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Abstract

We study nonlinear dynamics on complex networks. Each
vertex i has a state xi which evolves according to a networked
dynamics to a steady-state x∗

i . We develop fundamental tools
to learn the true steady-state of a small part of the network,
without knowing the full network. A naive approach and the
current state-of-the-art is to follow the dynamics of the ob-
served partial network to local equilibrium. This dramatically
fails to extract the true steady state. We use a mean-field ap-
proach to map the dynamics of the unseen part of the net-
work to a single node, which allows us to recover accurate
estimates of steady-state on as few as 5 observed vertices in
domains ranging from ecology to social networks to gene reg-
ulation. Incomplete networks are the norm in practice, and we
offer new ways to think about nonlinear dynamics when only
sparse information is available.

1 Dynamical Systems on Incomplete

Networks

The fundamental task in learning is to infer unknown quan-
tities of interest from incomplete data. We study learn-
ing complex nonlinear dynamics on networks from incom-
plete data. Such problems are fundamental because complex
nonlinear dynamical systems are ubiquitous, often mod-
eled as coupled nonlinear ordinary differential equations
(ODEs), for example epidemic spreading (Pastor-Satorras
and Vespignani 2001), Michaelis-Menten gene regulatory
dynamics (Alon 2006; Gao, Barzel, and Barabási 2016),
Lotka-Volterra ecological dynamics (Lotka 1910). A graph
G = (V,E) with n × n (weighted) adjacency matrix A is
the backbone on which the dynamical equations are coupled
together. We consider a general dynamics in which each ver-
tex i of G has a state xi which evolves according to a self-
driving force and a sum of interaction forces over neighbors

ẋi = f(xi) +
∑

j∈V

Aijg(xi, xj). (1)

The functions f(·) and g(·, ·) are general and usually nonlin-
ear, and the positive weighted connectivity matrix A modu-
lates the interactions between vertices. Several instances of
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such dynamics with appropriate choices of f(·) and g(·, ·)
are shown in Table 1. From an initial state, one can step for-
ward in time, simulating the dynamics in (1) until conver-
gence to equilibrium states x∗

i .
The complete information setting in (1) is unrealistic, and

we must accept that in practice, only part of a network can be
measured. Hence, we assume that a subgraph with m nodes
G(s) = (V (s), E(s)) is known, with corresponding m × m
adjacency matrix A(s), where V (s) ⊆ V and E(s) ⊆ E
(s for sampled). This paradigm is unavoidable when the
full network is unmeasurable (for example, protein-protein
interactions, metabolic and terrorist networks (Stumpf and
Wiuf 2005)). The paradigm is also useful when the full net-
work is too large to handle, where one can deliberately sam-
ple a much smaller subnetwork for the analysis. Analyzing
a full network from a sampled subnetwork has been stud-
ied in several contexts, e.g. to estimate average or total de-
gree (Kurant, Markopoulou, and Thiran 2011); degree distri-
butions and clustering coefficients (Stumpf and Wiuf 2005;
Gjoka, Kurant, and Markopoulou 2013; Seshadhri, Pinar,
and Kolda 2014); shortest paths (Leskovec and Falout-
sos 2006); motif counts (Klusowski and Wu 2018); ver-
tex and edge counts (Katzir, Liberty, and Somekh 2011;
Kurant, Butts, and Markopoulou 2012).

Our task is to estimate true steady-states x∗ for vertices in
V (s), despite only seeing an incomplete network G(s). The
state-of-the-art naive approach is to simulate (1) on the sub-
graph G(s). For example, one may collect a social network
from Boston and run the epidemic model (Table 1) to ob-
tain the probability of each person to be infected. The results
are a dramatic and universal disaster, because the sub-social
network of Boston is just a small part of a vast social net-
work, and the people in Boston interact with people outside.
That the naive method is bad is not surprising because the
essence of the dynamics in (1) are the interactions, and the
subgraph is missing many of those interactions. Hence, not
observing a large part of the network appears to be an in-
surmountable hurdle to learning the true steady states on the
observed (small) part of the network.

