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Abstract

Online Social Networks (OSNs) evolve through two perva-
sive behaviors: follow and unfollow, which respectively sig-
nify relationship creation and relationship dissolution. Re-
searches on social network evolution mainly focus on the
follow behavior, while the unfollow behavior has largely
been ignored. Mining unfollow behavior is challenging be-
cause user’s decision on unfollow is not only affected by the
simple combination of user’s attributes like informativeness
and reciprocity, but also affected by the complex interaction
among them. Meanwhile, prior datasets seldom contain suf-
ficient records for inferring such complex interaction. To ad-
dress these issues, we first construct a large-scale real-world
Weibo' dataset, which records detailed post content and rela-
tionship dynamics of 1.8 million Chinese users. Next, we de-
fine user’s attributes as two categories: spatial attributes (e.g.,
social role of user) and temporal attributes (e.g., post content
of user). Leveraging the constructed dataset, we systemati-
cally study how the interaction effects between user’s spatial
and temporal attributes contribute to the unfollow behavior.
Afterwards, we propose a novel unified model with heteroge-
neous information (UMHI) for unfollow prediction. Specifi-
cally, our UMHI model: 1) captures user’s spatial attributes
through social network structure; 2) infers user’s temporal
attributes through user-posted content and unfollow history;
and 3) models the interaction between spatial and temporal
attributes by the nonlinear MLP layers. Comprehensive eval-
uations on the constructed dataset demonstrate that the pro-
posed UMHI model outperforms baseline methods by 16.44
on average in terms of precision. In addition, factor analyses
verify that both spatial attributes and temporal attributes are
essential for mining unfollow behavior.

1 Introduction

The popularization of the Internet greatly facilitates the de-
velopment of Online Social Networks (OSNs). Statistics?
show that more than 3 billion people around the world now
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Figure 1: An example of unfollow behavior in online social
network: Userl posted too much spam messages, resulting
the unfollow behaviors of his/her followers.

use OSNs each month. The fast development of OSNs is
tightly coupled with the evolution of online social relation-
ships. There are two basic actions for users to manage their
social relationships: follow (relationship creation) and unfol-
low (relationship dissolution), of which an example is shown
in Figure 1. Previous research efforts paid much attention
to the follow behavior (Liben-Nowell and Kleinberg 2007;
Bliss et al. 2014; Quercia, Askham, and Crowcroft 2012),
while unfollow behavior mining has largely been ignored.
Statistics in a real-world Weibo dataset show that almost
40% of users unfollow others at least once a month. The
frequent occurrence of unfollow behavior leads to an inter-
esting question: why people unfollow others? Taking a step
forward, can we predict the unfollow behavior in OSNs?

Previous research efforts have shown the rationality of an-
alyzing and predicting unfollow behavior. They mainly fo-
cus on mining unfollow behavior through user-posted con-
tent and social network structures, and have revealed sev-
eral attributes that are closely related to the unfollow be-
havior, such as the informativeness of the followee and
the reciprocity of relationships. Leveraging the found at-
tributes, these methods predict unfollow behavior by defin-
ing handcrafted features (Maity, Gajula, and Mukherjee
2018; Kwak, Moon, and Lee 2012; Xu et al. 2013). How-
ever, merely defining handcrafted features from unfollow-
related attributes cannot generalize well to large-scale set-
ting, because user’s decision on unfollow is not only affected
by the simple combination of user’s attributes, but also by
the complex interaction effects among them. Take the com-
munity and post content of users as an example, user’s per-



sonal habits shown in post content would influence the com-
munity of user, while the community would also affect user’s
preference on post content; thus the intertwined nature of
community and post content would result in a highly com-
plicated unfollow decision mechanism. Meanwhile, model-
ing such interaction effects needs abundant records of online
social networks, while prior datasets seldom satisfy such re-
quirement.

