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Abstract

We consider the problem of optimal recovery of true ranking
of n items from a randomly chosen subset of their pairwise
preferences. It is well known that without any further assump-
tion, one requires a sample size of Q(n?) for the purpose. We
analyze the problem with an additional structure of relational
graph G([n], E) over the n items added with an assumption of
locality: Neighboring items are similar in their rankings. Not-
ing the preferential nature of the data, we choose to embed not
the graph, but, its strong product to capture the pairwise node
relationships. Furthermore, unlike existing literature that uses
Laplacian embedding for graph based learning problems, we
use a richer class of graph embeddings—orthonormal repre-
sentations—that includes (normalized) Laplacian as its special
case. Our proposed algorithm, Pref-Rank, predicts the under-
lying ranking using an SVM based approach using the chosen
embedding of the product graph, and is the first to provide
statistical consistency on two ranking losses: Kendall’s tau
and Spearman’s footrule, with a required sample complexity
of O(n2x(é))% pairs, x(G) being the chromatic number of
the complement graph G. Clearly, our sample complexity is
smaller for dense graphs, with x(G) characterizing the degree
of node connectivity, which is also intuitive due to the locality
assumption e.g. O(n%) for union of k-cliques, or O(n3 ) for
random and power law graphs etc.—a quantity much smaller
than the fundamental limit of (n?) for large n. This, for the
first time, relates ranking complexity to structural properties
of the graph. We also report experimental evaluations on dif-
ferent synthetic and real-world datasets, where our algorithm
is shown to outperform the state of the art methods.

1 Introduction

The problem of ranking from pairwise preferences has
widespread applications in various real-world scenarios e.g.
web search (Page et al. 1998; Kleinberg 1999), gene classi-
fication, recommender systems (Theodoridis, Kotropoulos,
and Panagakis 2013), image search (Geng, Yang, and Hua
2009) and more. Its of no surprise why the problem is so well
studied in various disciplines of research, be that computer
science, statistics, operational research or computational bi-
ology. In particular, we study the problem of ranking (or
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ordering) of set of n items on a graph, given some partial
information of the relative ordering of the item pairs.

It is well known from the standard results of classical

sorting algorithms, for any set of n items associated to an un-
known deterministic ordering, say o}, and given the learner
has access to only preferences of the item pairs, in general
one requires to observe Q(nlogn) actively selected pairs
(where the learner can choose which pair to observe next) to
obtain the true underlying ranking o ; whereas, with random
selection of pairs, it could be as bad as (n?).
Related Work. Over the years, numerous attempts have been
made to improve the above sample complexities by imposing
different structural assumptions on the set of items or the un-
derlying ranking model. In active sampling setting, (Jamieson
and Nowak 2011) gives a sample complexity of O(d log? n),
provided the true ranking is realizable in a d-dimensional
embedding; (Braverman and Mossel 2008) and (Ailon 2012)
proposed a near optimal recovery with sample complexity
of O(nlogn) and O(npoly(logn)) respectively, under noisy
permutation and tournament ranking model. For the non-
active (random) sampling setting, (Wauthier, Jordan, and
Jojic 2013) and (Negahban, Oh, and Shah 2012) gave a sam-
ple complexity bound of O(n log n) under noisy permutation
(with O(log n) repeated sampling) and Bradley-Terry-Luce
(BTL) ranking model. Recently, (Rajkumar and Agarwal
2016) showed a recovery guarantee of O(nr logn), given the
preference matrix is rank r under suitable transformation.

However, existing literature on sample complexity
for graph based ranking problems is sparse, where it goes
without saying that the underlying structural representation
of the data is extremely relevant in various real-world applica-
tions where the edge connections model item similarities e.g.
In social network, connection among friends can be modelled
as a graph, or in recommender systems, movies under same
the genre should lie in close neighbourhood. It is important
to note that a relational graph is different from imposing item
dependencies through feature representations and much more
practical, since side information of exact features may not
even be available to the learner as required in the latter case.

Furthermore, the only few algorithmic contributions made
on the problem of ranking on graphs — (Page et al. 1998;
He et al. 2017; Del Corso and Romani 2016; Hsu et al. 2017)
have not explored their theoretical performance. (Agarwal
2010; 2008) proposed an SVM-rank based algorithm, with



Table 1: Summary of sample complexities for ranking from pairwise preferences.

Reference Assumption on the Ranking Model Sampling Technique | Sample Complexity
(Braverman and Mossel 2008) Noisy permutation Active O(nlogn)
(Jamieson and Nowak 2011) Low d-dimensional embedding Active O(dlog®n)
(Ailon 2012) Deterministic tournament Active O(npoly(logn))

(Gleich and Lim 2011) Rank-r pairwise preference with v incoherence Random O(nvrlog? n)
(Negahban, Oh, and Shah 2012) Bradley Terry Luce (BTL) Random O(nlogn)
(Wauthier, Jordan, and Jojic 2013) Noisy permutation Random O(nlogn)
(Rajkumar and Agarwal 2016) Low r-rank pairwise preference Random O(nrlogn)
(Niranjan and Rajkumar 2017) Low d-rank feature with BTL Random O(d?logn)

