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Abstract

Understanding the mix-and-match relationships between
items receives increasing attention in the fashion industry.
Existing methods have primarily learned visual compatibil-
ity from dyadic co-occurrence or co-purchase information of
items to model the item-item matching interaction. Despite
effectiveness, rich extra-connectivities between compatible
items, e.g., user-item interactions and item-item substitutable
relationships, which characterize the structural properties of
items, have been largely ignored. This paper presents a graph-
based fashion matching framework named Deep Relational
Embedding Propagation (DREP), aiming to inject the extra-
connectivities between items into the pairwise compatibility
modeling. Specifically, we first build a multi-relational item-
item-user graph which encodes diverse item-item and user-
item relationships. Then we compute structured representa-
tions of items by an attentive relational embedding propa-
gation rule that performs messages propagation along edges
of the relational graph. This leads to expressive modeling
of higher-order connectivity between items and also better
representation of fashion items. Finally, we predict pairwise
compatibility based on a compatibility metric learning mod-
ule. Extensive experiments show that DREP can significantly
improve the performance of state-of-the-art methods.

1 Introduction

Fashion has been an integral part of our everyday life. It is
about not only what people wear, but also a mirror of peo-
ple’s attitude toward life, reflections of culture, arts, and even
economics. It is a rapidly growing industry and has moti-
vated various research topics in the fashion domain, such
as recommendation (Yu et al. 2018; Zhang et al. 2017),
search (Liu et al. 2016), and dialogue systems (Liao et al.
2018), etc.

In this paper, we focus on a newly-emerged topic of Mix-
and-match-based fashion recommendation (Han et al. 2017;
Vasileva et al. 2018; Song et al. 2017), for which the goal is
to predict the matching score between fashion items from
different categories. For example, when a user views/buys
an item (e.g., a red floral maxi dress), the system matches
it with the compatible fashion items from a complemen-
tary category (e.g., high-heel sandals). Most people, espe-
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cially the young women/girls spend much time every day to
think about the question of “What to wear” or “how to match
the clothes for a good outfit”. If there is an application that
could help people to choose the suitable clothes, it would be
very popular. That is the importance of this fashion matching
task. The keys to solving the fashion matching problem are
1) how to represent fashion items, and 2) how to effectively
model the item-item compatibility relationship.

Mainstream methods have primarily leveraged the visual
appearance and side information of fashion items to learn vi-
sual compatibility in a pairwise learning manner (Veit et al.
2015; McAuley et al. 2015; He, Packer, and McAuley 2016;
Chen and He 2018; Song et al. 2017; Yang et al. 2019a).
A common assumption behind them is that a pair of com-
patible items should stay close with each other in a la-
tent space. Then, the matching problem is solved under
a similarity learning paradigm: first collect a corpus of
matched/unmatched item pairs, and then train a parameter-
ized similarity function that enforces matched pairs have a
higher similarity score than unmatched pairs.

Despite promising progress, existing solutions mainly ex-
ploit dyadic co-occurrence (Song et al. 2017; Han et al.
2017) or co-purchase (Veit et al. 2015; He, Packer, and
McAuley 2016) information of fashion items to model the
item-item matching interaction. They forgo utilizing rich
extra-connectivity information between compatible items,
such as historical user-item interactions (e.g., rating) and
item-item substitutable relationships (e.g. also-viewed in-
formation), thus being insufficient to capture the rich yet
complicated matching patterns. We argue that the extra-
connectivity information affiliated with items, which char-
acterizes the structural properties of items in a real-world
e-commerce environment, should be carefully taken into
account to enhance the compatibility relationship model-
ing and item representation learning. For example, if users
frequently co-purchase two fashion items from two com-
plementary categories (e.g., dresses and sandals), the two
items may have strong compatibility. If users view a fash-
ion item and finally buy another one, the two substitutable
items may be compatible to the same fashion items. Such
extra-connectivities can effectively complement to the com-
patibility relationships.

Recent efforts have tried to alleviate the above-mentioned
limitations by refining pairwise compatibility with category-
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category complementary relationships (Yang et al. 2019b;
Vasileva et al. 2018) or manually-designed clothing match-
ing rules (Song et al. 2018). However, the category-category
complementary relationships in (Yang et al. 2019b) only use
coarse-grained categories to bridge two items from comple-
mentary categories, which have limited extra-connectivities.
The matching rules in (Song et al. 2018), functioning as a
kind of expert information, is hard to be well-defined by data
scientists without strong domain knowledge. In summary,
the rich extra-connectivity information, e.g., user rating be-
haviors, affiliated with items has not been fully explored for
fashion matching.

