The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Towards Sequence-to-Sequence Reinforcement Learning
for Constraint Solving with Constraint-Based Local Search

Helge Spieker
Simula Research Laboratory
P.O. Box 134
1325 Lysaker, Norway
helge @simula.no

Abstract

This paper proposes a framework for solving constraint prob-
lems with reinforcement learning (RL) and sequence-to-
sequence recurrent neural networks. We approach constraint
solving as a declarative machine learning problem, where for
a variable-length input sequence a variable-length output se-
quence has to be predicted. Using randomly generated in-
stances and the number of constraint violations as a reward
function, a problem-specific RL agent is trained to solve the
problem. The predicted solution candidate of the RL agent is
verified and repaired by CBLS to ensure solutions, that sat-
isfy the constraint model. We introduce the framework and its
components and discuss early results and future applications.

Introduction

We approach constraint solving with reinforcement learn-
ing (RL) and sequence-to-sequence neural networks. The
goal of this approach is to build problem-specific machine
learning models, that are able to support solving problems
as they occur in constraint programming (CP). Dedicated
constraint solvers are highly optimized, still, searching for
good or even optimal solutions often is time-consuming due
to large search spaces that have to be traversed. Here, an ar-
gument for machine learning are the shorter inference times
compared to the solving times of constraint solvers.

Data-driven constraint solving is difficult to approach by
supervised learning for two main reasons. First, it is compu-
tationally expensive to generate a sufficiently large training
corpus for constraint problems, as it requires to solve each
problem instance to generate the optimal labels. Second, su-
pervised training potentially leads the model to closely imi-
tate the solutions found by the solver used to build the train-
ing set (Bello et al. 2017). Especially if an instance has mul-
tiple optima, training only on one solution limits generaliza-
tion to an individual problem-solving strategy.

These limitations are overcome by RL, where only a
scalar reward is necessary as feedback for training. Comput-
ing this reward, which formed by the number of constraint
violations and the objective value of the solution candidate,
is easier to compute than an optimal or high-quality solution.
Learning from rewards additionally allows the agent to find

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

10037

individual solution strategies and to decide which parts of
the search space to explore, instead of adapting to the strat-
egy behind the solution labels, as in supervised learning.

In constraint modeling, a domain expert explicitly models
a problem in terms of constraints, variables, their domains,
and, in case of optimization, an objective function. Such a
constraint model can be described as a function, that takes a
set of instance parameters as an input, and, with the help of a
constraint solver, solves the instance for which then the solu-
tion is returned as a set of output variables, i.e. the assigned
variables. Following this definition of a constraint problem,
the process of constraint solving is framed as a structured
sequence-to-sequence (S2S) problem with bandit feedback,
that is, a reward is only received after the full solution to the
problem instance is predicted.

Method

It might not be practical to deploy only a RL-trained model,
as it is undesirable to receive unfeasible solutions for practi-
cal use cases, and feasibility of the solution can not be guar-
anteed. However, we propose to combine the RL agent with
a constraint-based local search (CBLS) solver (Hentenryck
and Michel 2009). In that way, every predicted solution can
be checked for feasibility and, if necessary, be repaired via
local search techniques while obeying the constraints of the
problem. In case of an unsatisfiable instance, this is detected
by the CBLS component, too. Also, it would be possible to
give the solver additional time to find an improved solution
starting from the predicted solution.

This hybrid framework (as shown in Figure 1) combines
the advantages of RL-based constraint solving while guar-
anteeing feasible solutions through the CBLS solver, which
can allow to handle larger problem instances and reduce to-
tal solving time than each technique alone. In this paper, we
describe the design of the RL agent within the framework.

Model The COP to be solved by the agent is described
as a S2S problem with variable lengths inputs and outputs.
Each individual problem instance is described by instance
parameters, which form the input to the agent. The solution
is again a sequence, containing the assigned values for each
variable. Our method is based on advantage actor-critic RL
(A2C) (Mnih et al. 2016) for S2S. The architecture and al-
gorithm have been previously introduced for machine trans-
lation with human feedback (Nguyen, Daumé III, and Boyd-



Real-World
Instances

Instance
Generator

Figure 1: Hybrid constraint solving loop: A solution candi-
date is predicted by the RL agent and CBLS both ensures a
feasible solution and provides a reward as feedback.

Solution Candidate
C int-Based ‘ Feasible Solution
RL Agent ‘ Local Search
. N |
Feedback

Graber 2017), which is a different domain with similar tech-
nical characteristics. We follow closely the previously pro-
posed approach and extend it by using domain knowledge
from constraint solving to improve the prediction process.

