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Abstract

Satisfiability of first-order logic (FOL) ontologies is typically
verified by translation to propositional satisfiability (SAT)
problems, which is then tackled by a SAT solver. Unfortu-
nately, SAT solvers often experience scalability issues when
reasoning with FOL ontologies and even moderately sized
datasets. While SAT solvers have been found to capably han-
dle complex axiomatizations, finding models of datasets gets
considerably more complex and time-intensive as the number
of clause exponentially increases with increase in individu-
als and axiomatic complexity. We identify FOL definitions
as a specific bottleneck and demonstrate via experiments that
the presence of many defined terms of the highest arity sig-
nificantly slows down model finding. We also show that re-
moving optional definitions and substituting these terms by
their definiens leads to a reduction in the number of clauses,
which makes SAT-based model finding practical for over 100
individuals in a FOL theory.

Introduction

First-order logic is one of the standards for describing for-
mal ontologies in many domains. However, an ontology can
only serve its purpose if we can verify its logical consis-
tency in two forms: (1) check its internal consistency to rule
out contradictions by generating some model, and (2) check
its external consistency with datasets that are representative
of the ontology’s intended purpose. Existing work in FOL
ontology consistency checking is limited to satisfiability ver-
ification of terminological axioms (TBox), and they rarely
contain facts/assertions about individuals (i.e., they typically
lack an ABox). Model finding for FOL ontologies is not only
theoretically incomplete but has not been very successful
in practice either except for tiny, often trivial models with
less than 20 individuals. In this work we identify a specific
bottleneck that can be remedied for model finding to scale
better in practice despite its theoretical undecidability and
intractability. Our experiments are specifically designed to
test the hypothesis that: "Additional defined terms negatively
impact model finding time, and rewriting ABox facts that use
optional definitions with their definiens can speed and scale
up model finding in practice”.
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Preliminaries

A FOL ontology 7 is a set of FOL sentences. All nonlogi-
cal symbols in 7, i.e., constants, functions, and predicates,
form its signature, denoted by A(T). Each 7 admits a set
of interpretations over a nonempty domain D of individ-
uals. Any interpretation assigns each constant in A\(7) an
individual in D and each n-ary predicate €2 in A(7) a rela-
tion ¥(Q2) : D™ — {True, False}. An interpretation Z for
which all sentences in 7 are true is called a model. To fa-
cilitate model finding using SAT solvers, a FOL ontology
is typically converted to an equisatisfiable clausal normal
form (FOL-CNF), where each FOL sentence is represented
as a universally quantified conjunction of disjunctions of
atoms. A SAT-based model finder then propositionalizes all
FOL-CNEF clauses by instantiating them, for a fixed domain
size, d. Then each FOL-CNF clause leads to an exponen-
tially growing number d of propositional clauses, where
v is the number of variables in the FOL-CNF clause. The
number of propositional variables in the SAT representation
is highly influenced by the number and arity of predicates:
each predicate of arity n results in d" propositional variables.
The number of propositional variables determines the search
space, which consists of 2"7 possible interpretations. How-
ever, the search space can, be greatly reduced if the number of
predicates of highest arity is kept low. This is the idea tested
here experimentally, leveraging the fact that many ontologies
have lots of defined predicates, which we can easily dispense
off during model finding while still keeping the semantics of
the ontology intact.

Formalization

Knowledge in a FOL ontology can be divided into an ABox,
and TBox. The ABox contains class and relational assertions
about individuals, and is a set of ground clauses. The TBox
contains terminological axioms that describe the concepts and
their roles within a domain of interest. We adapt a distinction
of three types of sentences in a FOL ontology to formalize
the ideas central to our experiments.

o An explicit definition is a special type of TBox sentence of
the form Vaq, ..., 2,[Qz1,. .., 2n) & a(z1,...,20)],
where () is the defined n-ary predicate, and « is a formula
with 1 to x,, as free variables and A(7) \ 2 as the only
nonlogical symbols.



e Optional definitions are explicit definitions of predicates
not used in other sentences in the TBox.

o A defined assertion is a sentence ¢ € ABox, such that
all occurrences of predicates (2; in the sentence that are
optional definitions in the TBox are substituted by their
definiens «;.

Experimental Setup

To investigate the impact of optional definitions vs defined
assertions on model finding we compare reasoning perfor-
mance of the model finder Paradox (Claessen and Sorensson
2003) with 13 syntactic variants of an ontology (TBox +
ABox) constructed as described below.