To fill the research gap, this paper aims to inject the extra-
connectivity information into the item-item compatibility
relationship modeling in a graph-based fashion matching
framework, named Deep Relational Embedding Propagation
(DREP). Specifically, we first build a multi-relational item-
item-user graph which encodes diverse item-item and user-
item relationships. Then, we learn vector representations of
items by an attentive relational embedding propagation rule
that performs messages aggregation and propagation along
edges of the multi-relational graph with an attention net-
work. The introduced attention network enables our DREP
attend the most informative neighbors under different rela-
tion types. This leads to expressive modeling of extra and
higher-order connectivities between items and also better
representation of fashion items. We further present a com-
patibility metric learning module for predicting compatibil-
ity, which can effectively capture intra-modality and inter-
modality correlation based on the structured embeddings of
items with multimodal descriptions.

Our contributions are summarized as follows.
• We present a graph-based fashion matching framework

that injects the extra-connectivities of items into pairwise
compatibility modeling by attentive relational embedding
propagation.
• We propose a compatibility metric learning module to

predict the pairwise item-item compatibility by capturing
inter-modality and intra-modality feature correlations.
• We justify the effectiveness of the proposed DREP on the

large-scale Amazon dataset with rich item-item relation-
ships and user behaviors. Extensive experiments demon-
strate the effectiveness of DREP.

2 Related Work

Fashion Compatibility Learning. Existing works can be
mainly classified into two groups: one is outfit creation (Han
et al. 2017; Hsiao and Grauman 2018) aiming to automati-
cally compose fashion outfits , and the other one is mod-
eling item-item compatibility (Chen and He 2018; Song et
al. 2018; He, Packer, and McAuley 2016; Song et al. 2017;
Vasileva et al. 2018; McAuley et al. 2015). Most exist-
ing methods in the second group cast fashion matching
as a metric learning problem by assuming that a pair of
matched items should be close to each other in a latent space.
Earlier works model the pairwise compatibility with data-
independent interaction functions, e.g., inner-product (Song
et al. 2017), or Euclidean distance (McAuley et al. 2015;

Chen and He 2018), which are improved by data-dependent
interaction function, such as probabilistic mixtures of non-
metric embeddings (He, Packer, and McAuley 2016), and
category-aware conditional similarity (Yang et al. 2019b;
Vasileva et al. 2018).

Our proposed DREP contributes a new solution for this
task that injects the extra-connectivities (e.g., user rating be-
havior or item-item co-viewed information) of fashion items
into item representations by designing an attentive embed-
ding propagation architecture. Our work is also related to
deep metric learning methods (Yang, Zhou, and Wang 2018;
Yang, Wang, and Tao 2018), where we present a compatibil-
ity metric learning method to model the intra-modality and
inter-modality feature correlations.
Graph Neural Networks. Graph neural networks (GNNs)
have gained increasing attention in recent years (Kipf and
Welling 2017; Zitnik, Agrawal, and Leskovec 2018; Wang
et al. 2019; Cao et al. 2019a). It has become a power tool
to model graph structured data by higher-order messaging
passing on graph. One of the basic GNNs architectures is
presented in (Kipf and Welling 2017), which has been ex-
tended to model relational data in (Schlichtkrull et al. 2018),
and learn the weights of neighbors with an attention mecha-
nism in single-relational graph (Veličković et al. 2018).

Our proposed DREP introduce GNNs into fashion com-
patibility learning over a large scale structured data with dif-
ferent relation types. Different with current GNNs architec-
tures, we design an attentive embedding propagation layer
for multi-relational data, which can effectively modulate the
contributions of neighbors under different relation types in
the messaging-passing procedure. Our proposed compatibil-
ity metric learning module can also enhance the node rep-
resentation learning in an end-to-end manner, which would
facilitate structured data modeling in other domains.
Multimedia Recommendation. Our work is also related
to multimedia recommendation methods (Xu et al. 2018;
Yu et al. 2018; Chen et al. 2017; 2019; Hou et al. 2019)
which leverage visual information to enhance user-item in-
teraction modeling. In (Chen et al. 2019), a multi-modal at-
tention neural network is designed to generate visual expla-
nation for explainable fashion recommendation. In (Hou et
al. 2019), a semantic extraction network and Fine-grained
Preferences Attention module are designed to project users
and items into this fine-grained interpretable semantic space.
In this work, we only focus on item-item compatibility rela-
tionship modeling for across-category fashion recommenda-
tion. However, we encode the user-item interaction behavior
and item-item co-viewed information in Amazon dataset into
a multi-relational graph for item embedding aggregation and
propagation. We found that extra-connectivities are help-
ful to uncover unseen item-item compatibility patterns. It is
also the first time to exploit user behaviors to model item-
item compatibility relationship in a structured-data model-
ing framework.

