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Abstract

Solubility of drug molecules is related to pharmacokinetic
properties such as absorption and distribution, which affects
the amount of drug that is available in the body for its ac-
tion. Computational or experimental evaluation of solvation
free energies of drug-like molecules/solute that quantify sol-
ubilities is an arduous task and hence development of reli-
able computationally tractable models is sought after in drug
discovery tasks in pharmaceutical industry. Here, we report a
novel method based on graph neural network to predict solva-
tion free energies. Previous studies considered only the solute
for solvation free energy prediction and ignored the nature
of the solvent, limiting their practical applicability. The pro-
posed model is an end-to-end framework comprising three
phases namely, message passing, interaction and prediction
phases. In the first phase, message passing neural network
was used to compute inter-atomic interaction within both so-
lute and solvent molecules represented as molecular graphs.
In the interaction phase, features from the preceding step is
used to calculate a solute-solvent interaction map, since the
solvation free energy depends on how (un)favorable the so-
lute and solvent molecules interact with each other. The cal-
culated interaction map that captures the solute-solvent in-
teractions along with the features from the message passing
phase is used to predict the solvation free energies in the final
phase. The model predicts solvation free energies involving a
large number of solvents with high accuracy. We also show
that the interaction map captures the electronic and steric
factors that govern the solubility of drug-like molecules and
hence is chemically interpretable.

1 Introduction

One of the most convenient, least painful and safest ways
of administering drugs is oral administration, which also
aids high patient compliance. However, the major chal-
lenge involved in oral drug administration is achieving high
bioavailability, the fraction of the orally administered drug
that is available for its action. Absorption and distribution
are two key pharmacokinetic properties that determine the
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bioavailability of a given drug. It is reported that about 40%
of the new chemical entities developed by the pharmaceu-
tical industry suffer from low bioavailability due to which
further development of a significant number of these com-
pounds is discontinued. Low bioavailability is primarily due
to poor solubility and permeability. Drug molecules that
can be orally administered have to be hydrophilic enough
for them to be soluble in aqueous biological fluids and hy-
drophobic enough for them to be able to permeate across the
hydrophobic lipid bilayer environment, which are related to
how well they dissolve in polar and nonpolar solvents re-
spectively. Hence, solubility of drug-like molecules is a cru-
cial property that determines the viability of a drug to be
marketable among other pharmacokinetic properties such as
metabolism, excretion and toxicity. In addition to the role
of solubility in pharmaceutical industry, it is significant in
wide ranging areas such as chemistry, biochemistry, food in-
dustry, biotechnology industry, etc. Solvation free energy is
also related to a number of physicochemical properties that
are relevant to wide ranging areas of science and technology.

Solvation free energy is the change in free energy for a
molecule to be transferred from gas phase to a given sol-
vent. A large negative value of the solvation free energy in-
dicates high solubility, while lower magnitudes/positive val-
ues indicate poor solubility. Experimental measurement of
solvation free energies is a difficult task especially given the
requirement that the molecule has to be synthesized and pu-
rified. It is desirable to have computational models in the
drug discovery toolkit that are able to predict highly accu-
rate solvation free energies within reasonable time and ef-
fort so that experimental realization of only those with de-
sired solvation properties are realized in the laboratory thus
minimizing the time and expenditure. Using these calculated
solvation free energies, the solubility and drug permeation
properties can be assessed with ease. Alchemical free energy
methods such as free energy of perturbation and thermody-
namic integration methods have been shown to be efficient
methods for the calculation of solvation free energies. Philo-
sophically, the molecule in its gas phase, in its solvated state,
and a number of non-physical intermediate states (hence the
name alchemical) are simulated using molecular dynamics
or Monte Carlo simulations with respect to a parameter from
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which the difference in the free energies of the molecule in
the gas phase and solvated state is calculated. However, re-
liable force field is not available for all drug-like molecules
and needs to be derived for each molecule, which in turn in-
volves a large number of quantum mechanical calculations
and molecular dynamics simulations. In short, experimen-
tal and computational evaluation of accurate solvation free
energies is a difficult task and hence, fast and accurate com-
putational models are necessary for high throughput evalua-
tion of a large number of molecules, usually in the order of
several millions in case of drug discovery projects.

