss several qualitative features
of solutions to this objective. Finally, we report the results
of two new human experiments that compare participant re-
action times during problem solving to the predictions of
our model and alternatives. These empirical findings sup-
port our normative account of planning one’s plans and raise
new questions about the nature of boundedly rational deci-
sion making in both people and machines.

Background

Put simply, planning involves finding a good sequence of
actions given a particular problem representation (Newell,
Shaw, and Simon 1958). In computer science, many ap-
proaches have been developed to facilitate planning. These
include classical planning methods such as depth-limited
search (Korf 1990), heuristic search (Pearl 1984), and
Monte-Carlo tree search (Abramson 1987) as well as the use
of data structures like hierarchies (Sacerdoti 1974; Kaelbling
and Lozano-Perez 2010), temporal abstractions (McDermott
et al. 1998), and state abstractions (Givan, Dean, and Greig
2003). At the same time, psychologists have long recognized
that people also rely on heuristics (Tversky and Kahneman
1974; Gigerenzer and Goldstein 1996) and use abstractions
to organize their thoughts and behaviors (Lashley 1951;
Rosenbaum, Inhoff, and Gordon 1984; Solway et al. 2014).

But why do people use heuristics and abstractions, and
why do we build these structures into our algorithms to
use? A simple reason is that naı̈ve planning is prohibitively
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costly (Bellman 1957; Littman, Dean, and Kaelbling 1995),
so such aids focus limited computational resources on the
most important, urgent, or relevant parts of a problem. This
observation motivates the following question: What if use-
fully and efficiently representing plans were an explicit goal
of making decisions over time?

To develop a model of adaptively planning with the costs
of planning in mind (i.e., planning one’s plans), we draw
on ideas from several lines of research. One is work on
boundedly optimal intelligence (Russell and Subramanian
1995), anytime algorithms (Horvitz 1990; Dean and Boddy
1988), and human rational meta-reasoning (Griffiths, Lieder,
and Goodman 2015), which articulates the value of man-
aging computational costs during decision making. Another
is work on the psychology of intertemporal choice (Berns,
Laibson, and Loewenstein 2007) and representation (Trope
and Liberman 2003), which studies how people’s construal
of different aspects of the world changes as a function of
distance, time, and context. Finally, we draw on formal tools
from information-theoretic approaches to bounded rational-
ity (Tishby and Polani 2011; Rubin, Shamir, and Tishby
2012; Ortega and Braun 2013), which provides a general
framework for characterizing the relationship between en-
vironmental rewards and decision-making costs.

Planned Information Processing

We begin by formalizing the objective of planning one’s
plans in terms of planned information processing. To model
how an agent should plan at different points in time given
a task and a cost of planning, we treat the decisions of
what to plan and when to plan as a sequential decision-
making problem (Puterman 1994). To capture a general,
architecture-agnostic notion of planning costs, we use a for-
mulation of partial planning and information-theoretic ac-
tion costs (Tishby and Polani 2011; Rubin, Shamir, and
Tishby 2012; Ortega and Braun 2013). Finally, at the end of
this section and in the supplementary materials, we present
a gradient-based algorithm for solving this objective.

Markov Decision Processes

Sequential decision-making can be described in terms of a
Markov Decision Process (MDP) (Puterman 1994). A dis-
crete MDP M is a tuple 〈S,A, T,R, γ〉, where S is the state
space; A is the action space; T : S ×A → Δ(S) is a transi-
tion function that defines a probability distribution over next
states s′ ∈ S having taken action a ∈ A in state s ∈ S;
R : S × A× S → R is a reward function that defines agent
payoffs; and γ ∈ [0, 1) is a discount rate.1