3 Problem Formulation
In this paper, we formulate a graph-based fashion compat-
ibility learning task. Let G denote an undirected item-item-
user graph G = {V, E} consisting of a set of vertices V and
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a set of edges E ⊆ {(vi, vj , rij)|vi, vj ∈ V, rij ∈ R}, where
R corresponds to two types of pairwise relationships: item-
item relationships, and user-item relationships. The vertices
V include two types of nodes: items {xi}|X |

i ∈ X and users
{ui}|U|

i ∈ U . The goal of our task is to build a predictive
model that estimates the compatibility score between xi and
xj from different categories: ŷij = f(xi, xj) where f de-
notes the predictive model, and ŷij denotes the predicted
compatibility score of a pair of items. The compatibility re-
lationship is defined by binary labels Y = {yij} between
items from different categories, yij = 1 if xi is compat-
ible to xj , otherwise 0. This paper aims to explore extra-
connectivity information for fashion compatibility learning
in a graph-based framework, which is formally defined as:

• Inputs: A corpus of fashion items X with pairwise com-
patibility relationships Y , and a multi-relational graph G
encoding extra-connectivity information between items:
{X ,Y,G}. Each item xi is represented by one or more
feature vectors {xp

i }Pm=1 extracted from multiple descrip-
tions, e.g., images, textual descriptions, and so on.
• Outputs: A pairwise ranking function for each pair of

items (xi, xj), i.e., f : X ×X → R which maps a pair of
items to a compatibility score by jointly considering the
compatibility relationship and extra-connectivities.

In this task, we expect two important characteristics of
fashion items would be effectively leveraged for enhanc-
ing fashion compatibility modeling: (1) structural proper-
ties characterized by rich extra connectivities, (2) multi-
modalities of fashion items, e.g, visual appearance, textural
description, ID, etc.

4 Our Proposed Approach: DREP

This work develops a Deep Relational Embedding Prop-
agation framework for fashion compatibility learning that
mainly consists of two key modules:
• An embedding propagation architecture that derives low-

dimensional item embeddings via an attentive relational
embedding propagation rule.
• A compatibility metric learning layer that models the pair-

wise compatibility relationship by taking intra-modality
and inter-modality correlation into modeling.

We describe how to extract original feature vectors of items
as the input of embedding propagation layer in the latter
part of section 4. The training process is performed in an
end-to-end manner. During testing, given a pair of items, we
first extract their original feature vectors and then feed them
into the embedding propagation module for deriving struc-
tured item embeddings, and finally compute the compatibil-
ity score based on a learned metric.

Embedding Propagation on Graph

The basic idea behind DREP is to inject extra-connectivity
information (e.g., user behaviors, item-item co-viewed in-
formation) of fashion items into the compatibility relation-
ships modeling and item representation learning. We aim to
design a message-passing mechanism (Gilmer et al. 2017) to

transform and propagate item/user information on the graph
G. For this purpose, motivated by recent progress on graph
neural network (Gilmer et al. 2017; Kipf and Welling 2017),
we introduce a multi-layer embedding propagation architec-
ture in DREP that can transform and propagate node infor-
mation on the graph structure across different types of rela-
tions.
Layer-wise Embedding Propagation. The input to the k-
th layer of DREP is a set of node features, Ek = {eki ∈
R

dk}Ni=1, where N = |I| + |U| is the number of nodes
(e.g., items and users) in G, and dk is the dimension of node
features. The layer updates the node features as {ek+1

i }Ni=1
by feature transformation and propagation. A basic form of
layer-wise embedding propagation on multi-relational graph
is presented in RGCN (Schlichtkrull et al. 2018), which
takes the following rule:

ek+1
i = σ

( ∑
r∈R

(
1√

|N r
i ||N r

j |

∑
j∈{i,N r

i }
Wk

re
k
j

))
, (1)

where N r
i denotes the set of neighbor indexes of node i un-

der relation r, Wk
r ∈ R

dk×dk+1 denotes a relation-specific
linear transformation matrix, and σ denotes a non-linear
element-wise activation function, such as rectified linear
unit. Eq. (1) is used for updating all node embeddings on
the graph G with the following propagation rule:

Ek+1 = σ
( ∑

r∈R
D̃

− 1
2

r ÃrD
− 1

2
r EkWk

r

)
(2)

where Ãr = Ar + I is the adjacency matrix of the undi-
rected graph G under relation r with added self-connections,
I is the identity matrix, and D̃ii =

∑
j Ãij . Eq. (1) performs

feature transformation and aggregation over the neighbor-
hood structure of ego node, which can be seen as a kind of
message-passing from the neighborhood of node i to node
i. This leads to explicit modeling of second-order connec-
tivities and information propagation between items (users).
Specifically, for an item node in G, it may gather signals
from substitutable items: xi ← xj(i) and also users that have
rated it: xi ← uj(i), which is a critical step to exploit the
structural properties of items. However, the main weakness
of such propagation rule is that it re-weights each neighbor
of node i by a constant 1/

√
|N r

i ||N r
j |, which only depends

on the structure of graph, being insufficient to discriminate
the contributions of different neighbors under different types
of relations.
Attentive Relational Embedding Propagation. To allevi-
ate the limitedness of Eq. (1), we introduce an attentive re-
lational propagation mechanism into DREP, which is mo-
tivated by the graph attention network (Veličković et al.
2018). Formally, the attentive relational embedding propa-
gation is defined as following:

ek+1
i = σ

( ∑
r∈R

ar
∑

j∈{i,N r
i }

arijW
k
re

k
j

)
, (3)

where arij denotes the attention score of the neighbor j of
ego node i under relation type r , which is computed by a
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softmax operation

arij =
exp

(
σ′ (hT

k

(
Wk

re
k
i ||Wk

re
k
j

)))
∑

j′∈{i,N r
i } exp

(
σ′

(
hT
k

(
Wk

re
k
i ||Wk

re
k
j′

))) ,
(4)

where the attention mechanism is implemented by a single-
layer feed forward neural network parameterized by a
weight vector hk ∈ R

2dk×1 at the layer k of DREP. ar de-
notes the weight of relation r ∈ R,

∑
r∈R ar = 1 (ar ≥ 0).

σ′ is a non-linear activation function, and (·||·) denotes the
concatenation operation. By such a layer-wise attentive em-
bedding propagation rule in Eq. (3), our DREP can effec-
tively update the representation of nodes (items and users)
based on the local area topological structure of the graph G.
All the node embeddings are updated using the following
rule:

Ek+1 = σ
( ∑

r∈R
arA′

rE
kWk

r

)
, (5)

where A′
r ∈ R

N×N denotes the attention matrix under rela-
tion type r, whose element at (i, j) is arij .
Higher-oder Embedding Propagation: By stacking K
propagation layers defined in Eq. (3), a deeper model can
be built for exploring higher-order messaging passing along
the edges of the graph under different types of relations. This
facilitates the expressive modeling of higher-order connec-
tivities between items, such as xi ← uj(i) ← ik(j) or xi ←
xj(i) ← xk(j). After a series of non-linear embedding trans-
formation and aggregation operations, we obtain the struc-
tured node embeddings from the output of the last embed-
ding propagation layer of DREP: {eK1 , · · · , eKi , · · · , eKN}.
Note that among the structured node embeddings set, we
only keep the item embeddings {xK

i ∈ R
dK}|X |

i=1 which
have been enriched by the higher-order connectivities en-
coded in G, since we focus on predicting item-item compat-
ibility score. The final structured embedding of each item is
denoted by

x∗
i =

(
x0
i ||xK

i

)
, (6)

where x∗
i ∈ R

d is the final vector representation of item xi,
d = d0+dK , and (·||·) denotes the concatenation operation.
In Eq. (6), both the original feature vectors and the output of
embedding propagation module are preserved, which aims
to avoid the degradation of the representation ability of item
embeddings after multiple steps of embedding propagations.