We develop a methodology to accurately predict true
steady states using only information local to G(s). We
demonstrate the power of our approach in Figure 1, for an
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Applications Vertex State at vertex i Dynamics
Ecological (1949; 2006) Species Abundance ẋi = Bi + xi(1− xi

Ki
)( xi

Ci
− 1) +

∑
j Aij

xixj

Di+Eixi+Hjxj

Regulatory (2006; 2008) Gene Expression level ẋi = −Bxf
i +

∑
j AijR

xh
j

xh
j +1

Epidemic (2001; 2004; 2005) Person Infection rate ẋi = −Bxi +
∑

j AijR(1− xi)xj

Table 1: Examples of real systems with nonlinear interaction dynamics.
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(Above) Trajectories of the 5 vertices in the sampled graph G(s). (Left) Scatter plot that compares steady-
state values. Our method achieves near perfect prediction on the observed 5 nodes. The naive method gets all
state values wrong, but even more worrying is that a single stable equilibrium bifurcates into two equilibria,
and the steady-state depends on initial conditions. In the low state, all species go extinct. Naively simulating
the nonlinear coupled ODE on the subgraph is a disaster.

Figure 1: Predicting steady-state abundances of 5 species interacting in a larger 97 species ecological network. Predictions use
only the interactions of those five species (incomplete information).

ecological network where vertices are species and states are
species-abundance. This ecological network of 97 species
follows the symbiotic dynamics in Table 1, see (Gao, Barzel,
and Barabási 2016). Let us see what happens when a biol-
ogist who is interested in five species collects the relevant
5-vertex subgraph G(s) and performs a naive simulation on
the subgraph to get a steady-state. The results in Figure 1 are
as expected. The naive simulation is wrong. Even worse, it
cannot identify the number of equilibria from the subgraph:
the full network has one attractor, but the subgraph has two.
It means that, with the wrong initial conditions, the biologist
would conclude that the five species are going extinct, when
in fact they are all doing fine in the real network.

Our Contributions. We give the first method to accurately
learn steady-state dynamics when only a part of the network
is observed. This is remarkable given the inherent interac-
tive nature of the dynamics. The result in Figure 1 demon-
strates that our methods extract very close approximations to
the true steady state dynamics in the full network when just
5% of vertices are observed. This surprising result has the
potential for huge impact since up to now, the state-of-the-
art is the naive approach which produces completely wrong
conclusions. There are three main ideas behind our method.

• A mean field approximation to account for the impact of
the unobserved part of the network.

• Summarizing the mean field impact using a resilience
parameter, β, which depends only on network topology.
How the resilience impacts the final outcome depends on

the coupled nonlinear dynamics through f(·) and g(·, ·).
• Estimating the full network’s resilience from the observed

subgraph. A network’s resilience is important in other
contexts. The resilience characterizes a complex system’s
ability to retain its basic functionality under edge and ver-
tex faults. Hence, our estimates of resilience from incom-
plete information are of independent interest.

Combining these three ideas, we obtain accurate estimates
of the steady-states as in Figure 1. Our estimates are near-
exact matches to the true steady-states.

2 Model

The true dynamics on the full network G are governed by
the coupled nonlinear dynamics in (1). We represent G by
its adjacency matrix A, and assume that the total size of
the network, n, is known. The observed sampled subgraph
G(s) = (V (s), E(s)) has adjacency matrix A(s). There are
many ways to sample vertices and edges from a graph. We
focus on two natural sampling methods which are reason-
able models of how the incomplete data is often obtained.

• (Random Vertex Sampling) Form the induced subgraph
for randomly sampled vertices. We assume the degrees
of the sampled vertices are also known. For example, we
know the number of friends each person has in a social
network and who is friends with whom among the sam-
pled subnetwork.
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• (Random Walk) A random vertex is sampled. At each
step, an available edge is followed to sample a new vertex.
The degrees of the vertices are implicitly available since,
at each step, the available edges must be known.

Our method can be extended to other sampling schemes,
such as edge sampling, degree biased sampling, Metropolis-
Hastings random walks. The main property we require of the
sampling is that specific topological parameters of the graph
can be reliably estimated from the sample.

For i ∈ V (s), the steady-state value in G is denoted x∗
i .

We denote by z∗i the steady-state value obtained using the
partially observed network. We loosely use zi to refer both to
the vertex and state variable at the vertex. The naive method
solves the same system in (1) for A(s) instead of A. That is,
for i ∈ V (s), z∗i is the steady-state of the dynamical system

(Naive method) żi = f(zi) +
∑

j∈V (s)

A
(s)
ij g(zi, zj). (2)

This naive approach produces incorrect conclusions, yet it
is common practice because that’s all practitioners have. To
get correct results, one must account for missing data.