An agent’s policy describes its behavior in an MDP. For-
mally, a policy π : S → Δ(A) is a mapping from states
s ∈ S to probability distributions over actions a ∈ A. A
policy combined with a transition function defines how an
agent will move within the state space over time. Addition-
ally, the normalized discounted occupancy of a policy π in
MDP M is ρπ(s) ∝ ∑∞

t=0 γPr{s = st}.
We are interested in the value function for a particular pol-

icy, V π : S → R, which is the expected discounted cu-
1Δ(X) denotes the simplex over discrete elements x ∈ X .

mulative reward that an agent receives by following π from
state s onward. We are especially interested in the optimal
value function defined by the unique fixed point of the Bell-
man equation (Bellman 1957), where for all s ∈ S:

V ∗(s) = max
a∈A

∑
s′∈S

T a
s,s′ [R

a
s,s′ + γV ∗(s′)]. (1)

The optimal value function describes the best that an
agent can expect to do in terms of maximizing future dis-
counted rewards from each state. It is also useful to de-
fine the optimal state-action value function Q∗(s, a) =∑

s′∈S T a
s,s′ [R

a
s,s′ + γV ∗(s′)], for all s ∈ S, a ∈ A. Finally,

an optimal policy π∗ is any policy π such that V π(s) =
V ∗(s) for all s ∈ S.

Partial Planning via Soft Planning

In an MDP, planning corresponds to finding a policy that
yields high value by doing computations over a model of
the task. For instance, an optimal policy π∗ generates plans
that perfectly maximize value. But, we may not always want
a perfect plan. Rather, since perfection is costly, it is often
useful to express imperfect partial plans.

We introduce two ideas to formalize partial plans. First,
we distinguish between the ground MDP, M , and a “simu-
lated” MDP, M̃ . Here, we focus on the relationship between
ground states S and simulated states S̃, while also assum-
ing that M̃ = M . This distinction allows us to express dif-
ferent quantities (e.g., action probabilities, expected values)
over the same simulated state space but from the perspec-
tive of different ground states. For example, we denote the
planned probability of taking action a at simulated state s̃
from ground state s as π̃(a | s̃; s). In the airport example,
you are simulating what you would do at the airport, s̃, from
your bedroom, s. Note the special case of π̃(a | s; s) (i.e.,
s̃ = s), which defines the actions an agent plans on taking at
their current state.

Second, we introduce a soft planning parameterization
of partial policies that controls the allocation of planning
to different simulated states. Formally, an inverse temper-
ature assignment from state s, β(·; s) : S̃ → R≥0, assigns
a positive real inverse temperature to each simulated state
s̃ ∈ S̃. Given this assignment, we define soft-Bellman equa-
tions over simulated states s̃ ∈ S̃ from a ground state s:

π̃β(a | s̃; s) ∝ exp

{
Q̃β(s̃, a; s)β(s̃; s)

}
, (2)

Ṽ β(s̃; s) =
∑
a

π̃β(a | s̃; s)Q̃β(s̃, a; s), (3)

Q̃β(s̃, a; s) =
∑
s̃′

T a
s,s′

[
Ra

s,s′ + γṼ β(s̃′; s)
]
. (4)

Intuitively, the inverse temperature assignment captures how
much attention is paid at each simulated state when con-
structing a partial plan. Larger inverse temperatures entail
more attention at a particular state, and the interaction of
temperatures induces a partial plan π̃β(· | ·; s).2
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Figure 1: Results on Four Rooms Domain. (A) Partial Planning Costs. Shown are the planning costs associated with each
simulated state s̃ from three ground states s (s̃ = s are circled in red). Numbers correspond to the KL-divergence of the partial
plan from the default plan at each simulated state. The total computational cost for a state is the sum of divergences over the
simulated state space (see Equation 5). Higher values occur at states where the decision is relevant to the current decision,
such as the entrances to doors. Values less than 0.005 are not shown. G denotes the goal. (B) Reward-Planning Pareto frontier.
Planning to plan involves both task rewards and planning costs. Depending on the particular task, certain combinations of task
rewards and planning costs may be infeasible. Optimizing Equation 6 for any particular λ finds a point where expected rewards
cannot be increased without increasing planning costs and planning costs cannot be decreased without decreasing rewards.
Plotted are the planning costs and future value (without planning costs) from the lower-left state in Four Rooms after running
our algorithm for a range of λ values. The induced Pareto frontier is analogous to an information-theoretic rate-distortion
tradeoff (Shannon 1948; Tishby and Polani 2011).