Compatibility Metric Learning

After obtaining the structured embeddings of items by em-
bedding propagation and aggregation, the next problem is
how to predict pairwise compatibility score. Given a pair of
items xi and xj with embeddings x∗

i and x∗
j , a common so-

lution is modeling compatibility via a data-independent dis-
tance function

f(xi, xj) ∝ −d(x∗
i ,x

∗
j ) (7)

where d(x∗
i ,x

∗
j ) is usually implemented by a squared Eu-

clidean distance ‖x∗
i−x∗

j‖2 (Veit et al. 2015) or vector inner-
product (Song et al. 2017). However, the data-independent

distance function ignores complex statistical characteristic
of embedding x∗

i from Eq. (6) and treats each dimension of
vector x∗

i equally, being insufficient to model complex com-
patibility patterns. Recent work (He et al. 2018) on collab-
orative filtering has shown that data-dependent interaction
function is better than data-independent function on model-
ing user-item interaction. Inspired by a recent work (He et al.
2018) on collaborative filtering, we design a data-dependent
compatibility function with the following Mahalanobis-like
distance

dM(xi, xj) = ‖x∗
i − x∗

j‖2M (8)

where M ∈ R
d×d 	 0 is a positive semidefinite (PSD)

matrix whose eigenvalues are nonnegative, which aims to
leverage feature interaction for compatibility computing. To
ensure M to be PSD is critical in optimizing a Mahalanobis-
like distance. In this work, we consider the metric M as a
diagonal matrix (Xing et al. 2003).

M = diag{m1, · · · ,mi, · · · ,md}, (9)

where mi is the i-th main diagonal element of M, defined as
mi = dη2i /

∑d
j=1 η

2
j ≥ 0, which ensures that mi is smooth

and nonnegative. By learning a diagonal metric M in Eq.
(9), we expect that different dimensions of item embeddings
are given different weights. Then, the goal is casted into op-
timizing a vector η = (η1, · · · , ηd).
Multimodal Compatibility: An item xi , usually, has mul-
tiple vector representations {x0

i(p)}Pp=1 from P modalities,
such as image, text, etc. We perform embedding propaga-
tion in DREP for each modality separately and obtain mul-
tiple structured embeddings {x∗

i(p)}Pp=1 for each item. For
exploiting multimodal complementation, we extend Eq. (8)
to

dM(xi, xj) =
1

P 2

∑
(p,q)

‖x∗p
i − x∗q

j ‖2M(p,q)
, (10)

where M(p,q) 	 0 is a PSD metric that measures the com-
patibility across modality p and q. It is also defined as a diag-
onal matrix via Eq. (9). Eq. (10) provides an effective solu-
tion to model the compatibility relationship by learning a set
of diagonal metrics, which explores not only intra-modality
correlation and but also inter-modality correlation. Note that
M(p,q) = M(q,p).
Remarks: The reason of designing such a Compatibility
Metric Learning module in this fashion compatibility frame-
work is that the Euclidean distance or cosine similarity can-
not work very well to capture the feature-level compatibility
relationship with the concatenated multi-modality represen-
tation as input, due to the significant difference on the statis-
tical distributions of multi-modalities. To address this issue,
we design such a trainable and easy-to-implement multi-
modal fusion metric, which has shown good performance
in the experiments.

Margin-based Ranking Criterion

Given a compatible item pair (xi, xj) ∈ P , we randomly
sample a set of negative items which do not have compat-
ibility relationships with xi or xj in training set P . In this
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way, we generate a large set T of triplets for training:

T = {(xi, xj , xl)|(xi, xl) /∈ P ∪ (xj , xl) /∈ P}. (11)

To jointly optimize item structured embeddings and distance
metrics M, we minimize a margin-based ranking criterion
over the training set

L =
1

|T |
∑

(i,j,l)∈T
[dM(xi, xj)− dM(xi, xl) + γ]+, (12)

where [·]+ denotes hinge loss, and γ > 0 is a margin pa-
rameter, and |T | denotes the total number of training triples.
The optimization goal is to ensure that the distance between
a pair of compatible items is smaller than that between in-
compatible (randomly sampled) items by a margin.