Recent advances in deep learning methods have found
varied applications in chemistry, biochemistry and drug de-
sign. Some recent problems that have been tackled with in-
genious use of modern machine learning methods include
protein structure prediction, generation of focused molecu-
lar libraries for drug development, prediction of biological
activity, toxicity, and protein-protein binding, etc (Liu et al.
2018; You et al. 2018; Zhou et al. 2019). These techniques
have not only been proven to be accurate but also brought
about significant reduction in computational costs(Schütt et
al. 2017; Behler and Parrinello 2007; Butler et al. 2018;
Goh, Hodas, and Vishnu 2017; Rupp et al. 2012; Laghu-
varapu, Pathak, and Priyakumar 2019). The field though still
in its infancy has the potential to revolutionize the way com-
putational chemistry/biology is traditionally practiced.

Traditional molecular representations (Cartesian and in-
ternal coordinates) are molecular size dependent and are
not invariant to rotations/translations/permutation of sim-
ilar atoms. Hence, initial efforts in the area focused on
development of feature vectors for representing molecules
for regression/classification tasks based on chemical intu-
ition. Several approaches have been proposed to hand engi-
neer machine learning friendly representation for molecules:
Coulomb matrix proposed by Rupp et al., bag of bonds ap-
proach by Hansen et al. and symmetry functions by Behler
and Parrinello. Recently, the focus is on developing new
methods to machine learn the molecular features resulting
in robust representations. Primarily, these approaches con-
sider molecules as graphs, where atoms denote the nodes
and bonds the edges (Duvenaud et al. 2015; Li et al. 2015;
Kearnes et al. 2016; Gilmer et al. 2017).

In this paper, we propose a method based on graph neural
networks using molecular graph representation of molecules
to predict solvation free energies that is generalized for all
drug-like molecules and all generic organic solvents. More
importantly, we demonstrate that the interaction map calcu-
lated for any solute-solvent pair can be used to derive chemi-
cally meaningful insights on the solvation free energies, and
the electronic/steric factors that determine the free energies.

2 Related Work
Molecular dynamics simulations employing free energy of
perturbation and thermodynamic integration methods is the
current state of the art strategy for accurate solvation free
energy calculations(Duarte Ramos Matos et al. 2017). These
calculations employ force fields that consist of several em-
pirical parameters, which are obtained based on further high
level quantum mechanical calculations and experimental

data. The best of the methods available today employing
molecular dynamics simulations gives rise to an RMSE of
about 1.5 kcal/mol for the hydration (in water) free ener-
gies(Duarte Ramos Matos et al. 2017). Calculation of solva-
tion free energies of other organic solvents are more com-
plicated due to lack of good solvent models and hence in
general are not done computationally. On the other hand,
other computationally expensive quantum mechanical meth-
ods involving dielectric continuum models yield RMSEs
of 0.75 to 4.8 kcal/mol compared to experimental solva-
tion free energies (Marenich, Cramer, and Truhlar 2009;
Klamt and Diedenhofen 2010).

During the last two years, few machine learning models
to predict the hydration free energies have been reported
based on the FreeSolv dataset (Mobley and Guthrie 2014)
with root mean square errors ranging from 0.82 to 2.13
kcal/mol (Goh, Hodas, and Vishnu 2017; Wu et al. 2018;
Goh et al. 2018; Cho, Choi, and others 2018; Hutchinson
and Kobayashi 2019). Prediction of solvation free energies
for variable solute with a constant solvent (water in this case)
is a relatively straightforward exercise. However, when mul-
tiple solvents of diverse polarities (wide ranging dielectric
constant, ε) are considered, the nature of intermolecular in-
teractions vary significantly due to different solutes and sol-
vents. Hutchinson and Kobayashi proposed multiple mod-
els for different solvents using XGBoost along with func-
tional class fingerprint featurizer using the MNSol dataset.
The only unifying model that has been developed for or-
ganic solvents in general was proposed by Lim and Jung
recently. They used Recurrent Neural Networks and atten-
tion mechanism with SMILES sequences as the input. Fea-
tures for SMILES were first obtained using Mol2Vec(Jaeger,
Fulle, and Turk 2018), an embedding technique inspired
from Word2Vec, which involves unsupervised training over
a huge corpus of SMILES (∼20 million molecules). Two
major drawbacks of this method are the requirement of a
pre-trained Mol2Vec embedding and use of SMILES for
molecular featurization, which may not capture the pharma-
cophores appropriately (Jin, Barzilay, and Jaakkola 2018).