To address these issues, in this work, we first construct
a large-scale benchmark dataset on Sina Weibo, which con-
tains 1.8 million Chinese users, 400 million social relation-
ships and 10 million records of unfollow. We record the
timeline, content, and upvotes of each user’s microblogs
and track the unfollow actions of these users in a month.
Then, inspired by previous researches, we define user’s at-
tributes as two categories: spatial attributes (e.g., social role
of user) and temporal attributes (e.g., post content of user).
Based on the constructed dataset, we systematically study
how the interaction between spatial and temporal attributes
contribute to the unfollow behavior and conduct exhaus-
tive data observations. Next, for the unfollow prediction
task, we propose a novel unified model with heterogeneous
information (UMHI) to learn the highly complex interac-
tion. The main idea of UMHI is to model the user’s spa-
tial attributes through social network structure and user’s
temporal attributes through user-posted content and short-
term unfollow history (a user’s unfollowed-people list).
First, information of social network structure is extracted
by network embedding; Second, we adopt hierarchical at-
tention network (HAN) (Yang et al. 2016b) to learn repre-
sentations from user-posted content. Third, the matrix fac-
torization (MF) based collaborative filtering (Koren, Bell,
and Volinsky 2009) is employed to reduce user’s short-term
unfollow history into low dimensional feature vectors. Fi-
nally, a unified heterogeneous information fusion network
is trained to model the interaction between spatial and tem-
poral attributes. Figure 2 summarizes the workflow of our
framework.

Experiments demonstrate that our model outperforms the
baseline methods by 16.44% on average in terms of preci-
sion. In addition, factor analyses show that both spatial and
temporal attributes are essential for mining unfollow behav-
ior. To conclude, we summarize our contributions as fol-
lows:

e We construct a real-world benchmark dataset on Sina
Weibo with 1.8 million Chinese users and 400 million so-
cial relationships. It records user’s post content and rela-
tionship dynamics for a whole month. Such large-scale
dataset is not only useful for unfollow prediction, but
also beneficial for further research like depression detec-
tion and rumor detection. Dataset is publicly available at
https://github.com/wuhaozhe/Unfollow-Prediction.

e We systematically study how the spatial and temporal
attributes contribute to the unfollow behavior, unveiling
the interaction effects between these two categories of at-
tributes.

e We propose a novel UMHI model, which predicts unfol-
low behavior by learning spatial and temporal attributes
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through user’s footprint on OSN. The proposed method
outperforms baseline methods by a large margin.

2 Related Work

Previous researches on social network evolution mainly fo-
cus on the follow behavior (link prediction and friend recom-
mendation), while the unfollow behavior has received less
scrutiny.

For mining follow actions, several researches focus on
predicting relationship from social network structures (Tang
et al. 2015; Perozzi, Al-Rfou, and Skiena 2014; Grover and
Leskovec 2016). Perozzi et al. proposed Deepwalk algo-
rithm (Perozzi, Al-Rfou, and Skiena 2014) to represent the
network structure as low dimensional embeddings through
random walks on social networks, then the similarity be-
tween embeddings reflects the possibility of establishing
relations. The node2vec algorithm (Grover and Leskovec
2016) extends the depth first random walk strategy into a
biased random walk procedure, making the learned repre-
sentations scalable. The LINE algorithm (Tang et al. 2015)
embeds node into low dimensional representations by op-
timizing the first order and second order proximity. All of
these approaches only capture spatial factors, while unfol-
low behavior is caused by intricate interactions of spatial and
temporal factors. Therefore the aforementioned algorithms
all suffer from inferior performance in terms of unfollow
prediction.

Compared with these link prediction methods, researches
on unfollow behavior mostly resort to rule based meth-
ods. Kwak et al. firstly researched on the unfollow dynam-
ics in Twitter, they found some unfollow factors, includ-
ing informativeness, reciprocity and relationship stabiliza-
tion (Kwak, Chun, and Moon 2011). Later, they built a lo-
gistic regression model based on structure properties and be-
havioral properties (Kwak, Moon, and Lee 2012). The same
group then adopted actor-oriented model (SIENA) to ex-
amine the impacts of reciprocity, status, embeddedness, ho-
mophily, and informativeness on tie dissolution (Xu et al.
2013). Kivran-Swaine et al. explored how network struc-
tures alone influence unfollow behavior (Kivran-Swaine,
Govindan, and Naaman 2011). Quercia et al. researched on
whether user’s demographics such as age, gender will in-
fluence unfollow behavior in facebook (Quercia, Bodaghi,
and Crowcroft 2012). Maity et al. analyzed the content of
the posts made by the Twitter users who lose followers con-
sistently and extracted various behavioral features from fol-
lowee’s post content to make prediction. (Maity, Gajula, and
Mukherjee 2018). However, these rule-based methods can
hardly represent the interaction between the spatial and tem-
poral attributes, therefore can’t generalize well to large-scale
settings.