Implementation Details

In this work, we mainly use two types of widely used fea-
tures (P = 2) as original vector representations of items:
one is visual features extracted from images, and one is tex-
tual features extracted from textual descriptions.
Item Visual features: We adopt a pretrained VGG net-
work to extract visual features of items. Given an image
of item xi, the output of pretrained VGG is xcnn

i ∈ R
dcnn

(dcnn = 4096). Then we apply a one-layer feed forward net-
work gv(·), parametrized by weight matrix Wv ∈ R

d0×dcnn

to transform the output of VGG into a d0-dimensional vec-
tor x0

i(v) as the input of DREP: x0
i(v)) = Wvx

cnn
i . Note that

we just use the pretrained CNN features to represent the vi-
sual modality of each item to validate the effectiveness of
our proposed approach. Actually, this visual module can be
extended to more fancy one. It is easy to design a spatial
attention neural network (Chen et al. 2019) to capture the
region-wise visual features. When two fashion items have
a high compatibility score, we can visualize the attention
map of each item to give a visual explanation that reveals
which part of this item make the main contribution to this
match case. Another potential solution is to extract the re-
gions of interest in each item image. Then, each item can be
represented as a set of region features. We can also exploit
the bilinear pooling layer (He and Chua 2017) to model the
second-order interaction of different visual regions as a more
expressive visual embedding.
Item Textual features: We adopt the pretrained Glove word
embeddings (Pennington, Socher, and Manning 2014) to
extract 300-d feature vectors of words in a sentence, and
use average-pooling to aggregate word vectors as a sen-
tence vector xglove

i ∈ R
300 for each item. We also ap-

ply a one-layer feed forward network gt(·), parametrized
by weight matrix Wt ∈ R

d0×dglove

to transform the pre-
trained sentence vector into a d0-dimensional dense vector:
x0
i(t) = Wtx

glove
i .

User ID embeddings: For the representation of users, we
extract the ID embedding by an embedding looking up op-
eration following the widely-used solution in collaborative
filtering methods (He et al. 2018). The extracted ID embed-
dings of users are fed into DREP for embedding propaga-
tion.

Table 1: Statistics of the datasets.
Datasets Amazon-Men Amazon-Women
#Items 73,737 110,928
#Users 95,782 134,968
#Compatibility Rel. 367,230 467,623
#Substitute Rel. 352,529 517,423
#User-Item Interactions 253,468 377,693

5 Experiments

In this section, we conduct extensive experiments to justify
the effectiveness of our proposed DREP on compatibility
learning. 1) RQ1: Can DREP achieve competitive perfor-
mance by exploiting the extra-connectivities? 2) RQ2: Can
DREP effectively model the compatibility relationship? 3)
RQ3: How do hyper-parameters effect the performance of
DREP?

Dataset

In this work, we employ the widely-used Amazon (Men and
Women) (Veit et al. 2015) dataset to justify the effectiveness
of DREP on modeling compatibility relationship. Currently,
only the Amazon dataset provides rich item-item relation-
ships and user-item relationships simultaneously. Following
the setting of (Veit et al. 2015), the pairwise compatibil-
ity relationship is defined as the bought-together and also-
bought relationships between different categories. Two side
relationships (extra-connectivities) provided in Amazon are
used to build DREP: one is item-item substitute relationship
(i.e., also-viewed information in Amazon), and the other is
user-item interactions (i.e., user rating information in Ama-
zon). Note that the bought-together, also-bought, and also-
viewed relationships were not directly derived from cus-
tomer behaviors, but from Amazon’s recommendation algo-
rithms. We evaluate our DREP on the sampled Amazon-Men
and Amazon-Women datasets.

The statistics of our two datasets are shown in Table 1
(Rel. refers to relationships). We only use two side relation-
ships to build the item-item-user graph. The compatibility
relationship is used to sample the positive/negative training
pairs for optimization under Eq. (12). We randomly sample
80% items for training, 10% items for validation, and 10%
items for testing. Note that all query items in validation and
testing sets do not have any compatibility relationships in the
training set. In the validation and testing set, for each query
item, we leave no more than 5 ground truths in candidate
list.

Experimental Settings

Experimental Protocols: To evaluate top-K prediction of
a ranked list, we use three metrics: 1) Recall@K that mea-
sures the fraction of compatible items, retrieved within the
top K ranked list, out of all ground-truths. 2) Hit@K that
measures the fraction of compatible items presented in the
top K ranked list. 3) NDCG@K that accounts for the posi-
tion of the hit by assigning higher scores to hits at top-K list.
A higher Recall@K, Hit@K, or NDCG@K score denotes a
better performance.
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Table 2: Overall Performance Comparison with baseline
methods in both the single modality setting (V, using visual
image only) and multi-modality setting (V+T, using image
and text). R@5, H@5, and N@5 refer to Recall@5, Hit@5,
and NDCG@5. The higher score indicates a better perfor-
mance.

