The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-19)

Concept Extraction and Prerequisite
Relation Learning from Educational Data

Weiming Lu, Yangfan Zhou, Jiale Yu, Chenhao Jia
College of Computer Science and Technology, Zhejiang University, Hangzhou, China
{luwm, 21621119, 21721115, 21821117} @zju.edu.cn

Abstract

Prerequisite relations among concepts are crucial for educa-
tional applications. However, it is difficult to automatically
extract domain-specific concepts and learn the prerequisite
relations among them without labeled data.

In this paper, we first extract high-quality phrases from a set
of educational data, and identify the domain-specific con-
cepts by a graph based ranking method. Then, we propose
an iterative prerequisite relation learning framework, called
iPRL, which combines a learning based model and recov-
ery based model to leverage both concept pair features and
dependencies among learning materials. In experiments, we
evaluated our approach on two real-world datasets Textbook
Dataset and MOOC Dataset, and validated that our approach
can achieve better performance than existing methods. Fi-
nally, we also illustrate some examples of our approach.

Introduction

Domain-specific concepts and their prerequisite relations are
the core of knowledge space and personalized learning the-
ory (Falmagne et al. 2006). Prerequisite relations can be
essentially considered as the dependency among concepts,
and they are crucial for people to learn, organize, apply and
generate knowledge (Margolis and Laurence 1999). For ex-
ample, the prerequisite knowledge of ”Conditional Random
Fields” is ”"Hidden Markov Model”. Thus, organizing the
knowledge in prerequisite relations can improve the educa-
tional tasks, such as curriculum planning (Liu et al. 2016)
and intelligent tutoring (Wang and Liu 2016).

However, recent researches mainly focus on keyword ex-
traction (Mihalcea and Tarau 2004; Liu, Chen, and Sun
2011; Tixier, Malliaros, and Vazirgiannis 2016) or high-
quality phrase mining (Liu et al. 2015; Shang et al. 2018),
and there are only a few efforts aiming to extract domain-
specific concepts and learn prerequisite relations from edu-
cational data, such as courses (Yang et al. 2015; Liang et al.
2015; Liu et al. 2016; Liang et al. 2017), MOOCs (Massive
Open Online Courses) (Pan et al. 2017a), textbooks (Wang
et al. 2016; Liang et al. 2018) and scientific papers(Gordon
et al. 2016).

The prerequisite relation learning methods can be classi-
fied into three categories: local statistical information based
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methods, learning based methods and recovery based meth-
ods. For the local statistical information, reference dis-
tance and cross-entropy were proposed (Liang et al. 2015;
Gordon et al. 2016) to measure prerequisite relations among
concepts. For the learning based methods, several features
were proposed for the prerequisite classification. For exam-
ple, Pan et al. (2017a) proposed contextual, structural and se-
mantic features, and Liang et al. (2018) utilized graph-based
and text-based features. In contrast, recovery based methods
do not need to extract features to learn a prerequisite clas-
sifier. For example, Liang et al. (2017) can recover concept
prerequisite relations from course dependencies directly.

However, there are still many challenges to automat-
ically mine prerequisite relations among domain-specific
concepts. (1) It is difficult to extract fine-grained concepts
for each domain. (2) It is time-consuming to label the pre-
requisite relations in the learning based methods. (3) The
recovery based methods only rely on the dependency among
educational data, but neglect the contextual, structural and
semantic features.

In order to address these challenges, we propose a
domain-specific concept extraction approach, called DsCE,
and an iterative prerequisite relation learning approach,
called iPRL. DsCE can extract high-quality phrases from
documents firstly, and then identifying domain-specific con-
cepts with a graph based ranking method. While iPRL can
utilize both the advantage of the learning based model and
the recovery based model. It can learn the prerequisite re-
lations among concepts without human labeled data, and
improve the performance gradually with the interaction be-
tween two models.

We conduct extensive experiments on two real-world
datasets: Textbook and MOOC datasets. The results show
that our approach outperforms the state-of-the-art methods.

