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Abstract

Efficient and reliable social bot classification is crucial for
detecting information manipulation on social media. Despite
rapid development, state-of-the-art bot detection models still
face generalization and scalability challenges, which greatly
limit their applications. In this paper we propose a framework
that uses minimal account metadata, enabling efficient analy-
sis that scales up to handle the full stream of public tweets of
Twitter in real time. To ensure model accuracy, we build a rich
collection of labeled datasets for training and validation. We
deploy a strict validation system so that model performance
on unseen datasets is also optimized, in addition to traditional
cross-validation. We find that strategically selecting a subset
of training data yields better model accuracy and generaliza-
tion than exhaustively training on all available data. Thanks
to the simplicity of the proposed model, its logic can be inter-
preted to provide insights into social bot characteristics.

Introduction

Social bots are social media accounts controlled in part by
software. Malicious bots serve as important instruments for
orchestrated, large-scale opinion manipulation campaigns
on social media (Ferrara et al. 2016a; Subrahmanian et al.
2016). Bots have been actively involved in online discus-
sions of important events, including recent elections in the
US and Europe (Bessi and Ferrara 2016; Deb et al. 2019;
Stella, Ferrara, and De Domenico 2018; Ferrara 2017). Bots
are also responsible for spreading low-credibility informa-
tion (Shao et al. 2018) and extreme ideology (Berger and
Morgan 2015; Ferrara et al. 2016b), as well as adding con-
fusion to the online debate about vaccines (Broniatowski et
al. 2018).

Scalable and reliable bot detection methods are needed to
estimate the influence of social bots and develop effective
countermeasures. The task is challenging due to the diverse
and dynamic behaviors of social bots. For example, some
bots act autonomously with minimal human intervention,
others are manually controlled so that a single entity can cre-
ate the appearance of multiple human accounts (Grimme et
al. 2017). And while some bots are active continuously, oth-
ers focus bursts of activity on different short-term targets. It
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is extremely difficult for humans with limited access to so-
cial media data to recognize bots, making people vulnerable
to manipulation.

Many machine learning frameworks for bot detection on
Twitter have been proposed in the past several years (see a
recent survey (Alothali et al. 2018) and the Related Work
section). However, two major challenges remain: scalability
and generalization.

Scalability enables analysis of streaming data with lim-
ited computing resources. Yet most current methods attempt
to maximize accuracy by inspecting rich contextual infor-
mation about an account’s actions and social connections.
Twitter API rate limits and algorithmic complexity make it
impossible to scale up to real-time detection of manipulation
campaigns (Stella, Ferrara, and De Domenico 2018).

Generalization enables the detection of bots that are dif-
ferent from those in the training data, which is critical given
the adversarial nature of the problem — new bots are eas-
ily designed to evade existing detection systems. Methods
considering limited behaviors, like retweeting and temporal
patterns, can only identify certain types of bots. Even more
general-purpose systems are trained on labeled datasets that
are sparse, noisy, and not representative enough. As a result,
methods with excellent cross-validation accuracy suffer dra-
matic drops in performance when tested on cross-domain
accounts (De Cristofaro et al. 2018).

In this paper, we propose a framework to address these
two challenges. By focusing just on user profile information,
which can be easily accessed in bulk, scalability is greatly
improved. While the use of fewer features may entail a small
compromise in individual accuracy, we gain the ability to
analyze a large-volume stream of accounts in real time.

We build a rich collection of labeled data by compil-
ing all labeled datasets available in the literature and three
newly-produced ones. We systematically analyze the fea-
ture space of different datasets and the relationship between
them; some of the datasets tend to overlap with each other
while others have contradicting patterns.

The diversity of the compiled datasets allows us to build
a more robust classifier. Surprisingly, by carefully select-
ing a subset of the training data instead of merging all
of the datasets, we achieve better performance in terms of



cross-validation, cross-domain generalization, and consis-
tency with a widely-used reference system. We also show
that the resulting bot detector is more interpretable. The
lessons learned from the proposed data selection approach
can be generalized to other adversarial problems.