3 Problem Formulation

The problem setting of unfollow prediction is to predict a
user’s future unfollow behavior from raw online social net-
works (OSNs) data. OSNs contain several attributes that are
predictive for unfollow behavior, we define them as two cat-
egories: spatial attributes and temporal attributes. Formally:
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Figure 2: The workflow of UHMI: We predict unfollow behavior by fusing two kinds of information: (1) Spatial attributes, here
we utilize user-located network structure to represent such attributes. (2) Temporal attributes, we incorporate user’s temporal
post content and unfollow history as the input to represent such attributes. The interaction effects bewteen spatial and temporal
attributes is modeled through the fusion stage in UMHI. Details of hierarchical attention network is shown in Figure 4.

e Spatial Attributes: user’s attributes that remain un-
changed in time interval [ts;q.t, tend) (e.g., user’s social
role).

e Temporal Attributes: user’s attributes that dynamically
change in time interval [tsiqr¢,tenal (e.g., user-posted
content).

Given a set of users V, we use a binary matrix R € RIVI*IVI
to denote the link dynamics between users in time interval
[tstarts tena). Specifically, each entry r;; denotes whether
user ¢ has unfollowed user j in [ts¢art, tena), Which is de-
fined as:

- { 1, if user i unfollowed user j in [tstarts tend)s

K 0, otherwise.

ey

To conduct training-test scheme, given test edges Fyest,
we mask E}.,; from binary matrix [. Specifically, for any
rij € Eiest, we enforce 7;; = 0 to get the training binary
matrix Ryirqin = R\ Fiest, here we call matrix Ryyq4r to be
the unfollow history matrix, r;. to be the unfollow history of
user 4, and r.; to be the unfollowed history of user j.

Problem. The target of unfollow prediction is to predict
7ij € Fiest. We incorporate social network structure infor-
mation n;,n; as spatial attributes, incorporate posted con-
tent m;, m; and unfollow history r;.,7.; as temporal at-
tributes. Then, our objective is to learn a function y;; =
f(n;,n;, m;, m;,r;.,r;), which estimates the probability
that user ¢ would unfollow user j.

4 Dataset Observation

In this section, we conduct exhaustive data observations to
analyze how spatial attributes and temporal attributes inter-
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act with each other. In order to visualize the observation re-
sults, we define several statistics that respectively represent
spatial attributes and temporal attributes. We take user’s so-
cial role as an example of spatial attributes. Specifically, fol-
lowing the prior work of Yang (Yang et al. 2016a), we di-
vide users into three groups: 5% of users with the highest
PageRank score (Page et al. 1999) are considered to be the
opinion leader (OpnLdr); 5% of users with the lowest Burts
Constrain score (Burt 2017) are considered to be the bridges
between disconnected communities in social network, a.k.a.,
the structure hole (StrHole); and the rest of users are consid-
ered to be ordinary users (OrdUsr). Then for the temporal
attributes, we define the following two attributes:

e Similarity: the tf-idf similarity between follower and fol-
lowees’ post content within a month.

e Exposure: the number of microblogs posted by the fol-
lowee within a month.

Before analyzing the results of data observations, we first
elaborate the details of dataset construction. We build a
large-scale benchmark dataset on Sina Weibo, which con-
tains 1.8 million Chinese users and 400 million social re-
lationships. We record each user’s microblog post content
and relationship dynamics from September 28, 2012 to Oc-
tober 29, 2012. Each post is recorded with its time, content
and upvotes. During the month we observe, we found that
10,705,319 (2.53%) edges have been broken at least once,
and 714,945 (40.00%) users have unfollowed others at least
once, verifying that unfollow is a pervasive behavior.