Our Approach
Problem Formulation

As shown in Figure 1, given a set of educational data in
one domain, which is modeled as a set of sequential learn-
ing materials (denoted as LMs for short) such as textbook
chapters and MOOC videos, we want to extract the domain-
specific concepts and the prerequisite relations among them
from these data.
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Figure 1: [llustration of Domain-specific Concept Extraction
and Prerequisite Relation Learning from Sequential Learn-
ing Materials, which are denoted as { M1, Ms, ..., M., }.

For convenience, we list the main symbols used in this
paper in Table 1.

Symbol
D

Meaning

a set of educational data in one domain, and D
{dm} s

a set of concepts extracted from D, and C
{e 4.

a set of high-quality phrases extracted from D, and
P = (i)l

an educational data with a sequential LMs, such as
a book with a sequence of chapters or a MOOC
course with a sequence of videos.

the quality score of p; € P of being a phrase.

the confidence score of p; € P of being a domain-
specific concept.

the vector representation of the it LM M™ € dp
in concept space C.

prerequisite relation between concepts or LMs.

a set of prerequisite relations among LMs, and
Q= {i— j}zvfyl,nfyledmmq"HM]m,dmeD-

A = (ai,;) € [—1,1]I€1¥I represents prerequisite
relations among concepts which is obtained from a
recovery based model, and a;_; is the weight quan-
tifying how concept ¢ depends on concept j.

F = (fi;) € [-1,1]/°*I€ represents the pre-
dicted results from a learning based model F, and
fi,j is the predicted result for concept ¢ and concept
j.

W = (wi;) € [0,1]I€1%I¢ represents the related-
ness among concepts.

Q(p:)
conf(p:)

x* e RI¢I

Q m

Table 1: Meaning of symbols used

Therefore, the problem could be formally defined as:
given a set of educational data in one domain, D
{d,,}*_,, and each data is a sequential learning materials
dm = {M{”}Li”{l. The goal is to extract domain-specific
concepts C from D, and then learn the prerequisite relation
matrix A among these concepts by an iterative prerequisite
relation learning approach.

Domain-specific Concept Extraction

Domain-specific concepts should be identified before pre-
requisite relation learning.

However, it is time consuming and tedious to anno-
tate all fine-grained concepts in each domain, and pre-
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defined part-of-speech rules such as Noun'Noun and
[Adj|Noun]* Noun are unsuitable for the extraction task.
Because some domain-specific concepts are complex, e.g.,
non-homogeneous linear differential equation, and linear
differential equation with constant coefficients of the second
order in the Calculus domain. In addition, not all phrases are
domain-specific, e.g., basic theory is a good phrase, but it is
not a domain-specific concept.

We developed an unsupervised and domain-independent
approach (DsCE) to extract domain-specific concepts from
textbooks, which consists of two steps: (1) extracting high-
quality phrases from textbooks. (2) identifying domain-
specific concepts from the phrases.

Extracting high-quality phrases A phrase is defined as
a sequence of words that appear consecutively in the text,
forming a complete semantic unit in certain contexts of
the given documents (Finch 2000). A high-quality phrase
is a phrase which has a high probability to be a complete
semantic unit, meeting the criteria of Popularity, Concor-
dance, Informativeness and Completeness (Liu et al. 2015;
Shang et al. 2018).

Given the set of educational data D in one domain, we
used AutoPhrase (Shang et al. 2018) to extract the high-
quality phrases P to form the candidates of domain-specific
concepts, since AutoPhrase has the following advantages:
(1) It is a robust positive-only distant training method, which
can be used in many different domains with the minimal hu-
man effort. (2) It can leverage part-of-speech (POS) tags to
further enhance the extraction performance.