Information-Theoretic Planning Costs

How can we quantify the cost of a partial plan? Our pro-
posal borrows the idea of information theoretic costs for ac-
tions (Tishby and Polani 2011; Rubin, Shamir, and Tishby
2012; Ortega and Braun 2013) and applies it to simulated
(planned) actions. For instance, we can define the cost of a
plan π̃ based on sum of Kullback-Leibler (KL) divergences,
denoted DKL, from a default policy π̄ at each state:

C(π̃, π̄) =
∑
s̃∈S̃

DKL
[
π̃(· | s̃)||π̄(· | s̃)], (5)

where DKL[p||q] =
∑

x p(x) log(
p(x)
q(x) ) for distributions p

and q with the same support (Cover and Thomas 1991).
Here, we set π̄ to be the uniform distribution at all states
as it makes few assumptions and is justified by previ-
ous work (Ortega et al. 2015). However, our formulation

straightforwardly accommodates task-specific default poli-
cies.

Specifying planning costs as an information theoretic
quantity has conceptual and practical advantages. First,
planning costs can be characterized independently of an
agent’s specific representation of a task. Second, it can be
interpreted as the minimal cost in bits of using the old plan π̄
to represent the action distributions in the new plan π̃ (Cover
and Thomas 1991), which captures intuitions about planning
as a costly process of information transformation and con-
trol. Finally, the cost term is differentiable with respect to
the policy probabilities.

2Previous work has interpreted the soft-maximization in Eq. 2
in terms of the sampling process of a bounded rational decision-
maker, where inverse temperature reflects noise (Train, 2003, p48;
Ortega et al., 2015). Here, we mainly treat soft-planning as a way
to parameterize partial policies and leave a more in-depth analysis

1302



Planned Information Processing Bellman Objective

Given our formalization of partial planning and information
theoretic planning costs, we can now define the objective
of planning one’s plans. Put simply, we nest partial plan-
ning (Equations 2–4) inside a meta-planning problem that
includes planning costs (Equation 5):

V ∗
λ (s) = max

β(·;s)

{∑
a∈A

[
π̃β(a |s;s)Q∗

λ(s, a)
]
−λC(π̃β , π̄)

}
,

(6)

where Q∗
λ(s, a) =

∑
s′∈S T a

s,s′

[
Ra

s,s′ + γV ∗
λ (s

′)
]
.

This equation extends the original Bellman equation
(Equation 1) in two ways. First, ground actions are no longer
directly chosen. Instead, a distribution over actions is in-
duced at the current state s by influencing the computations
of the planner with β(·; s).

Second, Equation 6 takes into account the immediate cost
of planning via the term λC(π̃β , π̄), where λ ∈ R is a plan-
ning cost weight. Note that this formulation also includes
planning opportunities and costs in the future via the recur-
sive nature of the Bellman equation. To understand the sig-
nificance of this, consider again the airport example: While
at home packing, you only vaguely consider how you will
get from security to your gate. This is not because it does
not matter; if you never make it to your gate and miss your
flight, there is no point in packing. Rather, packing does not
require you to think about the details of navigating the air-
port until later. In short, Equation 6 expresses how an agent
should partially plan to act in the moment, taking into ac-
count that they will engage in planning in the future.

Optimal Planned Information Processing

To solve for the meta-planning objective in Equation 6, we
implemented a gradient-based algorithm that solves for the
optimal inverse temperature assignments (i.e., β∗) given an
MDP M , planning cost weight λ, and default policy π̄.