Although the unfollow behavior is pervasive, the ratio be-
tween unfollow relationships and hold relationships is still
unbalanced (2.53% in our dataset). Therefore, we build a
balanced sub-dataset F}.; for fair data observation and fur-
ther training-test scheme. Table 1 shows the composition of



Table 1: Sum of edges in the E;.s; among different so-
cial roles and relations statuses. OrdUsr, OpnLdr and Str-
Hole are the shorthands of ordinary user, opinion leader and
structure hole, meaning that the followee of the edge is Or-
dUsr/OpnLdr/StrHole.

Social role  OrdUsr OpnLdr StrHole Sum
hold 1887 2551 1364 5802
unfollow 2391 2539 1860 6790
Sum 4287 5090 3224 12592
0o Similarity
—— Ordusr
o8 —— Opnldr
Eﬂ” - Strhole
= 0.6 °
g 0.5
o |
&
o Similarity
(@)
Exposure
; 0.60 x. : * * ¢
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Figure 3: The results of exploratory analysis, (a) (b) respec-
tively plots the distribution of rou under the interaction be-
tween similarity / exposure and social role.

Eest, here we filter out the edges in which either follower
or followee post no microblog content.

To measure how the interaction effects between spatial
and temporal attributes affect user’s decision on unfollow,
we define metric rou(c) (ratio of unfollow under condition
¢) to be the ratio bewteen the number of unfollow edges and
the number of all edges. Formally:

_ Ny (c)
Npo(c) + Nyn(c)’

where N, (c) is the number of edges that break relation-
ships under condition ¢ within the observed month, Ny, (¢)
is the number of edges that hold relationships. Edges with
higher rou(c) are more likely to break, while with lower
rou(c) are more stable. In the following analysis, we lever-

(@)

rou(c)
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age Fieq to estimate the distribution of rou(c) under dif-
ferent combinations of user’s spatial attributes and temporal
attributes.

Interaction between similarity and social role. Similar-
ity reveals user’s homogeneity in short-term post content.
Two users with higher homogeneity are more likely to have
stable relationship. Figure 3a plots the relationship between
similarity and rou under different social roles. We observe
that as similarity increases, the rou quickly decreases to the
saturation point. Figure 3a also shows that the interaction ef-
fects bewteen social role and similarity is significant: opin-
ion leader is most sensitive to similarity, since it varies the
most as similarity increases. On the other hand, for structure
holes, similarity seems to be a weak factor.

Interaction between exposure and social role. Exposure
evaluates the activeness of followee in recent time. From
Figure 3b, we observe that with the increase of exposure,
rou shows different tendency under different social roles.
The rou of opinion leaders is naturally lower than that of
ordinary users and structure holes. Meanwhile, the rou of
ordinary users and structure holes fluctuates with the in-
crease of exposure, while the rou of opinion leaders mono-
tonically decreases. Such phenomenon has a simple inter-
pretation: followers are concerned with the messages from
opinion leaders, and would not curtly break up relationships
with them.

Summary. We reveal that the spatial and temporal at-
tributes interplay with each other and result in an intricate
mechanism of unfollow behavior. Therefore, for unfollow
prediction, it is necessary to employ the nonlinearity of neu-
ral network to model such interactions. In next section we
will introduce how the UMHI model leverages neural net-
work to extract discriminative features for unfollow predic-
tion.

S Proposed Model

Based on the exploratory analysis in Section 4, we propose a
novel UMHI model which incorporates heterogeneous infor-
mation to predict the unfollow behavior. Our model simul-
taneously takes the spatial attributes and temporal attributes
as input. More specifically, (1) we capture spatial attributes
through social network structure, and utilize network em-
bedding to compress the graph structured data into feature
vectors. (2) We infer user’s temporal attributes from user-
posted content and unfollow history, the hierarchical atten-
tion network (HAN) and matrix factorization (MF) are re-
spectively leveraged to learn the feature vectors from post
content and unfollow history. (3) We employ the nonlinear-
ity of MLP layers to model the interaction effects between
spatial attributes and temporal attributes. The overall archi-
tecture of UMHI is presented in Figure 2.

The remainder of this section is organized to elaborate
each component of UMHI framework.

5.1 Network Structure Encodes

The user-located social network structure is closely related
to the unfollow behavior. As revealed in Section 4, users
with higher pagerank score have lower probability to be un-
followed. Except for the social role which affects followee’s



decision on unfollow, prior work by Quericia et al. (2012b)
argues that common friends between two users also greatly
affects the stability of relationship.