However, the high-quality phrases extracted by Au-
toPhrase may not be domain-specific. We extracted phrases
from textbooks in three domains: ”Calculus”’(CAL), ”Data
Structure”’(DS), and ”Physics”(PHY), and calculated the av-
erage ratio of the domain-specific concepts in top K phrases
according to its quality score. The result is shown in Fig-
ure 2, which demonstrates that high-quality phrases may not
be domain-specific, and has many noise in the top K phrases.
Therefore, we should identify the domain-specific concepts
from these high-quality phrases.
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Figure 2: The ratio of the domain-specific concepts in top K
phrases of the results of AutoPhrase.

Identifying domain-specific concepts In order to identify
domain-specific concepts in the high-quality phrases, we re-
sorted to a graph propagation based ranking method (Pan et
al. 2017b).

First, a weighted undirected fully-connected graph G =
(V, E) was constructed, where V' is the vertex set of G and



E is the edge set of G. Each vertex in V' is a phrase p; € P
with a quality score Q(p;) extracted by AutoPhrase. For
each edge (p;,p;) € E, its weight w(p;, p;) is the semantic
relatedness of the two phrases p; and p;. We trained word
embedding vectors based an online encyclopedia corpus via
word2vec (Mikolov et al. 2013b), and then obtained the se-
mantic representation of each phrase via the vector addition
of its individual word vectors. Then, the semantic related-
ness of two phrases is defined as the cosine similarity of their
vectors.

Second, a propagation based ranking method was ex-
ecuted on the graph G with the assumption that high-
confidence concepts in the graph could propagate their con-
fidence scores to their neighbor nodes that have high se-
mantic relatedness with them, to discover other potential
domain-specific concepts. Each vertex p; has a confidence
score conf(p;) of being a domain-specific concept, and
conf¥(p;) is the score of p; in the k-th iteration of the prop-
agation. We set the initial confidence score of each vertex as
conf®(p;) = 1. The propagation functions are defined as:

s*(pj,pi) = opf(pi,p;) - Qlps) - e(pi, p;) - conf®(p;)
> cawn S (i pi)
I

where s*(p;,p;) is the voting score that p; propagates to
p; in the k-th iteration, which is determined by the seman-
tic relatedness between p; and p; e(p;, p;), the quality score
of p; Q(p,), the confidence score of p; in the k-th itera-
tion con f*(p;), and the overlapping penalty between p; and
pj opf(pi,p;). If p; and p; contain one or more identical
words, we say they are overlapping, and should be penal-
ized during the score propagation. For example, this algo-
rithm and sort algorithm are related by cosine similarity, but
sort algorithm should not propagate its confidence score to
this algorithm, since this algorithm is not a domain-specific
concept. We set opf(pi,p;) = 1, if p; and p; are not over-
lapping. Otherwise, opf(p;,p;) = A, A € (0,1) (We set
A = 0.5 in the experiments). con f*+1(p;) is the new confi-
dence score of p;, which is dependent on the average voting
score of vertexes in A(p;). A(p;) is the vertex set which will
propagate the voting scores to p; in each iteration. After each
iteration, the confidence scores should be normalized, so Z
is the normalization factor.
Finally, the phrases with the confidence score greater than
¢ = 0.6 are selected as the domain-specific concepts C.

Prerequisite Relation Learning

After obtained the domain-specific concepts C, we would
like to learn the prerequisite relations among these concepts.

Inspired by Liang et al. (2017), we observed that (1) The
dependency among learning materials is caused by sufficient
evidence provided by prerequisite relations among concepts
in that materials. This means if one learning material de-
pends on another one for knowledge learning, there must
be sufficient concept pairs between them which have pre-
requisite relations. Taking Figure 3(a) as an example, be-
cause chapter Tree — Graph, then the concepts in these
chapters would like to have prerequisite relations, such as
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binary tree — undirected graph and B tree — DAG graph,
where — means there is a prerequisite relation between LMs
or concepts.

Binary tree undirected graph ” Binary tree
B tree DAG graph B tree \
[ d |
AVL tree Minimum | —> DAG graph
Spanning Tree AVL tree

Chapter Graph Related concepts

(b) Observation 2

Chapter Tree

(a) Observation 1

Figure 3: The observations of the prerequisite relations
among concepts.