To understand optimal meta-planning and how it relates
to previous work on hierarchical planning and learning, we
ran our algorithm on the Four Rooms domain with deter-
ministic transitions (Sutton, Precup, and Singh 1999). An
absorbing goal state worth +100 points was placed in the
upper-right corner. Step costs were included (−.1 points)
and the discount rate was set to .99, with λ = 0.01. Plan-
ning iterations were chosen such that value iteration would
converge (H = 100), while meta-planning parameters were
solved using the Adam optimizer (Kingma and Ba 2014) for
N = 200 iterations (see supplementary materials for details
on the algorithm).

The optimization finds an inverse temperature assignment
β∗ that yields a partial plan from each ground state s—i.e.,
π̃β∗

(· | ·; s). The cost of each partial plan is determined by
the entire simulated state space (Equation 5), but we can ex-
amine the contribution of the planned actions at each sim-
ulated state s̃ to identify which ones are prioritized, shown

of the sampling interpretation of this model for future work.

as colors in Figure 1a. Two salient features emerge in the
Four Rooms Domain. First, at any point in time, “doorways”
leading to the goal are prioritized because the quality of the
current decision depends on planning to go through the door
and proceeding towards the goal. Second, actions at states
that are closer along the path are represented in greater de-
tail since they are more relevant to simulating the value of
the current decision.

Additionally, Equation 6 implicitly defines a task-specific
Pareto frontier where task rewards cannot be improved with-
out worsening planning costs and vice versa. Since our algo-
rithm seeks to find points that jointly maximize rewards and
minimize planning costs, we can identify this curve for the
Four Rooms task by running our algorithm with a range of
λ values. Figure 1b shows the plot of this curve at the lower-
left state, which divides the space of possible task rewards
and planning costs into feasible and infeasible combinations
of rewards and planning costs.

Experiment 1: Parametric Mazes

Our account makes quantitative predictions about how peo-
ple should flexibly plan information processing on a task. To
test these predictions, we examined how long it took people
to make decisions when navigating through a set of paramet-
rically generated 2D Gridworld mazes. For a given maze,
our model predicts an optimal amount of partial planning at
a state. For example, Figure 2a displays two mazes that our
model predicts will have different immediate partial plan-
ning costs at the initial state. Since this cost reflects informa-
tion processing, we can operationalize it in this task based
on reaction times (RTs) as in previous work (e.g., Ortega
and Stocker 2016). Specifically, we assume that the amount
of time between when a participant is presented with a maze
and when they take their first action reflects the cost of en-
coding a partial plan from the initial state.

Materials, Participants, and Procedure

The stimuli were a set of 50 different 9×9 Gridworld mazes
in which the start state was in the lower right corner and the
goal state was in the upper left corner. These were chosen by
first randomly generating a batch of 2,000 mazes and then
selecting a random subset that were predicted by the model
to have a range of different optimal planning costs at the
initial state.

We recruited 50 participants from Amazon Mechanical
Turk and used the psiTurk framework (Gureckis et al. 2016).
Each participant was paid a base pay of $1.00. After reading
the instructions and familiarizing themselves with the gen-
eral mechanics of the task, participants started the main part
of the task that included the 50 mazes. Each round, partici-
pants were first shown a blank 9×9 grid. When they pressed
the spacebar, the maze for that round appeared immediately
and they could move their agent (a blue circle) using the
arrow keys. The initial-state RT measure was the time mea-
sured between the appearance of the maze on a round and
their first action. When they reached the goal state, they re-
ceived +100 points (50 points = 1¢; total bonus = $1.00).