(Agarwal 2010) Graph + Laplacian based ranking Random X
Pref-Rank (This paper) Graph + Edge similarity based ranking Random O(n*x(G))3

generalization error bounds for the inductive and transductive
graph ranking problems. (Agarwal and Chakrabarti 2007) de-
rived generalization guarantees for PageRank algorithm. To
the best of our knowledge, we are not aware of any literature
which provide statistical consistency guarantees to recover
the true ranking and analyze the required sample complexity,
which remains the primary focus of this work.
Problem Setting. We precisely address the question: Given
the additional knowledge of a relational graph on the set of n
items, say G([n], E'), can we find the underlying ranking o,
efficiently (i.e. with a sample complexity less than (n?))?
Of course, in order to hope for achieving a better sample
complexity, there must be a connection between the graph
and the underlying ranking — question is how to model this?
A natural modelling could be to assume that similar items
connected by an edge are close in terms of their rankings or
similar node pairs have similar pairwise preferences e.g. In
movie recommendations, if two movies A and B belongs to
thriller genre and C belongs to comedy, and it is known that
A is preferred over C (i.e. the true ranking over latent topics
prefers thriller over comedy), then it is likely that B would
be preferred over C; and the learner might not require an
explicit (B, C) labelled pair — thus one could hope to reduce
the sample complexity by inferring preference information
of the neighbouring similar nodes. However, how to impose
such a smoothness constraint remains an open problem.

One way out could be to assume the true ranking to be a
smooth function over the graph Laplacian as also assumed
in (Agarwal 2010). However, why should we confine ourself
to the notion of Laplacian embedding based similarity when
several other graph embeddings could be explored for the
purpose? In particular, we use a broader class of orthonormal
representation of graphs for the purpose, which subsumes
(normalized) Laplacian embedding as a special case, and
assume the ranking to be a smooth function with respect to
the underlying embedding (see Sec. 2.1 for details).

Our Contributions. Under the smoothness assumptions, we
show a sample complexity guarantee of O(n2x(C_7'))% to
achieve ranking consistency — the result is intuitive as it
indicates smaller sample complexity for densely connected
graph, as one can expect to gather more information about
the neighboring nodes compared to a sparse graph. Our pro-
posed Pref-Rank algorithm, to the best of our knowledge,
is the first attempt in proving consistency on a large class
of graph families with 9(G) = o(n), in terms of Kendall’s

tau and Spearman’s footrule losses — It is developed on the
novel idea of embedding nodes of the strong product graph
G X G, drawing inference from the preferential nature of the
data and finally uses a kernelized-SVM approach to learn the
underlying ranking. We summarize our contributions:

e The choice of graph embedding: Unlike the existing lit-
erature, which is restricted to Laplacian graph embed-
ding (Ando and Zhang 2007), we choose to embed the
strong product G X G instead of G, as our ranking perfor-
mance measures penalizes every pairwise misprediction;
and use a general class of orthonormal representations,
which subsumes (normalized) Laplacian as a special case.

e Our proposed preference based ranking algorithm: Pref-
Rank is a kernelized-SVM based method that inputs an
embedding of pairwise graph G X G. The generalization
error of Pref-Rank involves computing the transductive
Rademacher complexity of the function class associated
with the underlying embedding used (see Thm. 3, Sec. 3).

e For the above, we propose to embed the nodes of G X G
with 3 different orthonormal representations: (a) Kron-
Lab(G K G) (b) PD-Lab(G) and (c¢) LS-labelling; and
derive generalization error bounds for the same (Sec. 4).

e Consistency: We prove the existence of an optimal embed-
ding in Kron-Lab(G K G) for which Pref-Rank is statis-
tically consistent (Thm. 10, Sec. 5) over a large class of
graphs, including power law and random graphs. To the
best of our knowledge, this is the first attempt at establish-
ing algorithmic consistency for graph ranking problems.

e Graph Ranking Sample Complexity: Furthermore, we show
that observing O(n2x(G))? pairwise preferences is suffi-
cient for Pref-Rank to be consistent (Thm. 12, Sec. 5.1),
which implies that a densely connected graph requires
much smaller training data compared to a sparse graph
for learning the optimal ranking — as also intuitive. Our re-
sult is the first to connect the complexity of graph ranking
problem to its structural properties. Our proposed bound
is a significant improvement in sample complexity (for
random selection of pairs) for dense graphs e.g. O(ng) for

union of k-cliques; and O(n3) for random and power law
graphs — a quantity much smaller than (n?).

Our experimental results demonstrate the superiority of
Pref-Rank algorithm compared to Graph Rank (Agarwal
2010), Rank Centrality (Negahban, Oh, and Shah 2012) and



Inductive Pairwise Ranking (Niranjan and Rajkumar 2017)
on various synthetic and real-world datasets; validating our
theoretical claims. Table 1 summarizes our contributions.

