Unsupervised Detection of Sub-Events in Large Scale Disasters

Authors

  • Chidubem Arachie Virginia Tech
  • Manas Gaur University of South Carolina, Columbia
  • Sam Anzaroot Dataminr Inc.
  • William Groves Dataminr Inc.
  • Ke Zhang Dataminr Inc.
  • Alejandro Jaimes Dataminr Inc.

DOI:

https://doi.org/10.1609/aaai.v34i01.5370

Abstract

Social media plays a major role during and after major natural disasters (e.g., hurricanes, large-scale fires, etc.), as people “on the ground” post useful information on what is actually happening. Given the large amounts of posts, a major challenge is identifying the information that is useful and actionable. Emergency responders are largely interested in finding out what events are taking place so they can properly plan and deploy resources. In this paper we address the problem of automatically identifying important sub-events (within a large-scale emergency “event”, such as a hurricane). In particular, we present a novel, unsupervised learning framework to detect sub-events in Tweets for retrospective crisis analysis. We first extract noun-verb pairs and phrases from raw tweets as sub-event candidates. Then, we learn a semantic embedding of extracted noun-verb pairs and phrases, and rank them against a crisis-specific ontology. We filter out noisy and irrelevant information then cluster the noun-verb pairs and phrases so that the top-ranked ones describe the most important sub-events. Through quantitative experiments on two large crisis data sets (Hurricane Harvey and the 2015 Nepal Earthquake), we demonstrate the effectiveness of our approach over the state-of-the-art. Our qualitative evaluation shows better performance compared to our baseline.

Downloads

Published

2020-04-03

How to Cite

Arachie, C., Gaur, M., Anzaroot, S., Groves, W., Zhang, K., & Jaimes, A. (2020). Unsupervised Detection of Sub-Events in Large Scale Disasters. Proceedings of the AAAI Conference on Artificial Intelligence, 34(01), 354-361. https://doi.org/10.1609/aaai.v34i01.5370

Issue

Section

AAAI Special Technical Track: AI for Social Impact