3 Mean Field Approximation and Resilience

The main idea is shown in the (sampled) subgraph in Fig-
ure 2(a). We focus on one vertex in V (s), z2. Vertex z2 in-
teracts with its neighbors z1 and z4 in the subgraph, and
its neighbors outside the subgraph. All the subgraph nodes
z1, . . . , z5 are in a similar situation. Now fix the value for
each external neighbor of z2 to its true steady-state value in
the full network, shown as x∗

1, x
∗
2, x

∗
3. Do the same for the

external neighbors of all the subgraph vertices z1, . . . , z5.
As far as the subgraph is concerned, all external neighbors
have converged to their steady-state values and are provid-
ing the right interactive feedback to all subgraph nodes. The
subgraph is effectively isolated from the rest of the network
and will converge to steady-states of the full network. We
state the next theorem without proof. The preceding discus-
sion essentially amounts to the proof.

z1

z2

z3

z4 z5

x∗
1 x∗

2 x∗
3

(a)

z2

xeffxeff

xeff xeff xeff

(b)
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z2
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83

9
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6
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Figure 2: Mean field approximation.

Theorem 1. The steady-states z∗i of the dynamical system

żi = f(zi)+
∑

j∈V (s)

A
(s)
ij g(zi, zj)+

∑

j �∈V (s)

Aijg(zi, x
∗
j ) (3)

recover one of the true steady-states of the full network.

We cannot implement (3), because x∗
i are unknown. In

the mean field approximation, we replace x∗
i by an average

influence xeff, see Figure 2(b). Of course it is an approx-
imation, but it works well for analyzing complex interact-
ing systems such as spin-systems (Edwards and Anderson
1975). The iteration-0 estimate is xeff for all states.

Fix the states for all vertices but (say) z2 to xeff, and find
the steady-state for z2, as in Figure 2(b). Now, z2 is effec-
tively isolated from the rest of the network as all its neigh-
bors are fixed at xeff. So, z2 evolves to a steady-state, follow-
ing the dynamics ż2 = f(z2)+ 5g(z2, xeff). Repeat for each
subgraph-vertex to arrive at z(1)i , the steady-states of

żi = f(zi) + δig(zi, xeff), (4)
where δi is the degree of zi in G. These equations are un-
coupled since xeff is fixed. This is the method used in (Gao,
Barzel, and Barabási 2016) to analyze the dynamics on the
full network by reducing to n uncoupled ODEs. We now
iterate further. Suppose the steady-state from iteration τ is
z
(τ)
i . We obtain z

(τ+1)
i , the approximation at iteration τ + 1

as the steady-state solution to the uncoupled equations
żi = f(zi) +

∑
j∈V (s) A

(s)
ij g(zi, z

(τ)
j ) +

∑
j �∈V (s) Aijg(zi, xeff). (5)

Comparing (5) to the exact solution in (3), the external
forces are replaced by an effective external force and the
interaction term is approximated by an interaction to a pre-
vious steady-state. Iterating to convergence, z(τ)i converges
to a steady-state z∗i which solves the coupled system

żi = f(zi) +
∑

j∈V (s) A
(s)
ij g(zi, zj) + (δi − δ

(s)
i )g(zi, xeff), (6)

where δ
(s)
i is the degree of zi in G(s).

The naive method in (2) resembles (6) with one crucial
difference, an additional term for the external force on a ver-
tex. The entire system in (6) corresponds to adding just one
more vertex to our subgraph, whose value is fixed at xeff,
with a weighted edge to zi of weight A(s)

i,xeff
= δi − δ

(s)
i . We

show this augmented graph for our example in Figure 2(c).

To account for missing vertices, add one vertex to
the subgraph, fixed to xeff and add degree-weighted
edges from xeff to all vertices in the subgraph.

Next, we discuss how to compute xeff to estimate the mean-
field interaction with unseen vertices. The complication is
that this estimate cannot depend on the missing information.
This is possible because xeff depends on the missing infor-
mation only through global topological statistics of the net-
work, and we can estimate those topological statistics when
the subgraph is sampled appropriately.