Related Work

Most bot detection methods are based on supervised ma-
chine learning and involve manually labeled data (Ferrara
et al. 2016a; Alothali et al. 2018). Popular approaches
leverage user, temporal, content, and social network fea-
tures with random forest classifiers (Davis et al. 2016;
Varol et al. 2017; Gilani, Kochmar, and Crowcroft 2017;
Yang et al. 2019). Faster classification can be obtained us-
ing fewer features and logistic regression (Ferrara 2017;
Stella, Ferrara, and De Domenico 2018). Some methods
include information from tweet content in addition to the
metadata to detect bots at the tweet level (Kudugunta and
Ferrara 2018). A simpler approach is to test the randomness
of the screen name (Beskow and Carley 2019). The method
presented here also adopts the supervised learning frame-
work with random forest classifiers, attempting to achieve
both the scalability of the faster methods and the accuracy
of the feature-rich methods. We aim for greater generaliza-
tion than all the models in the literature.

Another strain of bot detection methods goes beyond in-
dividual accounts to consider collective behaviors. Unsuper-
vised learning methods are used to find improbable sim-
ilarities among accounts. No human labeled datasets are
needed. Examples of this approach leverage similarity in
post timelines (Chavoshi, Hamooni, and Mueen 2016), ac-
tion sequences (Cresci et al. 2016; 2018a), content (Chen
and Subramanian 2018), and friends/followers (Jiang et al.
2016). Coordinated retweeting behavior has also been used
(Mazza et al. 2019). Methods aimed at detecting coordina-
tion are very slow as they need to consider many pairs of
accounts. The present approach is much faster, but consid-
ers individual accounts and so cannot detect coordination.

Feature Engineering

All Twitter bot detection methods need to query data be-
fore performing any evaluation, so they are bounded by API
limits. Take Botometer, a popular bot detection tool, as an
example. The classifier uses over 1,000 features from each
account (Varol et al. 2017; Yang et al. 2019). To extract these
features, the classifier requires the account’s most recent 200
tweets and recent mentions from other users. The API call
has a limit of 43,200 accounts per API key in each day. Com-
pared to the rate limit, the CPU and Internet i/o time is neg-
ligible. Some other methods require the full timeline of ac-
counts (Cresci et al. 2016) or the social network (Minnich et
al. 2017), taking even longer.

We can give up most of this contextual information in ex-
change for speed, and rely on just user metadata (Ferrara
2017, Stella, Ferrara, and De Domenico 2018). This meta-
data is contained in the so-called user object from the Twit-
ter APL. The rate limit for users lookup is 8.6M accounts
per API key in each day. This is over 200 times the rate limit
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that bounds Botometer. Moreover, each tweet collected from
Twitter has an embedded user object. This brings two extra
advantages. First, once tweets are collected, no extra queries
are needed for bot detection. Second, while users lookups
always report the most recent user profile, the user object
embedded in each tweet reflects the user profile at the mo-
ment when the tweet is collected. This makes bot detection
on archived historical data possible.

Table 1 lists the features extracted from the user object.
The rate features build upon the user age, which requires the
probe time to be available. When querying the users lookup
API, the probe time is when the query happens. If the user
object is extracted from a tweet, the probe time is the tweet
creation time (created_at field). The user_age is defined as
the hour difference between the probe time and the creation
time of the user (created_at field in the user object). User
ages are associated with the data collection time, an artifact
irrelevant to bot behaviors. In fact, tests show that includ-
ing age in the model deteriorates accuracy. However, age is
used to calculate the rate features. Every count feature has a
corresponding rate feature to capture how fast the account is
tweeting, gaining followers, and so on. In the calculation of
the ratio between followers and friends, the denominator is
max(friends_count, 1) to avoid division-by-zero errors.

The screen_name_likelihood feature is inspired by the ob-
servation that bots sometimes have a random string as screen
name (Beskow and Carley 2019). Twitter only allows let-
ters (upper and lower case), digits, and underscores in the
screen_name field, with a 15-character limit. We collected
over 2M unique screen names and constructed the likeli-
hood of all 3,969 possible bigrams. The likelihood of a
screen name is defined by the geometric-mean likelihood
of all bigrams in it. We do not consider longer n-grams as
they require more resources with limited advantages. Tests
show the likelihood feature can effectively distinguish ran-
dom strings from authentic screen names.