In this work, we propose a model that can be applied to
any organic solvent and any drug-like molecule for accu-
rate prediction of solvation free energies. We show that the
model yields accurate results on test set chosen from a com-
pletely different dataset compared to models trained on that
external dataset. In addition to predicting pharmacokinetic
properties of drug-like molecules, this method can further be
extended to calculate drug-receptor binding affinities that is
directly related to the efficacy of drug-like molecules, which
has far reaching implications in drug discovery tasks.

3 Dataset

We use the Minnesota Solvation Database that has 3037 ex-
perimental free energies of solvation or transfer free ener-
gies of 790 unique solutes in 92 solvents (Marenich et al.
2012). In this work we only consider neutral solutes, which
removes 249 charged solute. We also omit entries corre-
sponding to transfer free energy. This makes our dataset
contain 2525 unique combinations of solute and solvent.
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Table 1: The atom (node) features used for molecular repre-
sentation.

Atom Features Description

Atom Type H, C, N, O, F... (one-hot)
Implicit Valence Has Implicit Valence (Bi-

nary)
Radical Electrons Has Radical Electrons (Bi-

nary)
Chirality R,S or None (one-hot)
Number of Hydrogens Number of neighbouring

Hydrogen atoms (one-hot)
Hybridization sp, sp2, sp3, sp3d (one-hot)
Acidic Acidic in Nature (Binary)
Basic Basic in Nature (Binary)
Aromatic Part of aromatic group (Bi-

nary)
Donor Donates electron (Binary)
Acceptor Accepts electron (Binary)

The dataset also provides Cartesian coordinates for the so-
lutes, which were used to build molecular graph for solutes.
We use PubChemPy to search for SMILES of solvents us-
ing their common name provided in the dataset and use the
found SMILES to construct molecular graph for solvents.

4 Model

In this work, we encode molecules as graphs, where atoms
constitute the nodes and bonds the edges. The nodes and
the edges are characterized by a set of features. The model
proposed in this work named as the CIGIN model, which
stands for Chemically Interpretable Graph Interaction Net-
work, can be broken down into three phases - message pass-
ing phase, interaction phase and prediction phase. These
three phases are explained in detail in the subsequent sec-
tions. Figure 1 illustrates the CIGIN model. The source code
and supporting material are available here: https://github.
com/devalab/cigin

Feature Representation

For the features to precisely model the free energy of sol-
vation, it should consist of information about the general
structures of solute and solvent molecules and should char-
acterize their intermolecular pharmacophores (Hutchinson
and Kobayashi 2019). To incorporate these, we use the fea-
tures given in Table 1 to represent the nodes (atoms) and the
ones given in Table 2 to represent the edges (bonds). RDKit
library was used for extraction of these features (Landrum
). Note that hydrogen atoms were not considered as explicit
nodes and their information is preserved in the node feature
of the neighbouring atom (number of neighboring Hydrogen
atoms). This is done keeping in view that the explicit con-
sideration of hydrogen atoms does not enhance any infor-
mation about the intermolecular pharmacophores. Secondly,
their explicit consideration would lead to larger graphs that
will slow down the training by roughly a factor of 10 (Gilmer
et al. 2017).

Table 2: The bond (edge) features used for molecular repre-
sentation.