3.1 Computing the Effective External Impact

There are two unknown quantities in (6). The degree δi and
xeff. We now discuss xeff, following the general approach
in (Gao, Barzel, and Barabási 2016). Consider vertex i and
the interaction term

∑
j Aijg(xi, xj) in (1), where Aij is

the influence j has on i. The in-degree sin
i =

∑
j Aij and

the out-degree sout
i =

∑
j Aji. Assuming Aij ≥ 0, the inter-

action term is the in-degree times an average interaction,
∑

j

Aijg(xi, xj) = sin
i

∑
j Aijg(xi, xj)∑

k Aik
(7)
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Here, the in-degree sin
i captures the idiosyncratic part, and

the average g(·, ·) captures the network effect. Our first
mean-field approximation is to replace local averaging with
global averaging, which approximates the network-impact
on a vertex as nearly homogeneous. Specifically, we have

∑
j Aijg(xi,xj)
∑

k Aik
≈

∑
ij Aijg(xi,xj)
∑

ik Aik
= 1TAg(xi,x)

1TA1
, (8)

where the vector g(xi,x) has jth component g(xi, xj). De-
fine an averaging linear operator

LA(z) =
1TA

1TA1
z =

sout · z
sout · 1 , (9)

which is a weighted average of the entries in z. Our mean-
field approximation results in the approximate dynamics

ẋi = f(xi) + sin
i LA[g(xi,x)]. (10)

In the first order linear approximation, we take LA inside
g. Our second mean-field approximation is that the average
of external interactions is approximately the interaction with
the average. That is LA[g(xi,x)] ≈ g(xi,LA(x)) and

ẋi = f(xi) + sin
i g(xi,LA(x)), (11)

where LA(x) is a global state. Let xav � LA(x). Applying
LA to both sides of (11) gives

ẋav = LA[f(x)] + LA[s
ing(x, xav)]. (12)

Extensive tests in (Gao, Barzel, and Barabási 2016) show
that the in-degrees sin

i and the interactions g(xi, xav) are
roughly uncorrelated, so the LA-average of the product is the
product of LA-averages. Thus, our third mean-field approx-
imation is LA[s

ing(x, xav)] ≈ LA(s
in)LA[g(x, xav)]. Using

the linear approximation again, we take the LA-average in-
side f and g

ẋav = f(LA(x)) + LA(s
in)g(LA(x), xav). (13)

Now we have a dynamical system for xav,

ẋav = f(xav) + βg(xav, xav), (14)

where the resilience β = LA(s
in). For undirected graphs,

β =
∑

i δ
2
i /

∑
i δi = 〈δ2〉/〈δ〉. The steady-state of (14) is

the external effective impact, xeff. Plugging it into (11) gives
an uncoupled ODE for xi,

ẋi = f(xi) + sin
i g(xi, xeff). (15)

In the mean-field approximation, g(xi, xj) in (1) is replaced
by an interaction with a mean-field external world g(xi, xeff)
and the number of neighbors impacting xi is captured by sin

i .
To approximately obtain the steady-states of the system, one
first solves the ODE in (14) to get xeff, and then n uncoupled
ODEs at each vertex to get xi, which only depends on sin

i
if given xeff. The method works well because the mean-field
approximations only need to hold at the steady-state. Hence,
we can recover the steady-state for any vertex (for example
the sampled vertices) from accurate estimates of degrees sin

i
(δi in the undirected case) and the resilience parameter β.

3.2 Evaluating the Mean-Field Approximation

One non-trivial implication of our mean-field approach is
that the steady-states are approximated by solving the un-
coupled equations in (4). The parameter xeff in (4) only de-
pends on β = 〈δ2〉/〈δ〉. So the ODE in (4) only depends on
the degree sequence of the original network, which means
the steady-states can be approximated by knowing only a
network’s degree sequence. We verify this in Figure 3(a),
which compares true steady-states in the ecological network
with steady-states of a random network that preserves the
degree sequence. The near-perfect matching of the steady-
states is empirical evidence for our mean-field approach.

3.3 Accuracy of Our Approach

The mean-field approximation essentially replaces individ-
ual interactions with an average, and amounts to a homo-
geneity assumption. The more homogeneous a network, the
more accurate our approximations. Indeed, the method of
solving for xeff as a steady state of (14) and then for x∗

i as
steady states of (15) produces an exact solution for a regular
network (perfectly homogeneous). The next theorem says
that our method in (6) is perfect for such regular networks.

Theorem 2. For a k-regular network, the steady-states z∗i
obtained by solving the dynamical system in (6) with xeff

obtained as a steady-state of (14) with β = k recovers an
exact steady-state x∗

i .