TBoxes: The experiments are conducted using a spatial
ontology from the CODI family (Hahmann 2018). The on-
tology relates spatial entities of various dimensions via quali-
tative spatial relations. Its medium size (26 axioms plus defini-
tions) and complexity (see Table 1 for the number of variables
and length of FOL-CNF clauses) make the ontology ideal
for studying the effects of variations in model size, signature
size, or number of axioms. For our experiments, the base case
TBox, i.e., case 1 uses four primitives (i.e. undefined terms
Cont, Leq, S, ZEX) and 12 defined terms (MinDim, MaxDim,
PointRegion, Point, Curve, ArealRegion, Lt, Gt, Geq, EqDim,
Covers, P) while the remaining TBoxes (cases 2-13) add
combinations of five optionally defined terms (PP, C, PO,
Inc, SC)' as shown in Table 1.

ABoxes: A map of lynx habitat in Maine forms the master
ABox from which samples for all experiments are drawn.
It consists of 173 spatial objects, each either a Point (27),
Curve (90), or ArealRegion (56), and 3,665 spatial relation
assertions (245 positive ones and 3,420 negated ones). Sam-
ples ABoxes are constructed with increasing numbers of
individuals (denoted by n), including all relational assertions
that mention only the selected individuals, and distinctness
assertions between the n individuals. Each experiment is av-
eraged over 10 or more different samples for each sample
size (i.e., domain size of sought models) with sizes currently
ranging from 40 to 80. To ensure comparability of the re-
sults, the same ABox is relied upon for all 13 cases. The
ABoxes only differ in that depending on the case’s definition
set, some facts are replaced by the corresponding defined
assertions. That is, any of the 5 optional definitions not used
in a specific case (i.e., the definition is not included in the
TBox for that case) are substituted by their definiens, thus
creating 13 variants of the same ABox. Hence the 13 cases
(TBox + ABox) are logically equivalent, and they have the
same number of models, but are syntactically different.

All experiments are run on an Intel Xeon CPU E5-2620
v3 at 2.40 GHz (with 12 cores) with 64GB RAM and 64bit
Windows 10 Pro. Measured times are CPU time (see Table 1)
for the process that runs Paradox.

"https://github.com/gruninger/colore/tree/master/ontologies/
multidim_space_codi
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Table 1: Summary of the TBoxes of the 13 cases experi-
mented with. Each row represents one case, with the included
optional definitions, statistics of the resulting FOL-CNF, and
statistics of the propositionalized versions for samples sizes
40, 60, and 80. The abbreviations denote: C: FOL-CNF
clauses; P,: propositional variables; I: sample size (i.e., dis-
tinct individuals in the ABox samples); ~: Paradox could not
find a model.

TBox Optional D FOL - CNF Propositional CNF Model Finding Time
Case | PP | C | PO | Inc | SC #C #Py (TBox + ABox)
3 I=40[I=60 [I=80[[I=40]71=607=80

1 65 13120 | 29280 | 51840 7 55 576
2 NEE - - 68 14720 | 32880 | 58240 10 62 560
3 - V- - 68 14720 | 32880 | 58240 53 4500 | 8220
4 V- - 71 16320 | 36480 | 64640 52 1590 | 8710
5 - [V - 68 14720 | 32880 [ 58240 21 594 3780
6 v - 71 16320 | 36480 [ 64640 22 563 3910
7 v - 74 17920 [ 40080 | 71040 80 3020 | 17200
8 - |- - - 76 14720 | 32880 [ 58240 125 3380 ~
9 V- - N - 79 16320 | 36480 | 64640 159 4370 ~
10 VIVIVIVI]- 85 19520 | 43680 | 77440 || 1090 [ 18500 ~
11 - |- - - N 72 14720 | 32880 | 58240 889 [ 23000 ~
12 N - - N 75 16400 | 36600 | 64800 885 [ 28800 ~
13 N VIiVIV 92 21120 | 47280 | 83840 [ 5740 ~ ~

Preliminary Results

Preliminary results show an exponential increase in runtime
with increasing sample size, but an exponential increase in
runtime is also observed as more optional definitions are
included without any change in the number of possible in-
terpretations. With all five optional definitions, the runtime
increases by three order of magnitudes, e.g., from 7s to 5,740s
for samples size 40, even though the number of propositional
variables does not double. Thus, the elimination of optional
definitions and the use of defined assertions can drastically
speed and scale up model finding.

Conclusion and Future Work

This work is a first, if small, systematic study of the feasibil-
ity of model construction for a mid-sized but fairly complex
FOL ontology with an ABox. The idea underlying our work
is a novel approach to write FOL ABox assertions that helps
scale model construction to models with 120 or more individ-
uals. This can easily be implemented as a preprocessing step
for existing model finders, with a corresponding postprocess-
ing step that completes a model with interpretations for the
(temporarily removed) defined predicates.

The results we obtained are good enough to leverage the
use of defined assertions to further test (1) whether the ap-
proach extends to other model finders, such as iProver, that
do not fully propositionalize the FOL ontology; and (2) to
what extent the complexity and semantic restrictiveness of
definitions impacts model finding performance.
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