(2) Related concepts would have similar prerequisite rela-
tions with other concepts. As in Figure 3(b), binary tree and
B tree are highly related, so if binary tree — DAG graph,
then B tree — DAG graph.

(3) The results of the recovery based model and the learn-
ing based model should be consistent. That is, it would be
better that A equals to F, where A is the result of the recov-
ery based model and F is the result of the learning based
model.

Thus, the optimization function is designed as follows.

: A —F[r
mmin [1€]]2 + A1 ¥ +
A(i,:) —A(y,:
Y, I AG
1<i#j<|c]
st ()T[CR; © Al > 60— €1,
Ydm € D, (i,) € U (1
A +A;:=00<i#j<|C| 2)
—1<A;; <1,0<i#j<|C| 3)
AG(1-D)=0 4
A;; > 0,Ydm € D,posm (i) < posm(j)  (5)
where " is a slack parameter for a pair of LMs M;™

M7 in d,,, € D which has a prerequisite relation. 6, A; and
g are positive hyper parameters, and they are set to 1.0, 0.2
and 0.2 in the experiments respectively.

For the objective function, the first term is the empirical
loss as in Liang et al. (2017). The second term is based on
the third observation, which makes A be close to F. The
third term is based on the second observation, which means
if concept ¢ and j are related, A(4,:) and A(j,:) should be
similar. Here, w; ; is the relatedness between concept ¢ and
7, which would be computed in advance. How to calculate F
and W will be elaborated in the following section.

For the constraints, the first three constraints are learned
from Liang et al. (2017). The first constraint is based on
the first observation mentioned above, where ® is element-
wise product, and C;,; is used to remove the contribu-
tion from the common concepts between M, and M Jm, SO

m = () € {0,111 and ¢, = 0if x"[s] > 0
or X7'[t] > 0, otherwise ¢, = 1, and £} is the penalty
of this constraint. The second constraint means if concept ¢



is a prerequisite of j, then j is not a prerequisite of <. The
third constraint bounds the strength of prerequisite relation
in [—1,1].

The fourth constraint assumes that there is no prerequi-
site relation between two concepts if one concept is not con-
tained in other’s encyclopedia article according to Taluk-
dar and Cohen (2012). Here, 1 = {1}I€*I¢l and D ¢
{0, 1}I€1>I€l s introduced to filter concept pairs. When the
article of concept 7 (j) contains concept j (z), D; ; = 1, oth-
erwise D; ; = 0. The last constraint specifies that if concept
1 always occurs before 7, then ¢ may be the prerequisite con-
cept of 7, but 7 must not be the prerequisite concept of i.
Here, pos., (i) is the position of concept ¢ in d,.

The optimization problem is solved iteratively. If we don’t
have any labeled data, F is initialized randomly, otherwise a
probabilistic classifier F is trained to predict F. Then, by fix-
ing F, the problem becomes a quadratic optimization prob-
lem, and A and ¢ are solved by MOSEK! software. When
obtaining a new A, new training data can be selected to en-
hance the classifier F. In our experiments, the performance
of our model increases gradually and tends to converge.

Specifically, during the k' iterations, three datasets
are formed firstly: P* {(i,5)|A:; > 7} N
{6, )A; ;] < 7} OF = {(i,/)|A;; == 0}. Then, the

positive samples is formed by selecting the top (kLH)Q|P’“|

concept pairs from P*. The negative samples also have
the same number of the positive samples, but they con-
sists of three parts: 20% data is randomly selected from
{(4,9)|(i,§) € P*}, and the remaining 80% data is ran-
domly selected from N* and OF equally. 7 = 0.6 in our
experiments. The procedure is shown in the Algorithm 1.

Input: D: a set of educational data in a domain.
C: a set of concepts extracted from D by DsCE.
x: the vector representations of all learning materials in D.
Output: A: the prerequisite relations among concepts in C.
Initialize F randomly, or train a probabilistic classifier F
using labeled data to initialize F;
Calculate the concept relatedness matrix W according to D;
Obtain A by solving Eq. 1 with MOSEK;
while A is not convergent do
Update training data for F according to A; (Update the
Learning based Model)
Update F using F;
Fixing F, obtain new A by solving Eq. 1; (Update the
Recovery based Model)
end

Algorithm 1: Iterative Prerequisite Relation Learning.