Proof. (Sketch) xeff is a steady state of (14) with β = k,
hence f(xeff) + kg(xeff , xeff) = 0 as ẋ = 0. We show that
x∗
i = xeff for i ∈ [1, N ] is a fixed point of the system. Since

node i has k neighbors and each of them has state x∗
j = xeff ,

ẋi = f(xi) + βg(xi, xeff) = 0 when xi = xeff . Lastly, (6)
converges to (14), because xi = xeff .

Essentially, our approach is perfect for regular networks.
The degree of inhomogeneity in the network is therefore
a parameter which controls the quality of approximation.
We now show some experimental results with synthetic net-
works where we can control for the inhomogeneity. Even
for extremely inhomogeneous networks, our approach suf-
fers little, indicating the strength of the mean-field approach.
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Figure 3: (a) G(rewired) vs. G; (b) Impact of heterogeneity.

To evaluate the impact of heterogeneity, we use 15 ran-
dom 1000-vertex networks with different heterogeneities H
measured by the relative degree dispersion, H � [〈δ2〉 −
〈δ〉2]/〈δ〉. Relative state estimation errors for our method
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in (6) for an observed subgraph of just 10 vertices and esti-
mates of β and xeff from Section 4 are shown in Figure 3(b).
As expected, performance deteriorates as heterogeneity in-
creases. The far right is the very heterogeneous scale-free
network and leftmost is the nearly homogeneous Erdős-
Rényi network. Even for very heterogeneous networks, the
relative error is only about 3%.

4 Estimating the Resilience

To get xeff, we solve for the steady-states of (14), so we need
to estimate the resilience β = 〈δ2〉/〈δ〉, a topological statis-
tic of the full network. Resilience is well studied in science
and engineering, arising in many contexts because it cap-
tures a complex system’s ability to retain its basic function-
ality under faults (Gao, Barzel, and Barabási 2016). Under-
standing a network’s resilience is essential for us to evade
the consequences of resilience loss, such as malfunction of
gene regulation networks, cascading failures in technologi-
cal systems, mass extinctions in ecological networks.

We estimate resilience β from the sampled subgraph
G(s). In other contexts where it is important to measure re-
silience, the full network topology is also often not avail-
able perhaps due to privacy, or, as is usually the case in
practice, the inability to measure the full network (for ex-
ample, protein-protein interactions, metabolic and terrorist
networks (Stumpf and Wiuf 2005)). Despite advances in
graph sampling, we are not aware of accurate estimators
of resilience from an incomplete view of the network. The
naive resilience-estimator treats the observed subnetwork
as the full network and estimates β with β(s). We derive
corrections to this naive estimate for a variety of sampling
schemes, and give analysis of the estimation accuracy (bias
and variance) and the sample complexity. This general in-
frastructure enables one to manage a network’s resilience
from incomplete data, and may be of independent interest.

We treat resilience estimation for undirected, unweighted
graphs. However, our results can be easily extended to the
directed and weighted cases. This part of our work falls
into the general area of graph analysis from incomplete
(sampled) subgraphs. Typical sampling methods are vertex-
based, exploration-based (see for example (Leskovec and
Faloutsos 2006; Hübler et al. 2008; Ahmed, Neville, and
Kompella 2011)) and edge-based. We focus on the first two
sampling schemes since they are natural ways to sample a
graph in practice, however, the results do extend to edge-
based sampling. The birds-eye view of the workflow is

G, β G(s), β(s) β̂(G(s), β(s),Φ) ≈ β,
sampler Φ this work

where β(s) is the naive resilience estimator that treats G(s)

as if it were the complete network. Our final estimator β̂ can
depend on the sampling method Φ.

4.1 Estimating β for Random Subgraphs

We consider several types of subgraph sampling. The sim-
plest is to sample m vertices uniformly without replacement
and measure the degree δi of each vertex. The sample av-
erages 〈δ2〉s and 〈δ〉s are unbiased and concentrate at the

true averages 〈δ2〉 and 〈δ〉. This means β̂ = 〈δ2〉s/〈δ〉s is
asymptotically unbiased and concentrates at β. We use 〈·〉s
to denote the average over the subgraph vertices in V (s).

An interesting variant is to sample vertices with a degree-
bias, so the probability to sample vertex i is δi/

∑
i δi.