2 Preliminaries and Problem Statement

Notations. Let [n] := {1,2,...,n}, forn € Z,. Let z; de-
note the i component of a vector x € R™. Let 1{} denote
an indicator function that takes the value 1, if the predicate
@ is true and 0O otherwise. Let 1,, denote an n-dimensional
vector of all 1’s. Let S"~! = {u € R"|||lu/|z = 1} denote
a (n — 1) dimensional sphere. For any matrix M € R™*",
we denote the i column by M, Vi € [n] and \; (M) >
... > A\ (M) to denote its sorted eigenvalues, tr(M) to be
its trace. Let S; € R™*™ denote a set of n x n square sym-
metric positive semi-definite matrices. Let G(V, E') denote a
simple undirected graph, with vertex set V' = [n] and edge
set £ C V x V. We denote its adjacency matrix by Ag. Let
G denote the complement graph of G, with the adjacency
matrix Ag = 1,1, — I — Ag, I being the identity matrix.
Orthonormal Representation of Graphs. (Lovasz 1979)
An orthonormal representation of G(V, E), V = [n] is
U = [uy,...,u,] € R¥" such that u/ u; = 0 whenever
(i,j) ¢ E and u; € S471, Vi € [n]. Let Lab(G) denote the
set of all possible orthonormal representations of G given
by Lab(G) := {U | U is an Orthonormal Representation}.
Consider the set of graph kernels K(G) := {K € S} | K;; =
1,Vi € [n]; K;j = 0,Y(i,5) ¢ E}. (Jethava et al. 2013)
showed the two sets to be equivalent i.e. for every U €
Lab(G), one can construct K € K(G) and vice-versa.

Definition 1. Lovasz Number. (Lovdsz 1979) Orthonormal
representations Lab(G) of a graph G is associated with an
interesting quantity — Lovdsz number of G, defined as

1
HG) : min min max
U€Lab(G) cesd-1 iV (cTu;)?

Lovdsz Sandwich Theorem: If I(G) and x(G) denote the
independence number and chromatic number of the graph G,
then I(G) < 9 (G) < x(G) (Lovész 1979).

Strong Product of Graphs. Given a graph G(V, E), strong
product of G with itself, denoted by G X G, is defined over
the vertex set V(G X G) = V x V, such that two nodes
(4,5), (@', j") € V(G X Q) is adjacent in G K G iff i = 7’
and (j,5') € E,or (i,i') € Fand j = j/, or (i,i') € E and
(4,4") € E. Also, it is well known from the classical work of
(Lovdsz 1979) that 9(G' X G) = 9%(Q).

2.1 Problem Statement

We study the problem of graph ranking on a simple, undi-
rected graph G(V, E), V = [n]. Suppose there exists a true
underlying ranking o}, € X, of the nodes V, where ¥,
is the set of all permutations of [n], such that for any two
distinct nodes 4,5 € V, ¢ is said to be preferred over j iff
o} (i) < 0} (j). Clearly, without any structural assumption
on how o relates to the underlying graph G(V, E), the
knowledge of G(V, E) is not very helpful in predicting o7 :
Ranking on Graphs: Locality Property. A ranking o, is
said to have locality property if 3 at least one ranking function
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f € R” such that f(i) > f(j) iff o(4)
|f(@) = f(5)| < ¢, whenever (4,j) € E,

< o(j)and
(1)

where ¢ > 0 is a small constant that quantifies the “locality
smoothness” of f. One way is to model f as a smooth function
over the Laplacian embedding L (Agarwal 2010) such that
fILE =30, er Ac(i, ) (fi— £;)? is small. However, we
generalize this notion to a broader class of embeddings:
Locality with Orthonormal Representations: Formally, we
try to solve for f € RKHS(K)! i.e. f = Ka, for some
a € R”, where the locality here implies f to be a smooth
function over the embedding K € K(G), or alternatively
fTKf < B, where K1 is the pseudo inverse of K and B >
0 is a small constant (details given in Appendix of the full
arXiv version). Note that if G is a completely disconnected
graph, then K(G) = {I,,} is the only choice for K and f;’s
are independent of each other, and the problem is as hard
as the classical sorting of n independent items. But as the
density of G increases, or equivalently ¥(G) < x(G) < n,
then /C(G) becomes more expressive and the problem enters
into an interesting regime, as the node dependencies come to
play, aiding to faster learning rate. Recall that, however, we
only have access to G, our task is to find a suitable kernel K
that fits f on G and estimate o, accurately.
Problem Setup. Consider the set of all node pairs P,, =
{(i,j) € V x V]i < j}. Clearly |P,| = (5). We will
use N = (%) and denote the pairwise preference label
of the k™ pair (iy,ji) as yr € {=£1}, such that yp :=
sign(o} (ix) — 0 (jr)), Yk € [N]. The learning algorithm
is given access to a set of randomly chosen node-pairs
Sm C Pp, such that |S,,| = m € [N]. Without loss of
generality, by renumbering the pairs we will assume the first
m pairs to be labelled Sy, = {(ix, jx)} 7=, with the corre-
sponding pairwise preference labels yg,, = {yx}i,, and
set of unlabelled pairs S,, = P, \S,, = {(ik,jk)}fc\’:mﬂ.
Given G, S, and yg,,, the goal of the learner is to predict
aranking &, € X,, over the nodes V, that gives an accurate
estimate of the underlying true ranking o). We use the follow-
ing ranking losses to measure performance (Monjardet 1998):
Kendall’s Tau loss:  dj,(0*,&) = & S0 1((0*(ir,) —
o*(jr))(6(ir) — 6(jr)) < 0) and Spearman’s Footrule
=150 lo*() - (}(i)‘. dy, measures the
average number of mispredicted pairs, whereas ds measures
the average displacement of the ranking order. By Diaconi-
Graham inequality (Kumar and Vassilvitskii 2010), we know
forany o, 0’ € ¥, di(0,0') < ds(o,0') < 2di(o,0’).
Now instead of predicting 6, € 3,,, suppose the learner
is allowed to predict a pairwise score function f : P,, —
R\ {0}. Note, f = [fx]2_; € (R\ {0})" can also be
realized as a vector, where f; denotes the score for every
k" pair (iy, jx), k € [N]. We measure the prediction accu-
racy as pairwise (0-1) loss: 071 (yy, fi) = 1 (fryr <0),
or using the convex surrogate loss functions — hinge loss:
0% (yg, fi) = (1 — fryx), or ramp loss: £ (yy, fi.) =
min{1, (1 — fryx), }, where (a) 4 = max(a,0).