To comprehensively encode network structure into low di-
mensional feature vectors, we leverage the network embed-
ding method. Different network embedding methods have
different capacities for encoding different kinds of structure
information (Dalmia, Gupta, and others 2018). Because of
different optimization strategies, LINE algorithm has bet-
ter capacity on capturing local information, while Deepwalk
and Node2vec prefer to encode global information.

For unfollow prediction, experiment results in Section 6
demonstrate that local information plays a more important
role than global. Therefore, we employ the LINE algo-
rithm to represent social network structure. LINE has two
different objectives: first-order proximity and second-order
proximity. The first-order proximity refers to the local pair-
wise proximity between vertices in the network, while the
second-order proximity is the similarity in the neighborhood
network structures between two nodes. We denote LINE
with first-order proximity as LINE1, and LINE with second-
order proximity as LINE2. The UMHI framework incorpo-
rates both LINE1 and LINE2 as input, here we respectively
denote the node embeddings of follower ¢ and followee j as
n; and n;.

5.2 Post Content Encodes

Users’ post content reflects their temporal preferences. By
observing the post content of follower and followee, we
may guess whether the follower losts interest in the fol-
lowee’s posts at present. Since that both the words in each
post and all posts of one user are serialized sequences, we
employ the hierarchical attention network (HAN) to extract
the discriminative features. The hierarchical attention net-
work, as shown in Figure 4, contains two bidirectional atten-
tion LSTM layers. The first LSTM layer encodes each post
into dimension fixed representation, the second layer aggre-
gates representations from all posts into a dimension fixed
feature vector. Finally the attention mechanism (Bahdanau,
Cho, and Bengio 2014) assign different weights to different
words and posts.

More specifically, we firstly embed each word of post con-
tent into word embeddings w;; € R (i is microblog ID, j
is word ID). For a microblog with 7" words, the bidirectional
attention LSTM f takes w1 ...w; as input, and outputs the
sentence representation s;, formally as:

3)

After obtaining representation s; of each post, for one
user with L microblogs, the second LSTM layer f> aggre-
gates the learned representation into a dimension fixed fea-
ture vector m, formally:

S; — fl (wﬂ...wiT).

“

m = fQ(Sl...SL).

The overall UMHI framework simultaneously extracts the
post content feature vector of follower ¢ and followee 7, we
respectively denote the two feature vectors as m; and m;.
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Figure 4: An illustration of hierarchical attention network.
The first layer of HAN incorporates the word embeddings
of each post as input, then outputs a dimension fixed post
content represention, the second layer of HAN incorporates
post content representations of all posts as input, and aggre-
gates representations into a dimension fixed feature vector.

5.3 Unfollow History Matrix Factorization

Unfollow history records user’s unfollowed-people list in re-
cent time. Users with similar unfollow history show homo-
geneity in unfollow behavior. Specifically, if two users un-
followed similar followees recently, they may make similar
unfollow decisions in the future. However, the unfollow be-
havior is sparse, statistics in our constructed dataset show
that each user would only unfollow 6 users on average in
a month. Therefore, it is hard to directly predict unfollow
action by a user’s unfollowed-people list.

Inspired by the matrix factorization (MF) based collab-
orative filtering algorithm, we construct a unfollow history
matriX Ryyqin as defined in Section 3. By matrix factoriza-
tion we compress the unfollow history of follower i to latent
vector p;, and also map the unfollowed history of followee
J to latent vector g;. The dot product of p; and ¢; produces
745, which estimates the value of r;; in Ryyq4y,. Formally:

(&)

where p; and ¢; are learned by optimizing the following reg-
ularized squared error:

N T
Tij = Pi4; »



>

(i,7)€lVIX|V]

min (rij = pia?)* + M il + Il ). (6)
The regularized squared error is minimized by stochas-
tic gradient method (SGD) without negative sampling. The
UHMI framework then incorporates both p; and ¢; as input.
Experiment results demonstrate that feature vectors p; and
q; are effective for the final prediction.