In this case, the expected degree of a sampled node is∑
i δ

2
i /

∑
i δi = β, hence β̂ = 〈δ〉s is an unbiased esti-

mate of β. More generally, one can sample vertices with
an arbitrary degree-biased importance distribution q(δ). The
analysis of this more general case, including a bias-variance
analysis is postponed to a full version of this work.

Now, suppose you only measure δ
(s)
i , the induced de-

grees in the subgraph, not true degrees. To implement (6)
we need not only β, but also the degree δi. Let β(s) be the
resilience of the induced subgraph, β(s) = 〈δ2〉s/〈δ〉s. A
crude analysis just uses concentration twice. First, the in-
duced degree δ

(s)
i is a sum of m− 1 Bernoulli random vari-

ables sampled uniformly without replacement from a pop-
ulation of n − 1 Bernoulli values in which δi of them are
1. So, δ(s)i /(m − 1) concentrates at δi/(n − 1). We need
concentration for each of the m sampled vertices, which, us-
ing a union bound plus a Hoeffding inequality, has a failure
probability 2m exp(−Ω(mε2)) for relative error ε. So, the
estimates δ̂i = n−1

m−1δ
(s)
i all concentrate with relative error

at their respective δi and hence we get a resilience estimate
β̂ = 〈δ̂2〉/〈δ̂〉 = n−1

m−1β
(s) that concentrates at β. A more re-

fined estimate based on E[(δ
(s)
i )2] is β̂ = n−2

m−2β
(s) − n−m

n−2 .
Another popular way to sample a subgraph is using a

random walk: start at a random vertex and move from one
vertex to a neighbor, chosen uniformly at random (nodes
could be revisited). Such a walk has a stationary distribu-
tion where a node’s sampling probability is proportional to
its degree (Kurant, Markopoulou, and Thiran 2011). From
the discussion of degree-biased sampling, the estimator of
resilience is β̂ = 〈δ〉s when the degrees in the full network
are known. When only the induced subgraph is known, then,
as with the induced subgraph from vertex sampling, a cor-
rection factor is needed. We approximate the sampling as
independent degree-biased sampling in a random rewiring
model, and get a correction factor n/m (see full version).
We summarize our discussion of random vertex sampling
(VS) and random walks (RW) in a table.

Sampling Measured δ̂i β̂

VS V (s), E(s), δi δi 〈δ2〉s/〈δ〉s
Ind-VS V (s), E(s), δ

(s)
i

n−1
m−1δ

(s)
i

n−2
m−2β

(s) − n−m
n−2

RW V (s), E(s), δi δi 〈δ〉s
Ind-RW V (s), E(s), δ

(s)
i

n〈δ〉
mβ̂

δ
(s)
i

n
m 〈δ〉s

For i ∈ V (s), δi is the degree in G, δ(s)i is the degree in G(s)

and the resilience of the subgraph is β(s) = 〈δ2〉s/〈δ〉s. The
notation 〈x〉s means

∑
i∈V (s) xi/m.

For Ind-RW, the network average degree 〈δ〉 is needed to
estimate true degrees (in addition to n). There are methods
to estimate 〈δ〉 (Dasgupta, Kumar, and Sarlos 2014; Zhang,
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Applications Networks (|V |, |E|)
Ecological ENet1(270,8074) (Arroyo, Armesto, and Primack 1985; Gao, Barzel, and Barabási 2016)

ENet2(97,972) (Clements and Long 1923; Gao, Barzel, and Barabási 2016)
Gene Regulation MEC(2268,5620) (Lee et al. 2002; Gao et al. 2014)

TYA(662,1062) (Lee et al. 2002; Gao et al. 2014)
Epidemic Dublin(410,2765) (Rossi and Ahmed 2015)

Email(1133,5451) (Guimera et al. 2003; Kunegis 2013)

Table 2: List of networks in our evaluation
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Figure 4: Predicted steady states when vertex degrees δi are available. The diagonal line is perfect prediction. Our method (red)
is nearly perfect, while the naive method (blue) is a disaster. Often, the steady states just converge to 0 for the naive method.

Kolaczyk, and Spencer 2015; Ribeiro and Towsley 2010;
Leskovec and Faloutsos 2006), but they use more power-
ful queries than the induced subgraph from a simple random
walk can provide. The complication with the simple random
walk is that it is a degree-biased sampling of vertices. This
bias can be corrected with a Metropolis-Hastings random
walk (Hübler et al. 2008), but that requires knowledge of
vertex degrees.