Fea. Method Amazon-Men Amazon-Women
R@5 H@5 N@5 R@5 H@5 N@5

V

SiaNet 0.449 0.516 0.378 0.421 0.471 0.343
RGCN 0.507 0.582 0.412 0.515 0.581 0.428

RGCN-ML 0.561 0.633 0.467 0.582 0.663 0.502
DREP 0.587 0.659 0.498 0.623 0.694 0.538

V+T

SiaNet 0.576 0.651 0.495 0.547 0.610 0.465
BPR-DAE 0.564 0.628 0.500 0.538 0.591 0.472

RGCN 0.609 0.691 0.518 0.616 0.684 0.527
RGCN-ML 0.719 0.795 0.646 0.713 0.784 0.642

DREP 0.735 0.805 0.668 0.728 0.793 0.663

Baseline methods: We compare our proposed DREP with
the following baseline methods to justify its effectiveness:
- Siamese Nets (Veit et al. 2015) (SiaNet). It measures

visual compatibility using �2-normalized Euclidean dis-
tance.

- BPR-DAE (Song et al. 2017). This work models the pair-
wise compatibility as the inner-product of item embed-
dings using both images and textual descriptions as input.

- RGCN (Schlichtkrull et al. 2018). This work designs a re-
lational graph neural network method for learning struc-
tured node embedding on a graph with different types of
relations. It is implemented in the same framework with
DREP. By default setting, RGCN uses Euclidean distance
to model pairwise compatibility. Besides, to be fairly
compared with our DREP, RGCN is also combined with
the metric learning module (Eq. (8)), termed as RGCN-
ML.

Among the listed methods, SiaNet and BPR-DAE do not
rely on any extra-connectivity information, while RGCN can
utilize multi-types of extra-connectivity information, which
is a strong baseline for DREP. Except for BPR-DAE that
is optimized with the Bayesian Personalized Ranking (BPR)
objective (Rendle et al. 2009) using the visual and textual in-
formation, all the other methods are optimized with the mar-
gin ranking loss with a margin 0.5 and evaluated with both
single modality setting (Visual only) and multi-modality set-
ting (Visual and Textual). For the multi-modality fusion in
RGCN (V+T) and BPR-DAE, we directly fuse the normal-
ized low-dimensional embeddings x0

i (v) and x0
i (t) with an

average pooling operation, resulting in better performance
than vector concatenation or score-level summation.
Parameter settings: We implement DREP using Tensor-
flow. The number of embedding propagation layers in DREP
is set to 2 by the performance on validation set. The embed-
ding size of each layer is set to 64 for simplicity, resulting
in 128-D item embeddings (as shown in Eq. (6)) from the
output of DREP. We optimize all models with the Adagrad
optimizer. The learning rate and regularization term are both
fixed at 0.01 and 1e-5 by grid searching on validation set.
Except for BPR-DAE, all the embedding vectors are nor-
malized to unit one for stable learning. We report the perfor-
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Figure 1: Top-K prediction comparison w.r.t. NDCG@K at
different ranking positions on Amazon-Men. (a) Only visual
modality is utilized, (b) multi-modality setting is adopted.

mance of all the methods on testing set using the model with
best performance on validation set.

Overall Performance Comparison

Table 2 displays the performance comparison w.r.t.
Recall@K, Hit@K, and NDCG@K (K=5) on Amazon-Men
and Amazon-Women. Figure 1 reports top-K performance
comparison w.r.t. NDCG@K at different ranking positions
on Amazon-Men. We have the following findings:

• RGCN-ML, RGCN, and our DREP consistently outper-
form SiaNet and BPR-DAE which do not use extra-
connectivities by large margins. It indicates the necessity
of exploiting the rich extra-connectivity information for
learning item representation with a graph neural network.
That makes sense since rich extra-connectivities are help-
ful to recover unseen item-item compatibility interactions
by embedding propagation on the item-item-user graph.