Datasets

To train and test our model, we collect all public datasets
of labeled human and bot accounts and create three new
ones, all available in the bot repository (botometer.org/
bot-repository). See overview in Table 2.

Let us briefly summarize how the datasets were col-
lected. The caverlee dataset consists of bot accounts
lured by honeypot accounts and verified human accounts
(Lee, Eoff, and Caverlee 2011). This dataset is older than the
others. To obtain the varol-icwsm dataset, the authors
manually labeled accounts sampled from different Botome-
ter score deciles (Varol et al. 2017). The dataset was de-
signed to be representative of diverse types of accounts.
The bot accounts in the cresci-17 dataset contain a
more fine-grained classification: traditional spambots, so-
cial spambots, and fake followers (Cresci et al. 2017). Tra-
ditional spambots are simple bots that tweet the same con-
tent repeatedly. Social spambots mimic the profiles and ac-
tions of normal users so they are not suspicious when in-
spected individually. But the authors found them promot-
ing certain hashtags or content in a coordinated fashion.
Fake followers are accounts paid to follow other accounts.



Table 1: List of features used in our framework. User metadata features are extracted directly from the user object fetched from
the API. Twitter stopped providing the geo_enabled field as of May, 2019, so we remove it from the feature list although it proved
helpful. Derived features are calculated based on the user metadata. Some are explained in the text, others are self-explanatory.

user metadata derived features

feature name type feature name type calculation

statuses_count count || tweet_freq real-valued | statuses_count/user_age

followers_count count | followers_growth rate real-valued | followers_count / user_age

friends_count count || friends_growth_rate real-valued | friends_count/ user_age

favourites_count count || favourites_growth_ rate real-valued | favourites_count / user_age

listed_count count || listed_growth_ rate real-valued | listed_count / user_age

default_profile binary || followers_friends_ratio real-valued | followers_count / friends_count

profile_use_background_image | binary || screen_name_length count length of screen_name string

verified binary || num_digits_in_screen_name | count no. digits in screen_name string
name_length count length of name string
num_digits_in_name count no. digits in name string
description_length count length of description string
screen_name_likelihood real-valued | likelihood of the screen_name

The pronbots dataset consists of a group of bots that
share scam sites. The dataset was first shared by Andy Patel
(github.com/rOzetta/pronbot2) and then collected for study
(Yang et al. 2019). The celebrity dataset is made of ac-
counts selected among celebrities (Yang et al. 2019). Ac-
counts in the vendor-purchased dataset are fake fol-
lowers purchased by researchers from several companies
(Yang et al. 2019). The botometer—feedback dataset
was constructed by mannually labeling accounts flagged
by feedback from Botometer users (Yang et al. 2019). The
political-bots dataset is a group of politics-oriented
bots shared by Twitter user @ josh_emerson (Yang et al.
2019). For the gilani-17 dataset, accounts collected us-
ing the Twitter streaming API were grouped into four cat-
egories based on the number of followers (Gilani et al.
2017). The authors then sampled accounts from the four
categories and had four undergraduate students annotate
them based on key information compiled in a table. For the
cresci-rtbust dataset, the authors collected all Italian
retweets between 17-30 June 2018, then manually annotated
a roughly balanced set of about 1,000 human and bot ac-
counts (Mazza et al. 2019). Bots in the cresci-stock
dataset were isolated by finding accounts with similar time-
lines among tweets containing selected cashtags collected
during five months in 2017 (Cresci et al. 2018b; 2019).