Concept Features and Relatedness

To train F, we used several features to capture whether a
concept pair has a prerequisite relation.

For MOQC:s, in order to compare the method in (Pan
et al. 2017a), we still used the same features, including
semantic relatedness, video reference distance (refd), sen-

"http://www.mosek.com
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tence refd, Wikipedia refd, average position distance, distri-
butional asymmetry distance and complexity level distance.

For textbooks, in addition to the features mentioned
above, where we replaced video refd and sentence refd with
chapter refd, we also added Wikipedia abstract occurrence
and content refd.

chapter refd: For a concept pair (a,b), chapter ref-
erence weight (crw), which is to qualify how b is re-
ferred by chapters of a, is defined as: crw(a,b)

Zd%ev E1\/fze:uzm f(a’;\g';gw’b), where f(a, M) indicates the
dm €D 24 MEdm ,

term frequency of concept a in chapter M, and r(M,b) €
{0,1} denotes whether concept b appears in chapter M.
Then, chapter refd of (a,b) is crw(b, a) — crw(a,b).
Wikipedia abstract occurrence: For a concept pair (a, b),
if concept a occurs in the Wikipedia abstract of concept b,
Wikipedia abstract occurrence of (a,b) is 1, otherwise 0.
Wikipedia content refd: For a concept pair (a,b), the
Wikipedia content refd is defined as: fy(a) — fo(b), where
fu(a) is the term frequency of concept a in the article of b.
To define W, we proposed two relatedness measurements
between concept ¢ and j.
Semantic Relatedness: W; ; is defined as the normalized
cosine distance between two embedding vectors: W; ;

(1 + m), where v; is the word embedding vector
learned by word2vec (Mikolov et al. 2013a).

Position Relatedness: if two concepts have the similar po-
sitions in textbooks or MOOC videos, they would have sim-

ilar prerequisite relations with other concepts. Thus, W; ; is
- W 1 M M|, M
defined as: ij =35 deep ZMedm (pi" + pj )P —

pM|, where pl/€dn — :((j*é‘/[)), n(i, M) is the term fre-

quency of concept ¢ in the material M.

Experiments

In this section, we will evaluate the domain-specific concept
extraction and prerequisite learning respectively.

Evaluation on Domain-specific Concept Extraction

Datasets In order to evaluate the domain-specific con-
cept extraction, we collected six Chinese textbooks in
each domain: ”Calculus”(CAL), ”Data Structure”(DS), and
“Physics”(PHY) from our digital library, and then extracted
the content of the textbooks for concept extraction.

Baseline Methods We employed the following three base-
line methods to compare with our DsCE method.

TextRank (Mihalcea and Tarau 2004): An unsupervised
graph-based ranking model for keyword extraction.

THUCKE (Liu, Chen, and Sun 2011)%: A word trigger
method for keyword extraction based on word alignment in
statistical machine translation.

AutoPhrase (Shang et al. 2018)3: An automated phrase
mining method with POS-guided phrasal segmentation.

2https://github.com/thunlp/THUCKE
*https://github.com/shangjingbo1226/AutoPhrase



Performance comparison and analysis To measure per-
formance, we asked three students who are majoring in the
corresponding domain to annotate whether the concepts ex-
tracted from each method are domain-specific or not, and
then took a majority vote of the annotations to create final
domain-specific concept set for each domain. Precision and
Recall are used to evaluate the extraction results.

In Figure 4, we show the precision of domain-specific
concept extraction in top K results of different methods in
the three domains.