1303



A G G

G G

B

L
o
g
 R

T
s

(P
ar

ti
ci

p
an

ts
)

Initial State Planning Cost

(Planning to Plan Model)

L
o
g
 R

T
s

(P
ar

ti
ci

p
an

ts
)

Node Count

(A* Search Model)

Figure 2: Experiment 1 examples and results. (A) Planned information processing (upper pair of examples) versus A∗ search
(lower pair) on two of 50 mazes from Experiment 1. Partial plans at the initial lower-right state (red circles) are more specific
(and costly) at future states relevant to the current decision, represented by darker green (top row). A∗ can plan with heuristics
(e.g., Manhattan distance to goal) but does not adaptively allocate planning based on task structure (bottom row; dark and light
blue are explored states and candidate states, respectively). If people are only planning, and not planning to plan, initial-state
response times will reflect processes like A∗ and not partial planning. (B) Mean log-normalized RTs for the 50 grids used in the
task as a function of partial planning costs (top) and A∗ Node Count. Red lines are regression lines for mean log RTs by item
and model predictions (Top: R2 = 0.12, p < 0.05; Bottom: R2 = 0.003; p = 0.71). Error bars represent standard errors.

Planned Information Processing and Alternative
Models

In this experiment, we are interested in the minimized infor-
mation theoretic planning cost at the initial state predicted by
planned information processing. Formally, this corresponds
to the C(π̃β , π̄) term in Equation 6 for an initial state s0.
These values were calculated for each maze using our algo-
rithm and the same parameters as in the simulation.

To assess whether people are not simply planning, but
adaptively planning their information processing, we con-
sidered seven alternative planning-based metrics as predic-
tors. First, we considered the length of the shortest path from
the start state to the goal, calculated using value iteration
(Optimal Plan Length). Second, we ran A∗ search (Hart,
Nilsson, and Raphael 1968), a classical planning algorithm
that finds a shortest path by maintaining a prioritized set of
states to explore, starting with an initial state, and then itera-
tively exploring states and adding connected states to the ex-
ploration set until the goal state is reached. To facilitate bet-

ter exploration, we provided A∗ with a Manhattan distance
heuristic to the goal. We considered the number of candi-
date states explored by the algorithm before termination (A∗
Node Count).

Third, we analyzed the action cost associated with the first
step of the boundedly rational planning method proposed
by Ortega et al., 2015 (Information theoretic bounded ra-
tionality). We set the information theoretic cost to be 1

α =
λ = .01 to be commensurate with our planning to plan im-
plementation. Fourth, we calculated the initial state entropy
of a standard softmax over the optimal value function, with
β = 1 (RL Softmax Entropy). Fifth, we calculated the initial
state entropy of an optimal soft-Bellman policy, with β = 1
(Soft-Bellman Entropy). Sixth, we calculated the number of
iterations of standard (planning) value iteration before con-
vergence as a measure of planning computation (VI Itera-
tions). Finally, as a heuristic measure of the complexity of
a grid, we calculated the mean number of “turns” that oc-
curred along a trajectory sampled from the optimal policy
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Predictor LL Ratio [χ2(1)] p β SE
Partial Planning Cost 37.71 < .0001 0.15 0.02

A* Node Count 18.60 < .0001 0.00 0.00
Optimal Plan Length 14.06 < .001 -0.02 0.01

Information Theoretic Bounded Rationality 0.82 0.36 0.00 0.00
RL Softmax Entropy 1.50 0.22 0.32 0.26

Soft-Bellman Entropy 10.38 < .001 -0.67 0.21
VI Iterations 24.12 < .0001 0.01 0.00

Trajectory Turns 13.93 < .001 0.02 0.00

Table 1: Experiment 1 (Parametric Mazes) likelihood ratio tests and model estimates. Even when multiple planning metrics are
included, the Partial Plan Cost derived from planning to plan is predictive of RTs.

(Trajectory Turns).
If people are only planning actions, then the planning-

based metrics should be sufficient for predicting RTs. If peo-
ple are planning information processing—that is, construct-
ing a computationally inexpensive partial plan that provides
a good action at their current state—then the partial planning
cost in our model would separately predict RTs.