We created three more datasets. The midterm-18
dataset was filtered based on political tweets collected
during the 2018 U.S. midterm elections (Yang, Hui, and
Menczer 2019). We manually identified some of the gen-
uine human users that were actively involved in the on-
line discussion about the elections. The bot accounts were
spotted through suspicious correlations in their creation
and tweeting timestamps. Most of the bot accounts have
been suspended by Twitter after the elections, which con-
firms our labeling. The botwiki dataset is based on the
botwiki.org archive of self-identified bot accounts. We man-
ually removed inactive accounts and those from platforms
other than Twitter. Finally, the verified dataset was
generated by filtering the streaming API for verified ac-
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Table 2: Datasets of labeled bot and human accounts.

Dataset #bots | #human
caverlee 15,483 14,833
varol—-icwsm 733 1,495
cresci-17 7,049 2,764
pronbots 17,882 0
celebrity 0 5,918
vendor-purchased 1,087 0
botometer—-feedback 139 380
political-bots 62 0
gilani-17 1,090 1,413
cresci-rtbust 353 340
cresci-stock 7,102 6,174
midterm-18 42,446 8,092
botwiki 698 0
verified 0 1,987
Total 94,124 | 43,396

counts. This dataset is added as a supplement to balance
vendor-purchased and botwiki, because the analy-
ses in the following sections require the presence of both hu-
man and bot accounts. However, since the verified account
flag is a feature of the classifier, we set this feature to ‘false’
for the human accounts; this is a conservative choice that
prevents any bias in favor of our model.

By the time we collected the datasets, some of the ac-
counts had been suspended already, so the numbers shown
in Table 2 might be smaller than those in the original papers.

Beside the labeled datasets that served as ground truth,
we also created a dataset of 100,000 random users collected
from the streaming API in 2018. This data was used for
model evaluation, as discussed in a later section.

Data Characterization

Since there are drastically different types of bot (and human)
accounts (De Cristofaro et al. 2018), characterizing the ac-
counts in different datasets can provide us with useful in-



sight into the design of a generalizable classifier.

Independent Dataset Analysis

The most intuitive way to inspect the different train-
ing datasets is to visualize them in feature space. To
highlight the contrast between human and bot accounts,
we merge some of the single-class datasets in Table 2.
Specifically, pronbots and celebrity are combined
to form the pron-celebrity dataset; botometer—
feedback and political-bots are merged into
political-feedback; verified is split into two
parts, merged with botwiki and vendor-purchased
to obtain the roughly balanced botwiki-verified and
vendor-verified, respectively. The merging here is
purely for analysis; we stick to the original datasets for data
selection purposes below.

We apply PCA to project each dataset into the 2-D plane
for visulization; t-SNE yields similar separation patterns.
Since most of the features have wide ranges and skewed
distributions, we first rescale them via log-transforms. To
quantify the separation of human and bot accounts in each
dataset, we apply a kNN classifier in the original feature
space. For each account, we identify their nearest k neigh-
bors and assign the majority label to the focal account. With
the labels obtained from kNN and the ground truth, we are
able to calculate the homogeneity score for each dataset
(Rosenberg and Hirschberg 2007). The kNN algorithm is
stable when k£ > 3; we choose £ = 9 for our analysis.
Because the datasets have various sizes and class ratios, we
sample 500 bots and 500 humans (or fewer for datasets with-
out enough accounts) to calculate the homogeneity score.
This procedure is repeated 1,000 times for each dataset to
generate a distribution of the scores.

Fig. 1 shows the PCA scatter plots and the homogeneity
scores for all datasets. Five out of 11 datasets demonstrate a
clearly clustered structure, suggesting bots and humans are
easily separable using our features. The rest of the datasets
have clusters that are not as easily separable. This is con-
sistent with prior results showing no clear separation using
t-SNE plots (Varol et al. 2017; De Cristofaro et al. 2018).

Among the five less separable datasets, cresci-stock
was labeled based on the timeline similarity between ac-
counts. Such coordination cannot be captured by our feature-
based approach (Cresci et al. 2017; Yang et al. 2019). The
other four datasets are manually annotated and include dif-
ferent types of accounts; many of them exhibit behaviors
that even humans find difficult to distinguish. For example,
varol-icwsm has 75% inter-annotator agreement. The
mixed structure in feature space is understandable in light
of these characteristics.