One can analyze the bias and variance of our estimators
using the importance sampling framework that samples ver-
tices according to the proposal distribution q (Theodoridis
2015; Cochran 1977; Wu 1982) (uniform or degree-biased).
We postpone the details to the full paper.

5 Results

We tested our approach on the three popular dynamical sys-
tems in Table 1 and two corresponding networks for each
dynamical system (see Table 2).

Each dynamical system contains several parameters
which are set as in (Gao, Barzel, and Barabási 2016) for
ecology and gene regulation, and as in (Barzel and Barabási
2013) for epidemics. We compare the performance of dif-
ferent subgraph-sampling (RW, VS, Ind-RW, Ind-VS), with
sample size m = 10 (constant size) and m = 0.05n (con-
stant fraction). We average results over several subgraphs.
When a vertex is sampled in multiple subgraphs, we report

the average predicted steady-state.
Given a subgraph, we solve (6) to estimate the true steady-

states of vertices in the subgraph, for which we need δi (true
degree) and xeff (effective external state). To get xeff, we
need β to solve (14). For δi and β, we use the estimates in
Section 4.1. In solving (14), there can be one stable attractor
or more than one stable attractors (there can also be unstable
attractors). When there are more than one stable attractor,
the system can equilibrate at multiple steady-states.

First, we consider sampling methods that obtain vertex
degrees δi (RW, VS), where only β needs to be estimated.
The results in Figure 4 show that our approach (red) is re-
markable at revealing the true steady-state, even from tiny
subgraphs. We get near perfect results from just 10 vertices
of a multi-thousand vertex graph. This is all the more im-
pressive given that the current state-of-the-art, i.e., the naive
approach (blue), is more or less a disaster. We emphasize
that the naive method is the only method currently used by
researchers in the field, and it simply fails. In the ecolog-
ical application, the naive method even identifies multiple
steady-states, one of which sends all species to extinction.

When only induced subgraphs are available (Ind-RW, Ind-
VS), see Figure 5, our methods are still much better than
naive, but the performance drops. Estimating individual de-
grees from induced degrees is hard. Parameters like the re-
silience β are global and can be extracted accurately from
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Figure 5: Predicted steady-states when only the induced subgraph is available and vertex degrees must be estimated. Our
method (red) significantly outperforms naive, but performance drops compared to Figure 4, because estimating vertex degrees
from observed induced degrees is tough.

subgraphs. Local parameters like vertex degree get severely
distorted. More details on how degree and resilience estima-
tions are affected by induced subgraph sampling is deferred.
For vertex sampling, our estimator is unbiased, but for ran-
dom walks, our estimators are based on the approximation
of independent degree-biased sampling. This approximation
can break down.

Open Question. How should one estimate vertex de-
grees from induced subgraphs of random walks? How
does the estimator depend on the network properties?

We also observe from Figure 5 that for induced subgraphs,
the performance of our approach (and the naive method) de-
pends strongly on the subgraph sampling methods, depend-
ing on the network structure and the nonlinear dynamics.

Open Question. What are the factors which influence
the choice of subgraph sampling method? For exam-
ple when is RW better than VS?

6 Discussion

We addressed a prevalent problem. Consider this scenario. A
biologist has the favorite part of an ecosystem, their favorite
10-species, and carefully collects their relationships which
are summarized in the adjacency matrix A(s). The biologist
even knows how species interact, the dynamical system (1).
The biologist carefully simulates the system to steady-state
and finds that all species are going extinct. This is scary,
but the result is just plain wrong. You cannot restrict a cou-
pled nonlinear system to your favorite part of the network
and expect even close to correct conclusions by just analyz-
ing that part in isolation. One solution is to collect the full
network and analyze the full system. There are two prob-
lems. First, we can’t collect the full network. Second, simu-
lating the full system to equilibrium is prohibitive in terms

of convergence time. So the only feasible solution for learn-
ing the true steady states of the observed incomplete network
is to somehow account for the external impact on the local
system. This was our approach. In a mean field approxima-
tion, the external impact reduces to a single parameter xeff
which depends only on the network’s resilience β, a topo-
logical parameter. We showed how to estimate resilience,
depending on how the subgraph is sampled. Our results on
real networks with corresponding dynamics gave spectacu-
lar success – we accurately recover steady-states from just
10-vertex subgraphs of thousand-vertex networks.