loss: ds(o*, &)

'RKHS: Reproducing Kernel Hilbert Space.



In general, given a transductive learning framework, fol-
lowing the notations from (Ando and Zhang 2007; El-Yaniv
and Pechyony 2007), for any pairwise preference loss ¢, we
denote the empirical (training) ¢-error of f as ery (f)

LS LYk, fr), the generalization (test set) error as
er (F) = 5 St Ly, f) and the average pair-
wise misprediction error as erf, (f) = + Ek 1 2y fro)-

Sm

2.2 Learners’ Objective - Statistical Consistency
for Graph Ranking from Pairwise Preferences

Let G be a graph family with infinite sequence of nodes

= {v,}52,. Let V,, denote the first n nodes of V and
G, € G be a graph instance defined over (V,,, E1U...UE,),
where F), is the edge information of node v,, with previously
observed nodes V,,_1, n > 2. Let o, € X, be the true
ranking of the nodes V,,. Now, given G,, and f € (0,1) a
fixed fraction, let IT; be a uniform distribution on the random
draw of m(f) = [N f] pairs of nodes from NN possible pairs

Pu. Let Spuipy = {(in: Ji) € Pn};":({) be an instance of

the draw, with corresponding pairwise preferences y s, ,, =

{yk};?:({) Given (G,?, Sin(f)) Y Sy )s @ learnin.g algorithm
A that returns a ranking &,, on the node set V,, is said to be
statistically d-rank consistent w.r.t. G if

Prs,, ;y~11, (d(e),6n) >€)—0 as n— oo,

for any € > 0 and d being the Kendall’s tau (dj) or Spear-
man’s footrule (d,) ranking losses. In the next section we
propose Pref-Rank, an SVM based graph ranking algorithm
and prove it to be statistically d-rank consistent (Sec. 5) with
‘optimal embedding’ in Kron-Lab(G X G) (Sec. 4.1).

3 Pref-Rank - Preference Ranking Algorithm
Given a graph G(V, E) and training set of pairwise prefer-
ences (Spm,ys,, ), we design an SVM based ranking algo-
rithm that treats each observed pair in S, as a binary la-
belled training instance and outputs a pairwise score function
f € RN, which is used to estimate the final rank &,.

Step 1. Select an embedding (U): Choose a pairwise
node embedding U = [i,---tiy] € RN, where any
node pair (i, jx) € P, is represented by g, Vk € [N]. We
discuss the suitable embedding schemes in Sec. 4.

Step 2. Predict pairwise scores (f* € R ): We solve the
binary classification problem given the embeddings U and
pairwise node preferences {(Qix, y)} 7o using an SVM:

+C Z ghinge(ylw WTﬁk)
k=1

@)

min *||WH2
we

where C' > 0 is a regularization hyperparameter. Note that
the dual of the above formulation is given by:

E k** E ap Yy K
aER™, \|a||oo<c kk, )

where K = UT U denotes the embedding kernel of the pair-
wise node instances. From standard results of SVM, we know
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that optimal solution of (2) gives w* = 221:1 Yoy =
UB, where B € RY is such that B = yrax, Vk € [m)]
and 0 otherwise. Since yi, € {£1}, ||[at]|c = |1Bllec < C.
Thus for any & € [N], the score of the pair (iy,jx) is
given by f; = w*Tay, = S Y] Gy, or equivalently
f* = U'w* = UTUB = K@, which suggests the follow-
ing alternative formulation of SVM:

m

max fTKTf + CZEhinge(yk, fx)
=1

feRN 2

3)

Clearly, if £* denotgs the optimal solution of (3), then we
have f* e {f |[f = K3, B € RV, |18l < C}.

Remark 1. The regularization f T K'f, precisely enforces
the locality assumption of Sec. 2.1 (see full version on arXiv).

Step 3. Predict 6,, € X, from pairwise scores f*: Given
the score vector f* € RY as computed above, predict a
ranking 6, € ¥, over the nodes V of GG as follows:

1. Let ¢(z) denote the number of wins of node i € V' given by

> 1(fp>0)+ > 1(f; <0).