We find that our method (DsCE) outperforms baseline
methods across all domains. Specifically, we have the fol-
lowing observations. First, AutoPhrase can extract high-
quality phrases, but it does not focus on keyword extrac-
tion, so the top ranked phrases may not be domain-specific.
Second, the precision in Calculus domain is relatively low
comparing to other two domains. This is because there are
many mathematical formulas in the textbooks of Calculus,
which affect the OCR (Optical Character Recognition) qual-
ity for textbooks. Third, the graph propagation based rank-
ing method can indeed improve the performance of Au-
toPhrase for domain-specific concept extraction.

In addition, we also calculate the average precision and
recall for each method across all domains, and show the
precision-recall curves in Figure 5. Obviously, we find that
our method outperforms baseline methods greatly.

Figure 6 illustrates some examples of the top ranked
domain-specific concepts extracted for each domain. We
find that (1) TextRank and THUCKE are unable to extract
complex concepts, which makes them have low recall. (2)
Some top-ranked concepts extracted by AutoPhrase are ob-
scure, such as michelson interferometer and Nicol prism,
while the basic core concepts are not ranked in the top.

Evaluation on Prerequisite Relation Learning

Datasets We evaluated the prerequisite relation learning
with the following two different datasets.

Textbook: To the best of our knowledge, these is no pub-
lic dataset for mining prerequisite relation between concepts
in textbooks. We also chose Chinese textbooks in three do-
mains: Calculus, Data Structure, and Physics to create the
dataset. The construction procedure is as follows. For each
domain, we extracted concepts from textbooks by our DsCE
method, and asked three students to select the most related
domain concepts. Finally, the prerequisite relation among
them were annotated through a majority vote strategy.

MOOC: We used MOOC data mentioned in (Pan et al.
2017a), which has been released*.

The statistics of the datasets are listed in Table 2, which
lists the number of concepts and the positive pairs in each
domain.

Baseline Methods We use the following state-of-the-art
methods as baselines:

RefD (reference distance) (Liang et al. 2015): A link-
based metric for measuring the prerequisite relations among
concepts.

“http://keg.cs.tsinghua.edu.cn/jietang/software/acl 17-
prerequisite-relation.rar
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Textbook

dataset | #books | #concepts | #pairs(+)
CAL 6 89 439
DS 6 90 453
PHY 6 139 630
MOOC
dataset | #courses | #concept | #pairs(+)
ML 5 244 1,735
DSA 8 201 1,148

Table 2: Statistics of the datasets for evaluating on prerequi-
site relation learning.

CPR-Recover (Liang et al. 2017): An unsupervised
method, which can recover concept prerequisite relations
from course dependencies. In our datasets, we used it to re-
cover concept prerequisite relations from book chapter or
MOOC video dependencies.

PRinMOOC (Pan et al. 2017a): A supervised method
for prerequisite relation learning in MOOC, which proposed
contextual, structural and semantic features, and then used
random forest to capture the prerequisite relations between
concepts.

In the experiments, we trained the English and Chinese
word vectors by word2vec (Mikolov et al. 2013a) on En-
glish Wikipedia and Baidu Baike® respectively, and the di-
mensions are both set to 100.

Performance comparison and analysis We evaluated the
methods under several scenarios, including with non-labeled
data, with labeled data, different concept relatedness and it-
erative learning.

(1) Evaluation with non-labeled data. We compared
iPRL with RefD and CPR-Recover without any labeled
data in both ZTextbook and MOOC datasets. The results are
shown in Table 3.

Textbook MOOC

Method \—ar—Tps T PHY | ML | DSA
P [ 3549 | 34.78 | 2796 | 7170 | 72.69

RefD R [5740 | 4454 [ 5032 | 304 | 3738
Fy [43.86 [ 39.06 | 35.04 | 42,70 | 49.74

P [ 44.60 | 3170 | 29.07 | 57.79 | 55.94
CPR-R R [6241 [ 57.68 | 6080 | 356 | 358
Fy [52.00 [ 4001 | 3935 | 44.06 | 43.66

P 9138 | 58.86 | 71.60 | 65.72 | 72.48
iPRL R [5558 | 6480 | 5785 | 464 | 432
F, [69.12 | 61.69 | 64.06 | 54.40 | 54.14

Table 3: Comparison with non-labeled data(%) on Textbook
and MOOC datasets

From the tables, we can see that (i) iPRL outperforms
other methods under the non-labeled data situation, which
achieves +16.69% for CPR-Recover and +18.44% for
RefD with respect to the average F. (ii) CPR-Recover can
achieve a comparable recall, but its precision is too low.