Bond Features Description

Bond Type Single, double, triple, or aro-
matic (one-hot)

Bond is in Conjugation Part of conjugation (Binary)
Bond is in Ring Part of ring (Binary)
Bond Chirality E or Z (one-hot)

Message Passing Phase

This phase uses the Message Passing Neural Network
(MPNN) (Gilmer et al. 2017), which provides a general-
ized formulation for supervised learning on graph struc-
tured data. Consider a molecule represented as an undirected
graph G(V,E) with node features xv and edge features evw.
The state of each node at time step t is represented as ht

v ,
which is initialized to xv at t = 0. The state of a node is
updated for T time steps using messages mt+1

v according to
following equations:

mt+1
v =

∑

wεN(v)

Mt(h
t
v, h

t
w, evw) (1)

ht+1
v = Ut(h

t
v,m

t+1
v ) (2)

Here, N(v) is the set of neighboring nodes of v. Mt and
Ut are the message function and vertex update functions re-
spectively. In this work both Mt and Ut are fully connected
layers. After T time steps, the final feature vector for each
node is obtained using a gather layer-

Fv = g(xv, h
t
v), ∀v ∈ V (3)

Fv is the final atomic feature for each atom v whose con-
text describes the atomic property and as well as the local
environment. We experiment with two different choices for
g, a simple feed-forward layer and a set2set layer (Vinyals,
Bengio, and Kudlur 2015). In this work, both solute and sol-
vent are fed through identical MPNN and gather layers with
different set of weights. The outputs F of this phase are ten-
sors A (solute) and B (solvent) of sizes J ∗ L and K ∗ L
respectively for a solute of J atoms, solvent of K atoms and
L atomic features.

Interaction Phase

Intermolecular interactions between the solute and the sol-
vent atoms is key to determining the solvation free energy.
These interactions are influenced by several steric and elec-
tronic factors governed by participating atoms and their re-
spective chemical environments. In this phase, pairwise in-
teractions between solute-solvent atoms are modelled in an
interaction map. Consider solute features A and solvent fea-
tures B computed from the message passing phase. The
solute-solvent interaction map is computed according to the
following equation:

Inm = f(An, Bm), ∀n = 1, 2, 3..J, ∀m = 1, 2, 3, ..K (4)

Here, I is the interaction map which bears the dimension-
ality of J ∗ K. f is a function that computes an interaction
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Figure 1: Architecture of CIGIN Model. Two examples one each for solvent (NCCO) and solute (OCC) are used as a test case.

value for each solute-solvent atom pair from their feature
vectors. Solvent’s influence on solute and vice-versa is com-
puted according to the following equations:

A′ = IB (5)

B′ = ITA (6)
A′ and B′ are the solute and solvent features weighted
by their contribution to the free energy of solvation. The
function f should precisely measure the negative/positive
contribution of a specific solute-solvent pair indepen-
dently. For example, hydrophilic-hydrophobic interactions
would decrease the solubility where as a hydrophilic-
hydrophilic/hydrophobic-hydrophobic interactions would
increase the solubility. To appropriately model this be-
haviour, the function f is chosen to be :

f(An, Bm) = tanh(An ·Bm) (7)

Prediction Phase

In this phase the final solvation free energy is predicted. For
both the solute and the solvent, the outputs of the message
passing and the interaction phases are combined atom wise.
Then, a readout layer R is used to combine the feature vec-
tors across all the atoms in a manner invariant to graph iso-
morphism in order to obtain a one-dimensional vector.

A′′ = Rsolute(A,A′) (8)

B′′ = Rsolvent(B,B′) (9)
Here, we experiment with two choices of R, the first one is
sum pooling along the atom dimension and the second is a
set2set layer (Vinyals, Bengio, and Kudlur 2015).

The outputs A′′ and B′′ are concatenated and are passed
through three fully connected layers to predict the free en-
ergy of solvation. The intermediate layers have ReLU as the
activation function.