{k=(ir.gx)lir=1} {k=(ir.dx)jk=1}
Predict the ranking of nodes by sorting wrt (i), ie.
choose any &, € argsort(c), where argsort(c) = {o €

En | o(i) < o(j), if c(i) > c(j), Vi, j EV}.
A brief outline of Pref-Rank is given below:

Algorithm 1 Pref-Rank
Input: G(V, E) and subset of preferences (S, ¥s,,)-
Init: Pairwise graph embedding U € R¥™*V  d € N,.
Get w* by solving the SVM objective (2).
Compute preference scores f* = U'w
Count number of wins ¢(7) for each node i € V:
c(i) := 1(fr>0+ X 1(f; <0)
{k=(ik.dr)lir=1} {k=(ir,jr)|ir=1}
Return: Ranking of nodes &, € argsort(c).

3.1 Generalization Error of Pref-Rank

We now derive generalization guarantees of Pref-Rank on its

test set error er— (f*) = Nom ZkN:m_H 0P (yg, f7), wrt.
some loss functlon 0P {£1} x R — R, where ¢” is as-
sumed to be p-lipschitz (p > 0) with respect to its second
argument i.e. [0°(yx, fi) — € (i, fi)] < 5| fx — fi|, where
£, f : P, — RV be any two pairwise score functions. We
find it convenient to define the following function class com-
plexity measure associated with orthonormal embeddings of
pairwise preference strong product of graphs (as motivated
in (Pelckmans, Suykens, and Moor 2007)):

Definition 2 (Transductive Rademacher Complexity).
Given a graph G(V, E), let U € RN pe any pairwise
embedding of G and let col(fj) denote the column space
spanned by U. Then, for any function class Hg = {h |




h : col(U) — R} associated with U, its transductive
Rademacher complexity is defined as
- 1 N
R(H¢,U,p) = —=E4 | su h(ag) |,
(Hg U.p) = Ey h€£0;7k ( k)]

where for any fixed p € (0,1/2], v = (7,...,7N) is a
vector of i..d. random variables such that v; ~ {+1,—1,0}
with probability p, p and 1 — 2p respectively.

We bound the generalization error of Pref-Rank in terms of
the Rademacher complexity. Note the result below crucially
depends on the fact that any score vector f* returned by Pref-
Rank, is of the form f* = UTw*, for some w* € {h |
h=Ug,8cRY, Bl < C}, where U € R¥N be the
embedding used in Pref-Rank (refer (2), (3) for details).
Theorem 3 (Generalization Error of Pref-Rank). Given a
graph G(V, E), let U € RN be any pairwise embedding
of G. For any f € (0,1/2], let Iy be a uniform distribu-
tion on the random draw of m(f) = [N f] pairs of nodes
from Py, such that Sy, 5y = {(ir,jx) € ’Pn};?:({) ~ Iy,
with corresponding pairwise preferenceys, . . Let Sm( n=
Pu\Sm(s)- Let Heg = {w | w =UB, B € RY, ||B|l« <
C, C >0}and tP : {£1} x R — [0, B] be a bounded, p-
Lipschitz loss function. Then for any 6 > 0, with probability
>1— 6 over Sm(f) ~ 1y,

ZP
ers
Sm(f)

R(Hﬁ,ﬁ,p)+013 In (3)
pf(L=f) (A= fHVNF’

where p = f(1 — f) and £* UTw* € RY is pairwise
score vector output by Pref-Rank and C1 > 0 is a constant.

(f) <ert

Sy )+

Remark 2. It might appear from above that a higher value
of R(Hg, U, p) leads to increased generalization error. How-
ever, note that there is a tradeoff between the first and second
term, since a higher Rademacher complexity implies a richer

function class H;, which in turn is capable of producing a

better prediction estimate f* = U w, resulting in a much
o . P .
lower training set error ert (£*). Thus, a higher value of

Sm()
R(Hg., U, p) is desired for better generalization.

Taking insights from Thm. 3, it follows that the perfor-
mance of Pref-Rank crucially depends on the Rademacher
complexity R(H, U, p) of the underlying function class
H ¢, which boils down to the problem of finding a *“good”
embedding U. We address this issue in the next section.

4 Choice of Embeddings

We discuss different classes of pairwise graph embeddings
and their generalization guarantees. Recalling the results of
(Ando and Zhang 2007) (see Thm. 1), which provides a cru-
cial characterization of the class of optimal embeddings for
any graph based regularization algorithms, we choose to work
with embeddings with normalized kernels, i.e. K=UTU
such that K = 1,Vk € [N]. The following theorem analy-
ses the Rademacher complexity of ‘normalized’ embeddings:

4834

Theorem 4 (Rademacher Complexity of Orthonormal
Embeddings). Given G(V, E), let U € RN be any ‘nor-
malized’ node-pair embedding of G K G, let K=U'U
be the corresponding graph-kernel, then R(H, ﬁ,p) <

C'y/2p\1 (K), where Ay (K) is the largest eigenvalue of K.