Cross-Dataset Analysis

Let us explore whether human and bot classes are consistent
across different datasets. Visualizing all the data together is
unfeasible because we have too many datasets with too many
data points. Let us instead use generalization as a proxy for
consistency, by training the models on one dataset and test-
ing on another. If the datasets are consistent, we expect good
generalization power.
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The matrix in Fig. 2 maps cross-dataset AUC using ran-
dom forest classifiers. When tested on cross-domain data,
the generalization AUC varies. In some cases, it is very high
indicating datasets with consistent classes. But no dataset
can generalize well on all other datasets. In fact, the AUC
can sometimes be below 0.5, suggesting that training and
test datasets have contradictory labels. Many factors may
contribute to this phenomenon. First, different datasets were
annotated by different people with different standards us-
ing different methods. Considering the difficult nature of the
problem, labeling noise is not surprising. Second, while our
20 features enable scalability, they only capture a tiny por-
tion of an account’s characteristics. The seemingly contra-
dicting patterns in our feature space might be resolved by
considering additional features.

Another important observation is the asymmetry of Fig. 2:
for a pair of datasets, exchanging the training and test
sets may lead to different results. We can define the sep-
arability of a dataset by using it to test models trained
on other classifiers — averaging AUC across columns
of the matrix in Fig. 2. For example, classifiers trained
on most of the datasets achieve good performance on
botwiki-verified, suggesting easy separability. On
the other hand, cresci-rtbust is not easily separable
because classifiers trained on other datasets perform poorly
on it. Similarly, we can define the generalizability of a
dataset by training a model on it and testing on other datasets
— averaging AUC across rows of the matrix in Fig. 2. We
find no clear correlation between separability and generaliz-
ability (Spearman’s r = 0.18, p = 0.6): the fact that bots in
one dataset can be easily detected does not imply that a clas-
sifier trained on that dataset can detect bots in other datasets.

Generalizability

Random forest achieves perfect AUC when trained and
tested on any single dataset, and excellent AUC in cross-
validation (Alothali et al. 2018; Yang et al. 2019); it is ex-
pressive enough to capture the non-linear patterns discrim-
inating human and bot accounts even in the least separa-
ble datasets. Therefore, the proposed framework does not
aim to provide a more expressive algorithm; we will stick
with random forest. Instead, our goal is to address the poor
cross-dataset generalization highlighted in the previous sec-
tion and in the literature (De Cristofaro et al. 2018).

Model Evaluation

We have seen that good cross-validation performance, even
on multiple datasets, does not guarantee generalization
across unseen datasets. We propose a more strict evalua-
tion system where, in addition to cross-validation on train-
ing data, we set some datasets aside for cross-domain vali-
dation. Those holdout datasets will act as unseen accounts
for selecting models with best generalizability and give
us a sense of how well the models perform when facing
novel types of behavior. Specifically, we use the datasets
listed in Table 3, on which Botometer was trained (Yang
et al. 2019), as our candidate training datasets. Botome-
ter therefore serves as a baseline. The rest of the datasets
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Figure 1: Visualization of human and bot accounts in different training datasets. The scatter plots visualize samples of 1,000 bot
and human accounts after PCA. The box plots show the distributions of homogeneity scores across many samples from each

dataset (see text for details).
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Figure 2: AUC scores of random forest classifiers trained on
one dataset and tested on another. The datasets are ordered
by separability (defined in the text).

are holdout accounts. The cresci-stock dataset is ex-
cluded from this experiment because the coordinated na-
ture of the bots makes it unsuitable for training feature-
based methods. In addition to cross-validation and cross-
domain validation, we also want to evaluate generaliza-
tion to a broader, more representative set of accounts. To
this end we employ the 100,000 random accounts as de-
scribed earlier. The random accounts lack labels, therefore
we use Botometer as a reference, since it has been tested
and adopted in many studies (Vosoughi, Roy, and Aral 2018;
Shao et al. 2018).