Results and Discussion

We analyzed our data by comparing the predictions of the
models to participants’ initial-state RTs. Two participants
had substantial missing data, and outliers were excluded,
which left 2373 initial-state RT measurements. To assess the
relative predictive power of the eight models, we first fit a
fully specified mixed effects linear model to log-normalized
RTs. This included by-participant intercepts and round num-
ber slopes as random effects, and Partial Planning Costs
as well as the seven planning-metrics as fixed effects. We
then performed log-likelihood ratio tests with lesions ver-
sions that did not include each of the eight fixed effects. As
shown in Table 1, although several of the planning metrics
are significant predictors, Partial Planning Cost not only pre-
dicts RTs, it is the predictor with the highest log-likelihood
ratio test statistic. Thus, Experiment 1 suggests that people
engage in planned information processing.

Experiment 2: Probing Partial Plans

Experiment 1 tested planning information processing using
initial-state RTs to measure planning costs. In Experiment 2,
we more directly examine whether people’s partial planning
is captured by our model. To probe partial plans, we used
a technique of teleporting participants’ avatars in Gridworld
mazes and measuring their reactions. For instance, imagine
that, in the middle of packing your bag for a flight you are
unexpectedly teleported to the main terminal of the airport
with your bag. It is likely you would quickly know what
to do next (e.g., pick up your boarding pass) if that were
part of your partial plan prior to being teleported. In con-
trast, if you had not thought that far ahead, then it would
likely take you longer to determine your next action. Thus,
post-teleportation reaction times can be used to measure
the divergence between a pre-teleportation plan and a post-
teleportation plan.

Materials, Participants, and Procedure

The experiment consisted of 64 rounds of Gridworld mazes.
To generate the mazes, four base 12 × 12 mazes were gen-
erated such that the initial state was in the lower right corner
and the goal state was in the upper left corner. These were
then transformed using the eight symmetries of a square,
yielding a total of 32 perceptually distinct mazes. Each of
the 32 mazes appeared twice. Half of the rounds were Nor-
mal rounds while the other half were Teleportation rounds.
On the Teleportation rounds, a random number n between 1
and the length of an optimal path for a maze was chosen, and
on the n-th trial, the agent was hidden for 750ms and could
not be controlled. It then reappeared in a randomly chosen
location in the maze and could be controlled immediately.
The amount of time between the reappearance of the circle
and the participant’s response was the post-teleportation RT
measure that is the focus of this study.

Sixty participants from MTurk were recruited for our ex-
periment and given the same familiarization procedure as in
Experiment 1. Participants were paid a base pay of $1.00
and received a bonus of $1.28 for completing the 64 trials.

Model-Predictor Variables

Our goal is to explain post-teleportation RTs as a function of
pre- and post-teleportation states and task structure. Our ac-
count provides partial plans at the pre- and post-teleportation
states. If these map onto people’s partial plans, then RTs will
reflect a process of updating the pre-teleportation plan into
the post-teleportation plan. To quantify this updating (i.e.,
re-planning) process, we calculated the state–action diver-
gence between the pre-teleportation partial plan π̃ and post-
teleportation partial plan π̃′, DKL[p

π̃′
(a, s)||pπ̃(a, s)], where

pπ(a, s) = π(a | s)ρπ(s). This “Partial-Plan Divergence”
reflects the cost to encode the state–action distribution of
the partial plan at the post-teleportation state starting from
the one at the pre-teleportation state. It should thus reflect
participants’ “new” planning at the post-teleportation state.
The same parameters as in the model in Experiment 1 were
used to calculate the partial plans.

We calculated several alternative planning measures.
First, we calculated the length of the optimal path from the
post-teleportation state to the goal. Second, we calculated
the number of A∗ nodes from the post-teleportation state (A∗
Destination Nodes). Third, we calculated an A∗ Node Dif-
ference score, corresponding to the additional nodes that A∗
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Predictor LL Ratio [χ2(1)] p β SE

Partial-Plan Divergence 24.70 < .001 0.001 0.0003
A∗ Destination Nodes 0.25 .62 −0.002 0.005
A∗ Node Difference 2.80 .09 −0.003 0.002
Optimal Path Length 0.02 .89 0.001 0.01

Table 2: Experiment 2 (Probing Partial Plans) likelihood ratio tests and model estimates.

explores at the post-teleportation state, taking into account
those already explored at the pre-teleportation state.