Note that the above result does not educate us on the choice
of U — we impose more structural constraints and narrow
down the search space of optimal ‘normalized’ graph embed-
dings and propose the following special classes:

4.1 Kron-Lab(G X G): Kronecker Product
Orthogonal Embedding

Given any graph G(V, E), with U = [uj,ua,...,u,] €

R?*™ being an orthogonal embedding of G, i.e. U € Lab(G),

its Kronecker Product Orthogonal Embedding is given by:

Kron-Lab(G R G) := {U e R xn* 1 U=U®U,
U € RY*" such that U € Lab(G)},

where ® is the kronecker (or outer) product of two matrix.
The ‘niceness’ of the above embedding lies in the fact that

one can construct U € Kron-Lab(G X G) from any or-
thogonal embedding of the original graph U € Lab(G) —
let K := UTU and K := UT U, we see that for any two
kK € [n?], Kpw = u) a), = (u, ®uj,) " (w;, ®u;,,) =
(uiw,,)(u) vy,,) = K Kjj,, where (i(y,5()) €
[n] x [n] are the node pairs corresponding to k, k’. Hence,

K = K ® K. Note that when k = k', we have Ky = 1,
as U € Lab(G) and K;; = 1,Vi € [n]. This ensures that
the kronecker product graph kernel K satisfies the optimality
criterion of ‘normalized’ embedding as previously discussed.

Lemma 5 (Rademacher Complexity of
Kron-Lab(G X G)). Consider any U € Lab(G),
K UTU and the corresponding U € Kron-
Lab(G W G). Then for any p € (0,1/2] and
Hg ={w|w=TUB, BcRY, |Blec<C,C>0}we
have, R(Hg, U, p) < CA1(K)y/2p.

Above leads to the following generalization guarantee:

Theorem 6 (Generalization Error of Pref-Rank with
Kron-Lab(GK G)). For the seiting as in Thm. 3 and Lem. 5,
for any U € Kron-Lab(G X G), we have

CM(K)WV2 - CiB
pVIA-f) 1=
4.2 Pairwise Difference Orthogonal Embedding

Given graph G(V, E), let U = [uy,uy,...,u,] € R¥"

be such that U € Lab(G). We define the class of Pairwise
Difference Orthogonal Embeddings of G as:

PD-Lab(G) := {U € R*N | ;; = u; — v, V(i) € Py,
U € R™" such that U € Lab(G)}

LetE = [e; — €;](; jep, € {0,£1}"*", where e; denotes
the i*" standard basis of R", Vi € [n]; then it is easy to note

log(3)
Nf

ergp (f*) < erf;«p(f*) +



that U = UE € PD-Lab((7) and the corresponding graph
kernel is given by K = ET KIE. For PD embedding, we get:
Lemma 7 (Rademacher Complexity of PD-Lab(G)). Con-
sider any U € Lab(G), K = U'U and the correspond-
ing U € PD-Lab(G). Then for any p € (0,1/2] and
Hg ={w|w=Ug, BeRY, |B]: <tCVN, C >0},
we have R(Hg,U,p) < 2C/pnii(K).

Similarly as before, using above result we can show that:
Theorem 8 (Generalization Error of Pref-Rank with
PD-I:ab(G)). For the setting as in Thm. 3 and Lem. 7, for
any U € PD-Lab(G), we have

20V/nh(K) | CiB [log(3)
pJIA—=f) 1=fY Nf

Recall from Thm. 3 that f* = U w. Thus the ‘niceness’
of PD-Lab(G) lies in the fact that it comes with the free
transitivity property — for any two node pairs k1 := (¢, j) and
ko := (j,1), if £ scores node i higher than j i.e. f; > 0,
and node j higher than node [ i.e. f;;, > 0 then for any three
nodes 4, j, I € [n], this automatically implies fr, > 0, where
ks := (i,1) i.e. node ¢ gets a score higher than node [.

Remark 3. Although Lem. 5 and 7 shows that both Kron-
Lab(G X () and PD-Lab(G) are associated to rich expres-
sive function classes with high Rademacher complexity, the
superiority of Kron-Lab(G X G) comes with an additional
consistency guarantee, as we will derive in Sec. 5.

erf (£%) < erf () +

4.3 LS-labelling based Embedding
The embedding (graph kernel) corresponding to LS-

labelling (Luz and Schrijver 2005) of graph G is given by:
Krs(G)

“

= % +1,, where 7 > |\, (Ag)],
where A ¢ is the adjacency matrix of graph G. It is known
that K5 € R™*"™ is symmetric and positive semi-definite,
and hence defines a valid graph kernel; also 3U g € Lab(G)
such that UISULS = K5. We denote U g to be the cor-
responding embedding matrix for LS-labelling. We define
LS-labelling of the strong product of graphs as:

KLS(G&G) =K15(G) @ Kps(G) 5)

and equivalently, the embedding matrix Uy (G K G) =
ULs(G) ® Upg(G). Similar to Kron-Lab(G X G), we have
Kps(k, k) = 1, Vk € [n?], since Kpg5(i,i) = 1, Vi €
[n]. Following result shows that K;¢(G X G) has high
Rademacher complexity on random G(n, ¢) graphs.