There are several interesting future questions. The natural
one is to find improved estimates of resilience that extend
to other sampling methods (snowball sampling, edge sam-
pling etc). A critical direction, which we address in forth-
coming work, is the inverse problem. Suppose the steady-
states are known. For example, the abundance of your 10
favorite monkey species is known. Can one infer the cor-
rect dynamical system f(·), g(·, ·)? Currently, the dynam-
ics are fit to the observed steady-states for the partial net-
work (Ghahramani and Roweis 1999; Schmidt and Lip-
son 2009; Ionides, Bretó, and King 2006; Bongard and
Lipson 2007; Brunton, Proctor, and Kutz 2016). This is
wrong and will produce the incorrect dynamics. It is no
surprise, therefore, that the inferred dynamics keeps chang-
ing as more data is collected (Schmidt and Lipson 2009;
Ionides, Bretó, and King 2006; Bongard and Lipson 2007;
Brunton, Proctor, and Kutz 2016). It is absolutely critical to
account for the external impact in the inference process.
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Ionides, E. L.; Bretó, C.; and King, A. A. 2006. Inference for
nonlinear dynamical systems. PNAS 103(49):18438–18443.

Karlebach, G., and Shamir, R. 2008. Modelling and analysis of
gene regulatory networks. Nature Reviews Molecular Cell Biology
9(10):770.

Katzir, L.; Liberty, E.; and Somekh, O. 2011. Estimating sizes of
social networks via biased sampling. In Proc. Conf. WWW, 597–
606. ACM.
Klusowski, J. M., and Wu, Y. 2018. Counting motifs with graph
sampling. In Bubeck, S.; Perchet, V.; and Rigollet, P., eds., Pro-
ceedings of the 31st Conference On Learning Theory, volume 75 of
Proceedings of Machine Learning Research, 1966–2011. PMLR.
Kunegis, J. 2013. KONECT: The Koblenz Network Collection. In
Proc. Conf. WWW, 1343–1350. ACM.
Kurant, M.; Butts, C. T.; and Markopoulou, A. 2012. Graph size
estimation. arXiv preprint arXiv:1210.0460.
Kurant, M.; Markopoulou, A.; and Thiran, P. 2011. Towards unbi-
ased BFS sampling. IEEE Journal on Selected Areas in Communi-
cations 29(9):1799–1809.
Lee, T. I.; Rinaldi, N. J.; Robert, F.; Odom, D. T.; Bar-Joseph, Z.;
Gerber, G. K.; Hannett, N. M.; Harbison, C. T.; Thompson, C. M.;
Simon, I.; et al. 2002. Transcriptional regulatory networks in Sac-
charomyces cerevisiae. Science 298(5594):799–804.
Leskovec, J., and Faloutsos, C. 2006. Sampling from large graphs.
In Proc. Conf. ACM SIGKDD, 631–636. ACM.
Lotka, A. J. 1910. Contribution to the theory of periodic reactions.
The Journal of Physical Chemistry 14(3):271–274.
Pastor-Satorras, R., and Vespignani, A. 2001. Epidemic spreading
in scale-free networks. Phys. Rev. Lett. 86(14):3200.
Ribeiro, B., and Towsley, D. 2010. Estimating and sampling graphs
with multidimensional random walks. In Proc. Conf. Internet Mea-
surement, 390–403.
Rossi, R., and Ahmed, N. 2015. The network data repository with
interactive graph analytics and visualization. In AAAI.
Schmidt, M., and Lipson, H. 2009. Distilling free-form natural
laws from experimental data. Science 324(5923):81–85.
Seshadhri, C.; Pinar, A.; and Kolda, T. G. 2014. Wedge sampling
for computing clustering coefficients and triangle counts on large
graphs. Statistical Analysis and Data Mining: The ASA Data Sci-
ence Journal 7(4):294–307.
Stumpf, M. P., and Wiuf, C. 2005. Sampling properties of random
graphs: the degree distribution. Phys. Rev. E 72(3):036118.
Theodoridis, S. 2015. Machine learning: a Bayesian and optimiza-
tion perspective. Academic Press.
Wu, C.-F. 1982. Estimation of variance of the ratio estimator.
Biometrika 69(1):183–189.
Zhang, Y.; Kolaczyk, E. D.; and Spencer, B. D. 2015. Estimating
network degree distributions under sampling: An inverse problem,
with applications to monitoring social media networks. Annals of
Applied Statistics 9:166–199.

138