5 Training

PyTorch framework was used for all our training and vali-
dation purposes. 10-fold cross validation scheme was used
to assess the model due to the small size of the dataset. The
dataset was randomly split in 10 subsets and one of the sub-
sets was used as the test set the remaining 9 were used to
train the model. This ensured that training set and test set
were in 9:1 ratio. We made 5 such 10 cross validation splits
and trained our model independently on each of them to bet-
ter estimate the accuracy of the proposed model. The T for
messaging passing phase was chosen to be 3 as suggested by
Gilmer et al.. ADAM optimizer with its default parameters
as suggested by Kingma and Ba was used to train the model
and mean square error was used as the objective function.
The learning rate was decreased on plateau by a factor of
10−1 from 10−2 to 10−5.

6 Results

As the baseline for this work, we use two MPNNs (one each
for solute and solvent) with their outputs concatenated for
prediction of the final free energy of solvation. This choice
of baseline allows us to analyze the importance of interac-
tion phase introduced in this work. Further, we train two
variants of CIGIN, the first one uses a sum pooling layer
whereas the second model uses a set2set layer(Vinyals, Ben-
gio, and Kudlur 2015) as the choice for both the functions g
and R in the message passing and prediction phase respec-
tively. Table 3 shows the comparison of RMSE between the
baseline model and two variants of CIGIN on the MNSol
dataset averaged across 5 independent 10-fold cross valida-
tion runs. We find that the proposed model CIGIN (set2set)
performs the best with a RMSE of 0.57 kcal/mol on the test
set. Further, to show that the embedding methods are effec-
tive, we performed two experiments; one by removing the
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Figure 2: Plot of predicted (averaged over the five inde-
pendent 10-fold cross validation runs) versus experimental
solvation free energies. Predictions with error less than 1
kcal/mol lied between the two red lines.

Model RMSE (kcal/mol)

Baseline model 0.65 ± 0.13
CIGIN (sum pooling) 0.61 ± 0.12

CIGIN (set2set) 0.57 ± 0.10

Table 3: Average RMSE of five independent 10-fold cross
validation runs of models on MNSol Dataset.

messaging passing phase for solvent and another by remov-
ing for both solute and solute. The RMSEs were found to be
0.68 and 1.73 kcal/mol. However, these model would not be
able to provide chemical insights like the one proposed.

Validation on External Dataset

FreeSolv is an experimental benchmark dataset that consists
of free energies of solvation for 642 different small organic
molecules in water solvent(Mobley and Guthrie 2014). The
model presented here was tested on the FreeSolv dataset,
which was not used in the training. We use the model trained
on MNSol dataset to predict the hydration free energy of
molecules that are in FreeSolv (∼50%) but not in our train-
ing set. We report an RMSE of 1.06 kcal/mol averaged
across all models trained during the 5 independent 10 fold
cross validation runs. Wu et al. in their work, MoleculeNet,
provide a benchmark for prediction of hydration free en-
ergy on the FreeSolv dataset using ML methods. Table 4
gives the performance of a single MPNN (the best perform-
ing model reported in MoleculeNet) and Delfos method.

Model Validation set Test set

MPNN (MoleculeNet) 1.20 ± 0.02 1.15 ± 0.12
Delfos 1.16 ± 0.03 1.19 ± 0.08

CIGIN (set2set) 0.73 ± 0.01 0.91 ± 0.06

Table 4: Average RMSE of predicted solvation free ener-
gies on FreeSolv dataset employing the current architecture,
MoleculeNet and Delfos.

Solvent Dielectric
constant (ε)

RMSE
(kcal/mol)

Methylformamide 181.56 0.29 ± 0.10
Nitrobenzene 34.80 0.28 ± 0.04
Butanol 17.33 0.30 ± 0.03
Heptanol 11.32 0.18 ± 0.02
Octanol 9.86 0.85 ± 0.05
Chloroform 4.71 0.83 ± 0.04
Hexadecane 2.04 0.58 ± 0.02

Table 5: Average RMSE of the proposed model in solvent
holdout test for different solvents with wide ranging polari-
ties. The results are averaged over five independent runs ex-
cluding each solvent.