Lemma 9. Let G(n,q) be a Erdés-Réyni random graph,
where each edge is present independently with probability
q € 10,1], ¢ = O(1). Then, the Rademacher complexity of

the function class associated with K 1,s(G R Q) is O(y/n).
Laplacian based Embedding. This is the most popular

choice of graph embedding that uses the inverse of the Lapla-
cian matrix for the purpose. Formally, let d; denotes the
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degree of vertex ¢ € [n] in graph G, i.e. d; = (Ag)jln, and
D denote a diagonal matrix such that D;; = d;,Vi € [n].
Then, the Laplacian and normalized Laplacian kernel of
G is defined as follows?: Kr,,(G) = (D — Ag)' and
K.rap(G) = (I, — D7Y/2A5D~Y/2)t, Though widely
used (Agarwal 2010; Ando and Zhang 2007), it is not very
expressive on dense graphs with high x(G) — we observe
that the Rademacher complexity of function class associated
with Laplacian is an order magnitude smaller than that of
LS-labelling. See full version on arXiv for details.

5 Consistency with Kron-Lab(G X G)

In this section, we show that Pref-Rank is provably statisti-
cally consistent while working with kronecker product or-
thogonal embedding Kron-Lab(G X G)(see Sec. 4.1).

Theorem 10 (Rank-Consistency). For the setting as in
Sec. 2.2, there exists an embedding U,, € Kron-Lab(G,, X
G) such that, if o, € RY denotes the pairwise scores

returned by Pref-Rank on input (fJn, S (f)s Y8, ) then
VG, € G, with probability > (1 — %) over Sp(py ~ Iy
H(Gn)

””):O<<nf f>é+ )

where d denotes Kendall’s tau (dy,) or Spearman’s footrule
(ds) ranking loss functions.

1-f

Inn
Nf

Consistency follows from the fact that for large families
of graphs including random graphs (Coja-Oghlan 2005) and
power law graphs (Jethava et al. 2013), J(G,,) = o(n).

5.1 Sample Complexity for Ranking Consistency

We analyze the minimum fraction of pairwise node pref-
erences f* to be observed for Pref-Rank algorithm to be
statistically ranking consistent. We refer the required sample
size m(f*) = [N f*] as ranking sample complexity.

Lemma 11. If G in Thm. 10 is such that 9(G,,) = n¢, 0 <

4

\//0<Gn>> ’
%75

¢ < 1, then observing only f* = O fraction of

n
pairwise node preferences is sufficient for Pref-Rank to be
1—c

statistically ranking consistent, for any 0 < € < (1—;6)
Note that one could potentially choose any ¢ € (0, 5¢)
for the purpose — the tradeoff lies in the fact that a higher
£ leads to faster convergence rate of d(o,6,) = O(-%),
although at the cost of increased sample complexity; on the
contrary setting ¢ — 0 gives a smaller sample complex-
ity, with significantly slower convergence rate (see proof of
Lem. 11 in the full version). We further extend Lem. 11 and
relate ranking sample complexity to structural properties of

the graph — coloring number of the complement graph x (G).

Theorem 12. Consider a graph family G such that x(G,) =
o(n), VG, € G. Then observing O(n?x(G))? pairwise pref-
erences is sufficient for Pref-Rank to be ranking consistent.

2} denotes the pseudo inverse.



Above conveys that for dense graphs we need fewer pair-
wise samples compared to sparse graphs as x(G) reduces
with increasing graph density. We discuss the sample com-

plexities for some special graphs below where ¥(G) = o(n).

Corollary 13 (Ranking Consistency on Special Graphs).
Pref-Rank algorithm achieves consistency on the follow-
ing graph families, with the required sample complexities —
(a) Complete graphs: O(n?) (b) Union of k disjoint cliques:
O(n3k?) (¢) Complement of power-law graphs: O(n?)
(d) Complement of k-colorable graphs: O(n3k3) (¢) Erdés
Réyni random G(n, q) graphs with ¢ = O(1): O(n?).

Remark 4. Thm. 10 along with Lem. 11 suggest that if the
graph satisfies a crucial structural property: ¥(G) = o(n) and

given sufficient sample of Q(n29(G))? pairwise preferences,
Pref-Rank yields consistency. Note that ¥(G) < x(G) < n,
where the last inequality is tight for completely disconnected
graph — which implies one need to observe 2(n?) pairs for
consistency, as a disconnected graph does not impose any
structure on the rank. Smaller the (&), denser the graph and
we attain consistency observing a smaller number of node
pairs, the best is of course is when G is a clique, as ¥(G) = 1!
Thus, for sparse graphs with J(G) = ©(n), consistency and
learnability is far fetched without observing €2(n?) pairs.

Note that proof of Thm. 10 relies on the fact that the
maximum SVM margin attained for the formulation (2) is
Y(G X @G), which is achieved by LS-labelling on Erdds Réyni
random graphs (Shivanna and Bhattacharyya 2014); and thus

guarantee consistency, with O(n%) sample complexity.