5.4 Output and Objective Function

Until now, given follower ¢ and followee j, we’ve obtained
network embeddings n;,n;, post content feature vectors
m;, m;, and unfollow history feature vectors p;, ¢;. Among
which n; and n; are spatial attributes, while m;, m;, p; and
q; are temporal attributes. To model the complicated interac-
tions between spatial attributes and temporal attributes, we
employ MLP layers to incorporate the unified representation
as input. The nonlinearity of MLP layers can adequately rep-
resent the interaction mechanism between spatial attributes
and temporal attributes. Finally, the output layer estimates
the unfollow probability y;; between follower ¢ and followee
j. Formally:

d=n;,®n; $m; Sm; O p; D qj, @)

yi; = Sigmoid(MLP(d)). (8)

The objective function to be minimized is defined as:

>

(@i elVIx|V]

0= (rij1og(yiz) +(1—rij) log(1—yiz)), (9)

where r;; is the element of Ry,.q,. The objective function
is a format of cross-entrophy. Since positive instances and
negative instances are unbalanced, we sample equal number
of positive and negative instances in each mini-batch.

6 Experiments

In this section, we firstly introduce dataset construction,
evaluation metrics and UMHI implementation details, then
we demonstrate the effectiveness of UMHI framework
through comprehensive experiments. We show quantitative
results on unfollow prediction, and respectively analyze spa-
tial attributes, temporal attributes and the interaction effects
through experimental results. Finally, we confirm the robust-
ness of UMHI framework under different train-test split.

6.1 Dataset

Since prior researches did not publish their datasets, we only
conduct experiments on the dataset we built. Section 4 has
introduced how we construct the sub dataset ;. ;. To evalu-
ate the model performance and prevent information leakage,
we conduct five-fold cross validation on F,.4;. Specifically,
we randomly holdout 20% of E.s; for test, and combine the
remaining data with Ryqin, = R\ Etest for training.
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6.2 Metrics

We adopt the following three popular metrics to evaluate the
performance of unfollow prediction:

e Precision: It measures the probability that a predicted
positive instance would be the true positive.

e Recall: It measures the probability that the true positive
would be predicted to be positive instance.

e AUC: It measures the probability that a classifier will rank
a randomly chosen positive instance higher than a ran-
domly chosen negative one.

6.3 Implementation Details

We first use jieba ® to cut microblog posts into separated
words, use gensim 4’s word2vec model to embed words into
embeddings, and implement our UMHI model with Keras.

There are two stages for training our UMHI framework.
In the first stage, we pretrain each component of UMHI, and
in the second stage, we combine the three components of
UMHI and fine tune the fusion MLP layer.

Stage I: Pretrain of Each Component. During the pre-
train stage, we respectively pretrain LINE, HAN, and Matrix
Factorization. We set the embedding size of LINE to 100,
and train LINE for 100 epochs. When pretraining HAN, we
set the size of LSTM cell to 100 and train for 10 epochs. The
network is optimized by the adam optimizer (Kingma and
Ba 2014), with the learning rate 0.001, and 5, = 0.1, B2 =
0.001. We optimize Matrix Factorization with latent size of
64, learning rate of 0.01, and 100 epochs.

Stage II: Global Fine-Tuning. In global fine-tuning
stage, we fix the parameters of LINE, HAN and Matrix Fac-
torization, and train the MLP layers with adam optimizer for
10 epochs, the learning rate is set to 0.001. We choose the
performance of models when the precision, recall and AUC
of test set achieves biggest value during training.

6.4 Comparison Methods

To justify the effectiveness of the proposed model, we com-
pare the performance of our model with two kinds of base-
lines. Firstly, we compare UMHI with prior unfollow pre-
diction methods. Prior unfollow prediction methods usually
extract rule based features, and conduct training-test scheme
on dataset with limited size, therefore showing inferior per-
formance in our large-scale real-world setting. Secondly, we
compare LINE with other network embedding methods so as
to verify that local structure information plays an more im-
portant role than global information for unfollow prediction.
The compared methods are listed as follows:

e Doc2vec & Action Features+LR (DA + LR). Referring
to Maity’s method (Maity, Gajula, and Mukherjee 2018),
we extract Doc2vec features and action features, then pre-
dict edge status by logistic regression.