These models were trained explicitly on FreeSolv using a
80-10-10 (train,validation,test) data split as implemented in
MoleculeNet. By following data split for train, validation
and test similar to the other two benchmarks, we show that
this architecture yields an RMSE of 0.91 kcal/mol (see Ta-
ble 4). This is very similar to the RMSE obtained without
retraining the model, which attests to the robustness of the
method. Though Delfos method achieves similar accuracy,
CIGIN exhibits better transferability to unknown solute-
solvent combinations. The above experiments demonstrate
that, 1) the proposed model significantly outperforms the
baselines reported in MoleculeNet and Delfos (Wu et al.
2018; Lim and Jung 2019), 2) the model is transferable and,
3) explicit consideration of solvent aids the model to better
realize the interactions that increase/decreases the solubility
of a molecule. As mentioned above, the main advantage of
the method proposed here is that it applies to any organic sol-
vent and not just water, and chemical interpretability, which
is discussed later.

Transferability of the Model to Other Solvents

For this model to be applicable to all organic solvents, the
model should satisfactorily predict solvation free energies
on solvents that are not part of the training set. To demon-
strate this, we holdout a particular solvent from the train set
and test our model on it. For this particular experiment, we
considered all solvents and select ones that cover wide rang-
ing polarity are given in Table 5 (full data is available in the
supporting material). The mean RMSE of all holdout tests
of 0.41 kcal/mol show that the model is robust for predict-
ing solvation free energies involving any solvent with high
accuracy. This indicates that the model is truly transferable
to different types of solvents that may mimic biological fluid
(polar), cell membrane (non polar) or anything in between
that is relevant in other fields of science and technology. The
following sections present the chemical interpretability of
the model by taking few examples.

Chemical Insights from the Model

A major drawback of the current state of deep learning meth-
ods is their general lack of interpretability, though several
research groups are working in this direction. For a model to
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Figure 3: Heat map of the normalized (min-max) interaction
map for 2-aminoethanol (solute) and ethanol(solvent) along
with the predicted solvation free energy.

be of practical importance and to be widely accepted espe-
cially in the field of natural sciences, it is important that the
model is not a mere black box but can also provide scientific
insights. In our case, we have shown above that the current
model is able to predict solubility properties of a wide rang-
ing drug-like molecules involving entire spectrum of organic
solvents. We examine if the model is able to to explain the
contributing factors that can provide molecular and atom-
istic level interpretations of the predicted free energies of
solvation using the interaction map by taking few examples.

Factors Affecting Solubility It is well known that 2-
aminoethanol (NCCO) is highly soluble in ethanol (CCO),
which is also reflected in the large negative solvation free
energy (-7.81 kcal/mol). A chemist would suggest that the
major contributing factor to this effect is the possibility of
multiple hydrogen bonding between solute (O and N) and
solvent (O) atoms via a hydrogen atom connected to one
of these atoms due to Coulombic/electrostatic forces. Nor-
malized interaction map showing the pairwise contributions
to the overall solvation free energy was analyzed to exam-
ine if it captures this chemical insight (see Figure 3). As
is evident from the data, highest contribution to the solva-
tion free energy comes from O...O and N...O atom pairs in
accordance with the chemical wisdom. As mentioned ear-
lier, hydrogen atoms are not considered explicitly as nodes
in the molecular graph representation. However, high con-
tributions corresponding to strong interactions via hydro-
gen bonding and low contributions corresponding to weak
dipole-induced dipole and van der Waals interactions are ef-
ficiently captured by the interaction map.

Impact of Hydrogen Bonding and Steric Factors The
spatial environment of an atom within a molecule deter-
mines its extent of accessibility to the solvent environment
and in turn the degree of intermolecular interactions. These
are referred to as steric factors, which along with the other

Figure 4: Interaction between the oxygen of water (sol-
vent) and atoms of primary (ethylamine), secondary (diethy-
lamine) and tertiary amines (triethylamine). The fractional
interaction of each atom were obtained and were normalized
(min-max) across the three solutes. The predicted hydration
free energy values are also given.