6 Experiments

We conducted experiments on both real-world and synthetic
graphs, comparing Pref-Rank with the following algorithms:

Algorithms. (a) PR-Kron: Pref-Rank with K;5(G X G)
(see Eqn. (5)) (b) PR-PD: Pref-Rank with PD-Lab(G) with
LS-labelling i.e. U = Upg, (c) GR: Graph Rank (Agarwal
2010), (d) RC: Rank Centrality (Negahban, Oh, and Shah
2012) and (e) IPR: Inductive Pairwise Ranking, with Lapla-
cian as feature embedding (Niranjan and Rajkumar 2017).
Recall from the list of algorithms in Table 1. Except (Agar-
wal 2010), none of the others applies to ranking on graphs.
Moreover, they work under specific models, e.g. noisy permu-
tations (Wauthier, Jordan, and Jojic 2013), (Rajkumar and
Agarwal 2016) requires knowledge of the preference matrix
rank. Nevertheless, we compare with Rank Centrality (works
under BTL model) and Inductive Pairwise Ranking (requires
item features), but as expected both perform poorly.
Performance Measure. Note the generalization guarantee
of Thm. 3 not only holds for full ranking but for any gen-
eral preference learning problem, where the nodes of GG are
assigned to an underlying preference vector o, € R™. Sim-
ilar as before, the goal is to predict a pairwise score vector
f € RY to optimize the average pairwise mispredictions w.r1.
some loss function ¢ : {+1} x R\ {0} — R defined as:

erb(8) = 75 3 o ).

keD

(©)
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where D = {(ix, ji) € Pn | 0/ (i) # 0 (jr), k € [N]} C
‘P, denotes the subset of node pairs with distinct prefer-
ences and y;, = sign(o (ji) — 0k (ix)), Vk € D. In par-
ticular, Pref-Rank applies to bipartite ranking (BR), where
o € {£1}", categorical or d-class ordinal ranking (OR),
where o € [d]", d < n, and the original full ranking (FR)
problem as motivated in Sec. 2.1. We consider all three tasks
with pairwise 0-1 loss, i.e. £(yx, fx) = 1(yxfr <0).

6.1 Synthetic Experiments

Graphs. We use 3 types of graphs, each with n = 30 nodes:
(a) Union of k-disconnected cliques with k = 2 and 10, (b)
r-Regular graphs with r = 5 and 15; and (¢) G(n, q) Erdés
Réyni random graphs with edge probability ¢ = 0.2 and 0.6.

Erdos Reyni Random Graph (p = 0.2)
1f+PR-Kron|

Regular Graph with degree(d) = 5

+PR-Kron|

stz

0. 02 03 04 05 08 o0
Erdos Reyni Random Graph (p = 0.6)

04 05 06 0. 02 .3
of 10 Disconnected Cliques

0.4

Figure 1: Synthetic Data: Average number of mispredictions
(erg'1 (f), Eqn. (6)) vs fraction of sampled pairs (f).

Generating o . For each of the above graphs, we compute
f* = Aga, where o € [0, 1]™ is generated randomly, and
set o = argsort(f*) (see Pref-Rank, Step 3 for definition).
We report the average performance across 10 repeated
runs in Fig. 6.1. In all the cases, our proposed algorithms PR-
Kron and PR-PD outperforms the rest, with GR performing
competitively. As expected, RC and IPR perform poorly as
they could not exploit the underlying graph locality property.

6.2 Real-World Experiments

Datasets. We use 6 standard real-world datasets® for three
graph learning tasks — (a) Heart and Fourclass for BR, (b)
Vehicle and Vowel for OR, and (c¢) House and Mg for FR.

Graph Generation. For each dataset, we select 10 ran-
dom subsets of 40 items each and construct a similarity

matrix using RBF kernel, where (i, 7)™ entry is given by

— PR . 2 .
exp (%), x; being the feature vector and p the av-

erage distance. For each of the 10 subsets, we constructed a
graph by thresholding the similarity matrices about the mean.
Generating o . For each dataset, the provided item labels
are used as the score vector f* and we set o, = argsort(f*).

For each of the task, we report the average error across 10
randomly drawn subsets in Fig. 6.2. As before, our proposed
methods PR-Kron and PR-PD perform the best, followed
by GR. Once again RC and IPR perform poorly*. Note that,
the performance error increases from bipartite ranking (BR)
to full ranking (FR), former being a relatively simpler task.

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
*We omit them for BR and OR for better comparisons.



Results on more datasets are provided in the supplementary
of the full version on arXiv.

louse (Full Ranking)

Vehicle (4-class Ordinal Ranking)

Heart (Binary Ranking)

F-PR-Kron
. ~PR-PD
~, [*GR

06 0.

.3 0.4 0.5 0.6
anking) Mg (Full Ranking)

f+PR-Kron|
[~PR-PD
R

Figure 2: Real-World Data: Average number of mispredic-
tions (erg1 (f), Eqn. (6)) vs fraction of sampled pairs (f).

7 Conclusion and Future Work

In this paper we address the problem of ranking nodes of

a graph G([n], E') given a random subsample of their pair-

wise preferences. Our proposed Pref-Rank algorithm, guar-

antees consistency with a required sample complexity of
2

O(n*x(G))? - also gives novel insights by relating the
ranking sample complexity with graph structural properties
through the chromatic number of G, i.e. x(G), for the first
time. One possible future direction is to extend the setting
to noisy preferences e.g. using BTL model (Negahban, Oh,
and Shah 2012), or analyse the problem with other measures
of ranking losses e.g. NDCG, MAP (Agarwal 2008). Fur-
thermore, proving consistency of Pref-Rank algorithm using
PD-Lab(G) also remains an interesting direction to explore.
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