Shttps://baike.baidu.com/
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Figure 5: The precision-recall curves of domain-specific
concept extraction

(2) Evaluation with labeled data. For the labeled data,
we applied 5-fold cross validation to evaluate the perfor-
mance of the proposed method,i.e., using 4 folds in methods
such as PRinMOOC and iPRL, and then testing them with
the remaining fold. We also selected random forest as F as
in (Pan et al. 2017a). The comparison between PRinMOOC
and iPRL is shown in Table 4.

Method measure ML DSA

P 72.08 | 88.32

PRinMOOC R 594 484
F 65.13 | 62.53

P 65.96 | 70.93

iPRL R 68.6 74.2

F 67.25 | 72.53

Table 4: Comparison with labeled data(%) on MOOC
dataset

From the table, we can see that: (i) iPRL outperforms
PRinMOOC, which only has the learning model. (ii) La-
beled data can promote iPRL. Comparing Table 4 with Ta-
ble 3, the average F} increases by 12.85% and 18.39% on
ML and DSA datasets.

(3) Evaluation with concept relatedness. We evaluated
both semantic relatedness and position relatedness on Text-
book dataset in iPRL, and the result is shown in Table 5.
From the table, we can see that (i) Both semantic related-
ness and position relatedness achieve a better performance.
(ii) Position relatedness outperforms semantic relatedness
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TextRank ‘ THUCKE ‘ AutoPhrase DsCE
Calculus
ko BRI /N EF oy i e T
function function minimal positive period differential mean
value theorem
Jitg A W RBR N T R ] 7 v 4
function limit linear differential equation Cauchy mean value
with constant coefficients theorem
JiK Tt SRS (DT AN
series function integration by parts differential formula
Data Structure
Sk Hodhi FI G ST LRPERER
algorithm data indexed sequential file linear linked list
R 17t B TR BT AR
node storage array element array index
ik 873 IRE TREHE R
search algorithm null pointer pointer variable
Physics
23] 23] BEHANTHAX LR
movement movement michelson interferometer electric field strength
ik L iz Bl e HL e
object velocity theorem of the motion for vortex electric field
center of mass
pid 3 R JERVH BBt e
velocity procedure Nicol prism field energy

Figure 6: Examples of domain-specific concepts extracted
for each domain with different methods, where the English
phrases under the Chinese phrases are the translations.

slightly. The position of concepts may be more suitable for
deducing prerequisite relations.

(4) Evaluation with iterative learning. Figure 7 shows
the performance of iPRL? on Textbook dataset varies with
the iterations. The interaction between Learning based
Model and Recovery based Model in iPRL can really make
the performance better gradually.

Finally, we shows some examples of prerequisite relations
among concepts extracted by iPRL in Figure 8.

Related Work
Domain-specific Concept Extraction

Keyword extraction is the most related task to domain-
specific concept extraction. There are several approaches to
extract keywords. Supervised learning methods usually ex-
tract syntactic and lexical features for keyword extraction.
For example, KEA (Witten et al. 1999) proposed two fea-
tures: TFIDF and first occurrence, and then used a clas-



Method | measure | CAL DS PHY
P 91.38 | 58.86 | 71.69

iPRL R 55.58 | 64.80 | 57.85
Fy 69.12 | 61.69 | 64.06

P 92.96 | 59.16 | 69.70

iPRL? R 5421 | 66.14 | 60.09
Fy 68.48 | 62.46 | 64.54

P 9248 | 60.16 | 71.12

iPRL? R 56.03 | 65.25 | 59.61
Fi 69.78 | 62.60 | 64.86

Table 5: Performance of concept relatednesss(%) on Text-
book dataset, where ° and P denote the semantic relatedness
and position relatedness