Figure 5: The structures of ortho- and para-nitrophenols
showing the possibility of intramolecular hydrogen bond
only in the ortho isomer along with the predicted hydration
free energies.
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Figure 6: Predicted values of the solvation free energies of methanol in four different solvents with varying polarities (ε). The
contribution of the interaction of C and O atoms of methanol with the each of these solvents were calculated and the min-max
normalized values of the fractional interactions are given.

intermolecular interactions such as hydrogen bonding are
vital in dictating the free energy of solvation. The interac-
tion maps of primary, secondary and tertiary amine solutes
with water as the solvent are analyzed to examine if it cap-
tures these differential effects. Presence of hydrogen atoms
in the primary and secondary amines and presence of ni-
trogen atom in all the three enables hydrogen bonding with
water. Additionally, the crowding around the nitrogen atom
increase going from primary to tertiary amine which leads
to reduction in the hydrogen bonding ability in the same or-
der. This effect is apparent from the predicted hydration free
energies (see Figure 4). The pairwise interactions between
the solute atoms and O of water from the interaction map is
also given in the Figure which predicts that the contribution
from the nitrogen atoms gradually reduces from primary to
tertiary amines in line with the chemical intuition.

Intramolecular Effects Molecular interactions within a
molecule may impede the ability of certain chemical groups
to form favorable interactions with the solvent. For exam-
ple, possibility of intramolecular hydrogen bonding (hydro-
gen bond involving atoms within a given molecule) reduces
the solubility compared to when it is absent. A classic ex-
ample is the hydration free energy difference between para-
nitrophenol and ortho-nitrophenol (see Figure 5). Both these
molecules are same in terms of the types of atoms/functional
groups, but are different in the position of the nitro (NO2)
and hydroxyl (OH) groups with respect to each other. The
para isomer is predicted to have more favorable hydration
free energy compared to the ortho isomer due to the possibil-
ity of intramolecular hydrogen bonding in the latter. Further
on analyzing the interaction map, we find that interaction of
the phenol group (solute) with the oxygen of water is more
for para-nitrophenol than ortho-nitrophenol. This shows that
the model correctly interprets the formation of intramolecu-
lar hydrogen bond in the case of ortho-nitrophenol.

Solvent Polarity A bond in a molecule exhibits a dipole
moment if the participating atoms have different electroneg-
ativity values. Solvent molecules on the basis of the net
dipole moments can be broadly classified as polar and non-
polar. Solvents that have large dipole moments are regarded
as polar solvents or nonpolar solvents otherwise. ‘Like dis-
solves like’ is a common term used by chemists to explain

the solubility of polar solutes in polar solvents and nonpolar
solutes in nonpolar solvents, and to explain the fact that sol-
ubility of a polar solute decreases with respect to decrease
in the polarity of the solvent. To validate if the model is
in line with this, we consider the solubility of methanol (a
polar solute) in various solvents of varying polarity (quanti-
fied by ε). Figure 6 indicates that decrease in the dielectric
constant leads to unfavorable solvation free energies (going
from -5.40 to -1.39 kcal/mol). From the interaction map, it
is clear that the contribution from the the hydrophobic part
(carbon) increases and that of hydrophilic part (oxygen) de-
creases with respect to decrease in the solvent polarity con-
sistent with the chemical understanding of the effect.

7 Conclusion

Solvation free energy as a property has widespread applica-
tions in diverse fields of science and technology. The current
manuscript reports a novel method based on graph interac-
tion network for predicting solvation free energies involving
drug-like/small organic molecules and generic organic sol-
vents. We have demonstrated the robustness of this method
by validating it by using different datasets and solvent hold-
out tests. Interaction maps calculated for each solvent-solute
pair is demonstrated to reveal essential molecular/atomic
level details of the inter/intramolecular interactions making
the model chemically interpretable. Given that this model
accurately captures interaction between solute and solvent
molecules, it is possible to extend this approach to chemical
and biological problems that involve interactions between
two molecular systems. For example, the interaction map
used here may be extended to quantify drug-receptor inter-
actions, which can be used for computer enabled identifica-
tion of new chemical entities that bind to disease relevant
protein targets, a key exercise in pharmaceutical industry.
Such a model can also be used in lead optimization in drug
design, where the molecule is modified to maximize certain
contributions in the interaction map to enhance the binding
of a drug to a biological receptor.
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