• RGCN-ML substantially surpasses RGCN. It is reason-
able since our compatibility metric learning module can
learn a diagonal metric that assigns different weights on
different dimensions of item embeddings, which can ef-
fectively capture feature correlation for compatibility pre-
diction. Especially, we ensure that each derived diagonal
matrix satisfies the PSD condition, which makes the over-
all learning procedure more stable. The improvements are
more significant in the multi-modality setting, benefiting
from the intra-modality and inter-modality correlation in
Eq. (10).

• Our DREP consistently achieves better performance
than RGCN-ML, which verifies the effectiveness of
our proposed attentive relational embedding propagation
rule. DREP injects attention mechanism into the multi-
relational embedding propagation which can modulate the
contribution of different types of extra-connectivity infor-
mation and also attend the informative neighbors for in-
formation passing along relation-specific edges.

Study of DREP

Analysis on Different Levels of Extra-connectivity: One
of the main advantages of DREP is the injecting of extra-
connectivity information into item-item compatibility mod-
eling. We investigate the effectiveness of extra-connectivity
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Figure 2: Comparison over seven subgroups of query
items in testing set with different sparsity levels of extra-
connectivities on Amazon-Men. Only visual modality is
adopted. (a) denotes comparison w.r.t. item-item substitute
relationship, (b) denotes comparison in a multi-relational
setting (Both item-item and user-item extra connectivities
are used).

information on different subgroups of query items in test-
ing set with different sparsity levels. Specifically, we split
the original query item set into seven subgroups based on
the number of extra connectivity relationships per query
item has. Figure 2 (a) and (b) show the comparison between
DREP and RGCN-ML over seven subgroups of query items
on Amazon-Men. The performances of SiaNet on different
subgroups are reported as a baseline. We have the following
observations:

• DREP and RGCN-ML slightly underperform SiaNet in
the first subgroup since the query item has no connectivity
in the graph, and performs consistently better in all the
other subgroups. It indicates exploiting extra connectivity
can greatly enhance the representation learning of items
by capturing the structural characteristics of items.
• We also observe that DREP and RGCN-ML can yield re-

markable improvement with only no more than 5 extra re-
lationships. It is reasonable since items can interact with
indirectly-connected neighbors on the graph by higher-
order embedding propagation. The more extra relation-
ships provided, the higher prediction score achieved.
When the number of extra-relationships are large than 10,
the performance of SiaNet drops fast. It reflects that only
relying on visual appearance of items cannot provide a
good prediction for very active items.

Convergence of DREP: Figure 3 shows the training loss
curve and accuracy curve (w.r.t. NDCG@5) versus different
number of epochs on validation set of Amazon-Men. We can
observe that both RGCN-ML and DREP converge stably and
fast within 200 epochs. Both methods can achieve signifi-
cant performance improvement within top 100 epochs. Since
we exploit the graph neural network module to encode the
item-to-item and item-to-user structural relationships. When
the number of nodes in such a multi-relational graph is very
large, it will make the model very hard to optimize. A po-
tential solution can be exploited to address this issue is that
the whole graph can be partitioned into multiple sub-graphs
for batch-wise training (Ying et al. 2018).
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Figure 3: Loss curve on training set and accuracy curve
(w.r.t. NDCG@5) on validation set of Amazon-Men. (a)
Only visual modality is utilized, (b) multi-modality setting
is adopted.

6 Conclusion

This paper developed a Deep Relational Embedding Propa-
gation (DREP) framework for learning fashion compatibil-
ity, which aimed to inject extra-connectivities into the pair-
wise compatibility relationship modeling of fashion items.
Specifically, we first build a item-item-user graph which en-
codes two types of extra-connectivity information, and user-
item interactions. Then, we design a non-linear relational
embedding propagation rule with an attention mechanism
to modulate the contribution of each neighbor under dif-
ferent relation types, thus leading to expressive and struc-
tured item embeddings. Besides, we also design a compati-
bility metric learning module to better leverage the structural
characteristics for compatibility modeling, instead of the
data-independent compatibility function. Finally, by stack-
ing multiple relational embedding propagation layers and
the compatibility metric learning layer, we can effectively
capture the higher-order connectivity information for the
item-item compatibility prediction. Extensive experiments
demonstrate that our proposed DREP can yield state-of-the-
art fashion compatibility learning performance.

In the future, we would consider to encode more fashion
domain knowledge (Ma et al. 2019) into the graph and also
try to utilize the knowledge graph completion approach (Cao
et al. 2019b) to handle new fashion items.
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