Data Selection

Throwing all training data into the classifier should give us
the best model according to learning theory, if the labels are
correct and the accounts are independent and identically dis-
tributed in the feature space (Shalev-Shwartz and Ben-David
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2014). Unfortunately, our experiments in Fig. 2 show that
those assumptions do not hold in our case. This suggests that
generalization might be improved by training on a selected
subset of the data.

Our goal is to find a set of training accounts that optimizes
our three evaluation metrics: cross-validation accuracy on
training data, generalization to unseen data, and consistency
with a more feature-rich classifier on unlabeled data. Sim-
ilar data selection methods have proven effective in other
domains with noisy and contradictory data (Wu, Zhang, and
Rudnicky 2007; Erdem et al. 2010; Zhang et al. 2014).

We treat every dataset listed in Table 3 as a unit and end
up with 247 possible combinations with both human and bot
accounts present. Random forest classifiers with 100 trees
are trained on those 247 combinations, yielding as many
candidate models. We record the AUC of each model via
five-fold cross-validation. The classifiers are then applied to
unseen datasets (see list in Table 4) and random accounts.
Results are reported in Fig. 3. Cross-validation yields high
AUC for most of the models, as expected. For unseen ac-
counts, datasets with high homogeneity tend to yield better
AUC, whereas performance is worse on datasets with lower
homogeneity. Most of the models have positive correlation
with Botometer on random accounts. Botometer performs
well in all AUC tests, although some candidate models beat
Botometer in each test. No candidate model, however, out-
performs the baseline on all unseen datasets.

To select a model that performs consistently well in all
tests, we first rank the models in each of the six tests shown
in Fig. 3 based on their performance, with the top model
first. We then select the model with minimal product of the
six ranks. Models selected in this way may not achieve the
best results in every single test, but will do well in all tests,
ensuring stability in applications. The datasets selected by
the top 3 models are shown in Table 3; M196 is the best
model. Detailed performance metrics are reported in Table 4.

The winning models achieve very high AUC in cross-
validation as well as on unseen datasets. Further analy-
sis reveals that the winning models all have much higher
precision than the baseline in all holdout tests at the 0.5



Table 3: Datasets used to train selected candidate models and
Botometer. M196,M125 and M1 91 are the top three models

according to our selection method.
Dataset M196
caverlee
varol-icwsm
cresci-17
pronbots
celebrity
vendor-purchased
botometer-feedback
political-bots

Botometer MI125 | M191 | M246

v
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Table 4: AUC scores on unseen datasets, five-fold cross-
validation AUC, and correlation with Botometer for selected
candidate models. Performance of the Botometer baseline
and M246 (trained on all data) is shown for comparison.
Metrics significantly better than the baseline (p < 0.01) are

highlighted in bold.
Metric Botometer | M196 | M125 | M191 | M246
botwiki-verified 0.92 0.99 0.99 0.99 0.91
midterm-18 0.96 0.99 0.99 0.98 0.83
gilani-17 0.67 0.68 0.69 0.68 0.64
cresci-rtbust 0.71 0.60 0.59 0.58 0.57
5-fold cross-validation 0.97 0.98 0.98 0.98 0.95
Spearman’s r 1.00 0.60 0.60 0.62 0.60

Tested on botwiki-verified Tested on midterm-18
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Figure 3: (a-d) AUC distributions of candidate models tested
on 4 unseen datasets. (e) Five-fold cross-validation AUC
distribution of candidate models. (f) Distribution of Spear-
man’s rank correlation coefficients between candidate mod-
els and Botometer on 100,000 random accounts. Baselines
from Botometer are highlighted by dashed blue lines.

threshold. Those models also achieve better recall exept
forgilani-17and cresci-rtbust. Accounts in these
two datasets are annotated with different types of behav-
iors. In fact, when we train random forest models on these
two datasets alone with five-fold cross-validation, we obtain
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Figure 4: (a) Bot score distributions and (b) £} score versus
bot score threshold, for the M1 96 model. The best F} is ob-
tained with thresholds of 0.48 and 0.32 for cross-validation
and cross-domain testing, respectively (dashed lines).