3https://github.com/fxsjy/jieba
*https://radimrehurek.com/gensim/



e Structural & Action Features + LR (SA + LR). Re-
ferring to Kwak’s method (Kwak, Moon, and Lee 2012),
we extract structural features and action features of users,
then predict edge status by logistic regression.

o Deepwalk. Deepwalk (Perozzi, Al-Rfou, and Skiena
2014) is a network embedding method, which leverages
truncated random walks to obtain the structural informa-
tion of each vertex.

e Node2vec. Node2vec (Grover and Leskovec 2016) is a
network embedding method which designs a biased ran-
dom walk procedure. In experiment, we use grid search to
choose random walk strategies with the best performance.

o The Proposed Method. To demonstrate the effectiveness
of different parts in UMHI model, we assemble LINEI,
LINE2, HAN and matrix factorization (MF) into different
combinations and compare their performance.

6.5 Experimental Results

Table 2: Results of unfollow prediction

Method Precision  Recall AUC
DA +LR 0.6292 0.5786 0.6840
SA +LR 0.6348 0.5270 0.6932
Deepwalk 0.6281 0.8123 0.6755
Node2vec 0.6288 0.8114 0.6707
LINE1 0.6316 0.7893 0.6845
LINE2 0.6413 0.7553 0.6924
LINEI + LINE2 0.6458 0.7561 0.7059
HAN 0.6766 0.8292 0.7441
MF 0.7701 0.8686 0.8136
LINE1 + LINE2 + HAN 0.7034 0.8516 0.7718
UMHI 0.7868 0.8131 0.8673

Table 2 displays the performance across different models,
from this table, we have the following analysis.

Overall Performance. To verify the validness of interac-
tion effects between spatial and temporal attributes, we make
the following comparisons, as shown in Figure 5a. Firstly,
for the three methods (DA + LR, SA + LR, and LINE1 +
LINE2 + HAN) that take same sources of input, DA + LR
and SA + LR are two handcrafted methods that can hardly
represent interaction effects, while LINE1 + LINE2 + HAN
can represent highly nonlinear interaction mechanism. Ex-
periment results show that LINE1 + LINE2 + HAN outper-
forms DA + LR by 7.42% and outperforms SA + LR by
6.86% in terms of precision, verifying that the interaction
effects are powerful.

Meanwhile, from the comparison among LINEl +
LINE2, HAN, and LINE1 + LINE2 + HAN, we can observe
that LINE1 + LINE2 + HAN significantly outperforms the
first two models, confirming the effectiveness of interaction.
Additionally, the comparison between LINE1 + LINE2 +
HAN and UMHI demonstrate that feeding predictive unfol-
low history information would further boost prediction per-
formance. Also, we notice that UMHI compromises on the
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(a) Precision, AUC and Recall of differ-
ent comparision methods.

jon & Recall & AUC

10% 20% 30% 40% 50% 60% 70% 80% 90%
Training data ratio

(b) Precision and AUC with different
training and test data size.

Figure 5: Experimental Results

recall value, that’s because unfollow is a sparse behavior and
UMHI tends to be conservative.

Spatial Attributes Comparison. Compared with Deep-
walk and Node2vec, we observe that LINE1 + LINE2
achieves an improvement of 1.73% in terms of precision.
Such improvement verifies that local structure is more im-
portant than global structure under the unfollow prediction
setting. Meanwhile, we discover that LINE2 is notably better
than LINE]1 for unfollow prediction. This is because LINE1
only considers the relationship between two nodes, while
LINE2 considers the common neighbors between the two
nodes. Therefore it reveals that the shared environment of
two users can reflect the strength of the relationship more
accurately than the relationship itself.

Temporal Attributes Comparison. We compare the two
temporal attributes: unfollow history and post content. Ex-
periment results show that MF performs 9.35% better than
HAN in terms of precision, therefore unfollow history con-
tributes significantly more than the post content.

Robustness Analysis. To verify the robustness of UMHI
framework, we change the proportion of training set and test
set and redo the experiments. Results in Figure 5b show that
the model is effective under limited training data size. Even
with small size of training set (10%-30%), our model can
still have an acceptable and steady performance.