Representation Although the values in constraint prob-
lems are integers, they are embedded into dense vectors for
input and output. Choosing an embedding is due to the rea-
son, that the integers are often used as categorical data and
not necessarily in a nominal way. In this case, using an em-
bedding allows more representational power, and in nominal
relations it is still represented by the learned weights.

Due to the structure of the constraint problem, each vari-
able has a fixed position and also the total length of the
output sequence is known beforehand, which allows to sim-
plify prediction. During preprocessing, the COP is simpli-
fied, such that the domains are tightened. While sampling
the model output, we exploit this information and allow only
values from the tightened domain instead of the original,
larger domain. Thereby, we reduce the instance action space.

Reward The reward is formed by the number of violated
constraints in the solution candidate and its objective value.
If the solution candidate is a feasible solution and satisfies
all constraints, the reward is equal to the objective value of
the solution (in case of maximization), otherwise the number
of constraint violations is returned as a negative reward.

This reward function puts emphasis first on the feasibil-
ity of the solution candidate by giving low rewards for un-
feasible candidates without considering the objective. After
a feasible solution strategy has been found, the emphasis
switches towards maximizing the problem objective. The re-
ward for an instance can be calculated either by a problem-
specific function or, by using the abstract constraint model,
as part of the CBLS solver used within the framework (see
Figure 1). Having a generic, domain-agnostic reward func-
tion allows applying the method to different problems.

Experiments

We show first experiments of the presented method on one
constraint optimization problem, namely Maximum Increas-
ing with Limits. For the full paper, we include experiments
on harder constraint optimization problems, such as jobshop
scheduling or car sequencing (Perron and Shaw 2004).
Maximum Increasing with Limits (MIWL) is a constraint
maximization problem with the goal to find the maximum
sum of a list of positive integers x, excluding 0, with length
n. The maximum size of each integer x; (i € {l..n}) is
limited by an instance parameter limits; (x; < limits;)
and the total sequence x has to be strictly increasing (z; <

10038

z;41). The instance is then an integer n and a list of limits,
the solution is the list of integers x.

We train the agent on 150,000 random instances with up
to 250 elements. During the initial 10 supervised epochs,
the agent predicts 32% feasible solution candidates. After
one epoch of RL, this value increases to 88% and after some
further epochs to 92%. Both the number of feasible solutions
and the total reward converges after 20 epochs.

We also evaluate the minimum reward during validation
to gain insights on the worst performance of the RL agent.
At the end of the pre-training phase, the minimal reward is
—88, i.e. the worst solution candidate has 88 violations. Af-
ter convergence, the worst solution candidate has 10 viola-
tions, i.e. a reward of —10, which shows that the predicted
solution is close to be feasible and is likely to be repaired in
few additional local search iterations afterwards.

The initial results on MIWL show the ability to predict
solution candidates and underline the motivation to use RL
for training. Besides the reduced effort in training data gen-
eration, without having to solve the training instances to an
optimal solution, giving a scalar reward instead of a feasible
solution shows better generalization.

Conclusion & Outlook

We present a hybrid framework for constraint solving, con-
sisting of a neural network and a CBLS solver. Using a S2S
architecture allows solving problem instances with variable-
length inputs and outputs with different lengths, instead of
training a model for one specific instance size. The agent is
trained with RL under bandit feedback. The generic reward
function is implemented in terms of constraint violations,
which is a metric that is generally accessible and problem-
independent. Our method is thereby applicable to a wide
range of constraint problems. Initial experiments show suc-
cess in learning constraint solving from scalar rewards for
an exemplary problem.

Combining RL and CBLS allows to exploit historical in-
formation and learn from the constraint model. Providing
an RL agent shifts computational load from solving time
to training time. The two main components of the frame-
work, the RL agent and the CBLS solver, are modular and
can be individually tuned and adapted to problem-specific
needs. Next steps are to consider more complex constraint
optimization problems and to evaluate different sequence-
to-sequence network architectures.

References

Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; and Bengio, S. 2017.
Neural Combinatorial Optimization. In /CLR.

Hentenryck, P. V., and Michel, L. 2009. Constraint-Based Local
Search. The MIT Press.

Mnih, V.; Badia, A. P. A. P.; Mirza, M.; Graves, A.; Lillicrap, T. P.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asynchronous
Methods for Deep Reinforcement Learning. In ICML, 1928-1937.

Nguyen, K.; Daumé III, H.; and Boyd-Graber, J. 2017. Reinforce-
ment Learning for Bandit Neural Machine Translation with Simu-
lated Human Feedback. In EMNLP, 1464—-1474.

Perron, L., and Shaw, P. 2004. Combining Forces to Solve the Car
Sequencing Problem. In CPAIOR, 225-239.