AUC scores of 0.84 and 0.87 respectively, indicating chal-
lenging classification tasks. Botometer’s generalization per-
formance is also lower on these two datasets. All things con-
sidered, the generalizability of the winning models seems
acceptable.

Random forest generates a score between 0 and 1 to esti-
mate the likelihood of an account exhibiting bot-like behav-
ior. If we need a binary classifier, we can use a threshold.
Fig. 4 illustrates the thresholds that maximize precision and
recall (via the F; metric). Different thresholds yield best ac-
curacy in cross-validation (F; = 0.94, R = 0.93, P = 0.94)
or cross-domain testing (F; = 0.77, R = 0.68, P = 0.88),
underscoring that the choice of threshold depends on the
holdout datasets used for validation. Depending on the topic
of interest, practitioners can choose or create new datasets of
annotated accounts for cross-domain validation and use the
rest for training data selection.

Scalability

In this section, we quantify the scalability of the proposed
framework. The user metadata required for classification can
be obtained through the users lookup endpoint or the stream-
ing API, since every tweet carries the user object. Users
lookup allows checking 8.6M accounts per day with a user
API key. The maximum streaming volume is provided by
the Firehose, which delivers all public tweets — currently
500 millions per day on average (Fedoryszak et al. 2019).

We conducted an offline experiment to estimate the clas-
sification speed. Our classifier was implemented in Python
with scikit-learn (Pedregosa et al. 2011) and run on a ma-
chine with an Intel Core i7-3770 CPU (3.40GHz) and 8GB
RAM. It takes an average of 9,612 + 6 x 108 seconds to
evaluate each tweet, which means almost 900M tweets per
day, well beyond the Firehose volume.

Model Interpretation

With only 20 features in our best model (M1 96), it is possi-
ble to interpret its logic using the SHAP model explanation
technique (Lundberg, Erion, and Lee 2018). Fig. 5 shows
that, for example, long screen names (red) have positive
SHAP values, meaning more bot-like. Conversely, verified
accounts (red) have negative SHAP values, meaning more
human-like. The SHAP analysis tells us that high favorites
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Figure 5: The summary plot generated by SHAP for model
M196. The features are ordered by importance from top to
bottom. The x-axis shows the SHAP value of each feature. A
positive SHAP value means the feature is pushing the result
to 1 (bot-like), a negative SHAP value means the feature is
pushing the result to O (human-like). The feature value is
indicated by color: red means the feature value is large, blue
means it’s small. Binary features are coded so that true is
represented by 1.

and followers counts, favorites growth rate, and followers-
friends ratio are signs of organic accounts. High friends
count and growth rate, however, suggest an account is sus-
picious. This confirms the intuition that bots are eager to ex-
pand their friend lists, but do not attract as many followers.
Naturally, Fig. 5 presents an over-simplified picture of the
effects of different features. The actual logic is more com-
plex due to interactions among features. For example, a low
favourites count generally means bot-like, but if the account
also has a high follower growth rate, then the effect of the
favorites count is reduced. Moreover, the interpretation de-
pends on the specific data used to train the model. Yet, this
example illustrates an advantage of simplified feature sets.

Conclusion

We proposed a bot detection framework that scales up to
real-time processing of the full public Twitter stream and
that generalizes well to accounts outside the training data.
Analysis of a rich collection of labeled data reveals differ-
ences in separability and generalization, providing insights
into the complex relationship among datasets. Instead of
training on all available data, we find that a subset of train-
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ing data can yield the model that best balances performance
on cross-validation, cross-domain generalization, and con-
sistency with a widely adopted reference. Thanks to the sim-
plicity of the model, we are able to interpret the classifier.
The scalability opens up new possibilities for research in-
volving analysis on massive social media data. Our frame-
work can also be embedded in other algorithms or systems
for detecting more complex adversarial behaviors (Hui et al.
2019), such as coordinated influence campaigns, stock mar-
ket manipulation, and amplification of misinformation.

Our work shows that data selection is a promising direc-
tion for dealing with noisy training data. Developing smarter
algorithms that can perform fine-grained data selection for
better performance is an open challenge for future work.
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