0.7

—o—CAL DS PHY

0.55

0.5
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Figure 7: Performance of iPRL? on Textbook varies with the
iterations

sifier to determine the keywords. Recently, an encoder-
decoder framework (Meng et al. 2017) was applied to gener-
ate keyphrase. Unsupervised learning methods usually apply
graph-based semantic relatedness measures for keyword ex-
traction. For example, TextRank (Mihalcea and Tarau 2004)
represented a document as a term graph, and used a graph-
based ranking algorithm to assign importance scores to
terms. Tixier, Malliaros, and Vazirgiannis (2016) proposed
a graph degeneracy-based approach for keyword extraction.

However, these researches mainly focused on the selec-
tion of words that can best describe the document, but ignore
the fact that domain-specific concepts are usually complex
and fine-grained.

Recently, several works (Liu et al. 2015; Shang et
al. 2018) focus on how to extract high-quality phrases.
SegPhrase (Liu et al. 2015) proposed a segmentation-
integrated framework by integrating phrase extraction and
phrasal segmentation to mutually benefit each other. Au-
toPhrase (Shang et al. 2018) extended SegPhrase by intro-
ducing two new technologies: robust positive-only distant
training, and POS-guided phrasal segmentation.

Prerequisite Relation Learning

A few efforts aim to learn prerequisite relations from edu-
cational data, such as courses (Yang et al. 2015; Liang et al.
2015; Liu et al. 2016; Liang et al. 2017), MOOC:s (Pan et al.
2017a), textbooks (Wang et al. 2016; Liang et al. 2018) and
scientific papers(Gordon et al. 2016).

The statistical information such as reference distance and
cross-entropy (Liang et al. 2015; Gordon et al. 2016) was

9684
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PR i (function) — 1] Zk(tangent) — 73 43 (differential)— " {H & F(mean value
theorem)— $74% B H H{H 2 2 (Lagrange mean value theorem)

PR H(function)— 5 $(derivative)— 3 43 /7 F2(differential equation)—s— [ £& 4 13
43 )7 #2(linear first-order differential equation)

Data Structure

4 (data)— B (tree)— — X W (binary tree)— — X ¥ 2% B (binary search tree)— T
17 — X ¥ (balanced binary tree)

& (graph)— 45 £ (node)— # /N A B A (minimal spanning tree)—s 5 £ 37 - /R 5 3%
(Kruskal’s algorithm)

Physics
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SEFE(law of electromagnetic induction)

Figure 8: Examples of prerequisite relations extracted by
iPRL.

proposed to measure the prerequisite relations among con-
cepts in courses or scientific papers. While Pan et al. (2017a)
proposed semantic, contextual and structural features to de-
tect prerequisite relations among concepts in MOOCs.
Other works utilized the dependency among courses or
textbooks. For example, (Yang et al. 2015; Liu et al. 2016)
proposed a concept graph learning framework for within-
and cross-level inference of prerequisite relations at the
course-level and the concept-level directed graphs. (Liang
et al. 2017) addressed the problem of recovering concept
prerequisite relations from university course dependencies.
(Wang et al. 2016) proposed a joint optimization model for
concept map extraction from textbooks that utilizes the mu-
tual interdependency between concept extraction and pre-
requisite relation learning. They further applied active learn-
ing to the concept prerequisite learning (Liang et al. 2018).

Conclusion

In this paper, we propose a domain-specific concept extrac-
tion approach and an iterative prerequisite relation learning
approach. This approach can extract domain-specific con-
cepts and learn the prerequisite relations without human
labeled data. In experiments, we evaluated our approach
on two real-world datasets Textbook Dataset and MOOC
Dataset, and validated that our approach can achieve bet-
ter performance than existing methods. In addition, we also
illustrated some examples of the results of our approach. In
future, we plan to use deep learning and active learning tech-
nologies to further improve the performance.
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