7 Conclusion

In this work, we constructed a large-scale social network
dataset for unfollow behavior mining. Our dataset contains
1.8 million Chinese users and records relation dynamics of



these users in a month. Based on the constructed dataset,
we conducted extensive analyses on how users’ spatial at-
tributes and temporal attributes affect their decisions on
follow, and revealed the interaction effects between these
two categories of attributes. Then, we proposed the UMHI
framework to learn users’ spatial attributes and temporal at-
tributes through their footprints in online social networks.
The proposed framework outperforms baseline methods by
a large margin, and the detailed factor analyses show that
each component of UMHI is effective.

For future researches, the constructed dataset still con-
tains ample social dynamics that deserve further exploring.
During the recorded month, some followers have launched a
burst of unfollow behaviors, and some relationships have ex-
perienced several status alterations, detecting such anoma-
lies in online social networks is beneficial for some down-
stream tasks like depression detection and rumor detection.

8 Acknowledgments

This work is supported by National Key Research and De-
velopment Plan (2016YFB1001200), Beijing Academy of
Artificial Intelligence (BAAI), and National Natural Science
Foundation of China (61521002, 61972372, 61831022).

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.

Bliss, C. A.; Frank, M. R.; Danforth, C. M.; and Dodds, P. S.
2014. An evolutionary algorithm approach to link prediction
in dynamic social networks. Journal of Computational Sci-
ence 5(5):750-764.

Burt, R. S. 2017. Structural holes versus network closure as
social capital. In Social capital. Routledge. 31-56.

Dalmia, A.; Gupta, M.; et al. 2018. Towards interpretation of
node embeddings. In Companion of the The Web Conference
2018 on The Web Conference 2018, 945-952. International
World Wide Web Conferences Steering Committee.

Grover, A., and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery
and data mining, 855-864. ACM.

Kingma, D. P, and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Kivran-Swaine, F.; Govindan, P.; and Naaman, M. 2011.
The impact of network structure on breaking ties in online
social networks: unfollowing on twitter. In Proceedings of
the SIGCHI conference on human factors in computing sys-
tems, 1101-1104. ACM.

Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix fac-
torization techniques for recommender systems. Computer
(8):30-37.

Kwak, H.; Chun, H.; and Moon, S. 2011. Fragile online
relationship: a first look at unfollow dynamics in twitter. In
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, 1091-1100. ACM.

261

Kwak, H.; Moon, S. B.; and Lee, W. 2012. More of a re-
ceiver than a giver: why do people unfollow in twitter? In
ICWSM.

Liben-Nowell, D., and Kleinberg, J. 2007. The link-
prediction problem for social networks. Journal of the
American society for information science and technology
58(7):1019-1031.

Maity, S. K.; Gajula, R.; and Mukherjee, A. 2018. Why
did they# unfollow me?: Early detection of follower loss on
twitter. In Proceedings of the 2018 ACM Conference on Sup-
porting Groupwork, 127-131. ACM.

Page, L.; Brin, S.; Motwani, R.; and Winograd, T. 1999.
The pagerank citation ranking: Bringing order to the web.
Technical report, Stanford InfoLab.

Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In Proceedings of
the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 701-710. ACM.

Quercia, D.; Askham, H.; and Crowcroft, J. 2012. Tweetlda:
supervised topic classification and link prediction in twitter.
In Proceedings of the 4th Annual ACM Web Science Confer-
ence, 247-250. ACM.

Quercia, D.; Bodaghi, M.; and Crowcroft, J. 2012. Loosing
friends on facebook. In Proceedings of the 4th Annual ACM
Web Science Conference, 251-254. ACM.

Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei,
Q. 2015. Line: Large-scale information network embed-
ding. In Proceedings of the 24th International Conference
on World Wide Web, 1067-1077. International World Wide
Web Conferences Steering Committee.

Xu, B.; Huang, Y.; Kwak, H.; and Contractor, N. 2013.
Structures of broken ties: exploring unfollow behavior on
twitter. In Proceedings of the 2013 conference on Computer
supported cooperative work, 871-876. ACM.

Yang, Y.; Jia, J.; Wu, B.; and Tang, J. 2016a. Social role-
aware emotion contagion in image social networks. In AAAT,
65-71.

Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; and Hovy,
E. 2016b. Hierarchical attention networks for document
classification. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, 1480-
1489.