Results and Discussion

To assess the influence of the different predictors on post-
teleportation log-normalized RTs, we used a similar mixed-
effects linear model as in Experiment 1 (random effects were
by-participant intercepts and round number, by-maze inter-
cepts; fixed effects were model predictors). As summarized
in Table 2, the Partial-Plan Divergence significantly pre-
dicted log-transformed RTs on post-teleportation trials. The
planning-based predictors did not account for how quickly
people reacted after being teleported.

Additionally, we conducted a separate analysis that in-
cluded teleportation distance as a fixed effect in the full
model. Note that unlike the planning and partial planning
models, teleportation distance is not an explicit model of
decision-making. In this new model, partial planning is sig-
nificant but weakened (χ2(1) = 4.8, p < .05). Additional
details are included in the Supplementary Materials.

Thus, overall, the results of Experiment 2 suggest that
people’s RTs are explained by planned information process-
ing via partial planning and not simply by planning actions.

General Discussion

This paper asks two questions. First, why plan one’s infor-
mation processing? We argue that meta-planning lets agents
adaptively capitalize on the benefits of planning while regu-
lating planning costs. To make this precise, we formalize the
general notion of partial plans that prioritize planning in dif-
ferent parts of a simulated model and define an information-
theoretic encoding cost for partial plans, enabling us to de-
fine a novel recursive Bellman objective that includes both
task rewards and planning costs. This model provides a point
of departure for future normative accounts of human meta-
planning.

Figure 3: States clustered by partial planning similarity re-
semble option representations.

Second, do people plan their information processing? We
reported two human experiments that test our formal account
of planned information processing. Experiment 1 demon-
strates that adaptive partial planning explains people’s initial
reaction times when navigating parametrically generated 2D
mazes. Experiment 2 used unexpected teleportations while
navigating mazes to probe partial planning representations.
The optimal partial plans generated by our model explain
human responses even when accounting for action planning.

People plan because planning is useful. But, planning
is hard, so people make planning easier by being selec-
tive about what and when they plan. In other words, peo-
ple should plan their planning. For the most part, current
decision-making algorithms plan, albeit with the help of
good heuristics and abstractions provided by computer sci-
entists. But, ideally, algorithms would learn how to make
planning easier for themselves by planning their planning.
Understanding planned use of computational resources can
also provide insight into the nature and function of abstrac-
tions when learning. For instance, we performed hierarchi-
cal clustering over states in Four Rooms based on the sim-
ilarity of their optimal partial plans (Figure 3; details in
supplementary materials), which results in clusters resem-
bling options from research on hierarchical reinforcement
learning (Sutton, Precup, and Singh 1999; Dietterich 2000;
Parr and Russell 1998; Botvinick 2008). In short, this work
is an important step towards understanding the scale and so-
phistication of human meta-planning and applying such in-
sights to the design of machines.
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Solway, A.; Diuk, C.; Córdova, N.; Yee, D.; Barto, A. G.;
Niv, Y.; and Botvinick, M. M. 2014. Optimal Behavioral
Hierarchy. PLoS Computational Biology 10(8):e1003779.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
mdps and semi-mdps: A framework for temporal abstrac-
tion in reinforcement learning. Artificial intelligence 112(1-
2):181–211.
Tishby, N., and Polani, D. 2011. Information Theory of
Decisions and Actions. In Perception-Action Cycle. New
York, NY: Springer New York. 601–636.
Train, K. 2003. Discrete Choice Methods with Simulation.
Cambridge University Press.
Trope, Y., and Liberman, N. 2003. Temporal construal. Psy-
chological review 110(3):403.
Tversky, A., and Kahneman, D. 1974. Judgment under un-
certainty: Heuristics and biases. Science 185(4157):1124–
1131.

1307


