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Abstract

Modern introductory courses on Al do not train students to
create intelligent systems or provide broad coverage of this
complex field. In this paper, we identify problems with com-
mon approaches to teaching artificial intelligence and suggest
alternative principles that courses should adopt instead. We
illustrate these principles in a proposed course that teaches
students not only about component methods, such as pattern
matching and decision making, but also about their combina-
tion into higher-level abilities for reasoning, sequential con-
trol, plan generation, and integrated intelligent agents. We
also present a curriculum that instantiates this organization,
including sample programming exercises and a project that
requires system integration. Participants also gain experience
building knowledge-based agents that use their software to
produce intelligent behavior.

1 Background and Motivation

Modern students of artificial intelligence are being poorly
served. Introductory courses focus on topics that are well
formalized and easy to teach, and they are usually commu-
nicated as a set of unrelated problems. These classes omit
many of the discipline’s most basic and important ideas, de-
spite their continued relevance. The past 30 years have seen
substantial progress, but similar conceptual advances oc-
curred in physics, chemistry, and biology without those dis-
ciplines dropping their established content. Al is in serious
danger of raising entire generations of researchers and prac-
titioners with no training in the field’s history or its many
well-understood, successful methods.

Moreover, courses seldom champion the idea that some
mental abilities build on others in a cumulative manner or
the importance of integration in developing intelligent sys-
tems. Students typically gain experience with using existing
software, but few of them ever learn how to design and im-
plement such systems on their own. Mainstream introduc-
tory classes train people to become consumers of Al tech-
nology rather than producers, which does not bode well for
the discipline’s future. Increased emphasis on statistics and
machine learning, which often replace traditional topics, has
made the situation even worse.
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In this paper, we analyze this crisis in Al instruction and
propose an alternative approach to presenting content about
the field. In the next section, we review the state of introduc-
tory courses in this area and drawbacks of the current style.
After this, we propose some principles for introductory edu-
cation in the area that address these issues. After this, we de-
scribe the structure and content for a new type of Al course,
discussing how each module responds to the principles. The
narrative emphasizes the cumulative, system-level charac-
ter of intelligence, starting with low-level tasks like match-
ing patterns and making decisions, and proceeding to inte-
grated agents that combine inference, execution, and plan-
ning. We also discuss how traditional topics like natural lan-
guage, vision, uncertainty, and learning relate to our frame-
work, along with the importance of history and the target
audiences for our innovative course.

2 The State of the Art

As noted earlier, we believe that existing introductory Al
courses do not train students in the concepts or skills they
need to develop intelligent systems. However, before we
devote substantial effort to devising a new curriculum, we
should first examine the way that classes are currently taught
and determine their adequacy. To this end, we examined the
Web sites for undergraduate Al courses at the ten major uni-
versities shown in Table 1. Most described classes offered
in 2018, but one occurred the year before. In each case, we
inspected the course schedule and associated exercises, al-
though for a few the latter were unavailable. With two excep-
tions, they used Russell and Norvig’s (2009) textbook and
covered its topics, although often in different orders. Most
schedules included multiple sessions on search and game
playing, constraint satisfaction and logical reasoning, prob-
abilistic inference, and varieties of statistical learning.
Analysis of information on these ten courses revealed a
number of themes that, we believe, are reasons for concern:

o Students learn about Al as a collection of isolated algo-
rithms, with little attention to how they can contribute to
integrated intelligent systems. This gives many people the
impression that all important results in the field reside at
the level of these component methods, that their integra-
tion involves ‘mere’ application, and that the study of ‘Al
systems’ is effectively an oxymoron.



o There is little emphasis on representing domain content.
For example, search algorithms are presented in the ab-
stract, with limited discussion of how to encode states
or operators to generate them. Students learn about dif-
ferent formalisms, like logic and Bayesian networks, but
get sparse practice at encoding knowledge in them, which
can greatly impact effectiveness of processing.

e Courses seldom convey the cumulative character of the
field, in which high-level representations and their associ-
ated mechanisms build directly on lower-level structures.
As with representation, this comes from the bias toward
abstract algorithms. For instance, problem solving builds
naturally on pattern matching — to find relevant operators
— and decision making — to select among choices, but the
latter are usually taught after search methods. Integrated
systems rely on layered integration of such mechanisms.

e Exercises often rely on software packages or partial solu-
tions that students can treat as black boxes. In some cases,
students must only download packages and run them on
input files with different options; in others, they must in-
sert a small amount of code into programs provided to
them. This approach makes exercises easier to grade, but
it does not provide participants with deep understanding
of their operation, and it certainly does not teach them
how to create such methods themselves.

o Courses often omit important topics and key theoretical
ideas that have contributed much historically to computa-
tional accounts of intelligence. Problem areas like qual-
itative reasoning, analogy, and creativity are ignored in
favor of ones that are more easily formalized. Even foun-
dational Al concepts, such as list processing, satisficing,
and expert systems are in danger of being forgotten.

Table 1 summarizes how each course fares along these di-
mensions, based on inspection of their on-line schedules and
exercises, with o, o, and e denoting poor, medium, and good
scores, respectively. The situation supports the concerns ex-
pressed earlier that introductory Al courses downplay inte-
gration, representation, cumulative presentation, program-
ming, and breadth. One especially narrow course focused
primarily on statistical learning, almost to the exclusion of
other topics. Naturally, our analysis is subjective and based
on limited information, but we predict others would draw
similar conclusions from the content available. At the same
time, we expect many Al educators would disagree that low
scores on these criteria are undesirable. They are likely to
believe that presenting the field as a collection of algorithms,
using available software, and ignoring ‘outmoded’ topics are
evidence of its maturity, not a cause for dismay.

There are multiple reasons why this perspective is widely
adopted, the most basic being inertia. The standard textbook
makes it easy to teach Al in this manner, and instructors who
have done so many times are reluctant to change gears. An-
other is that AI’'s home in computer science departments,
most of which grew out of mathematics, have a strong bias
toward abstract analysis at the algorithm level. This history
also mitigates against inclusion of topics that are associated
with cognitive psychology, which is often viewed as less re-
spectable. A third reason is that Al applications often em-
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Table 1: Sample Al courses and their evaluations — poor (o),
medium (e), good (e), unknown (x) — on five criteria: integra-
tion (I), representation (R), cumulative style (C), program-
ming (P), and breadth (B). Course sites appear in Appendix.

I R C P B
Carnegie Mellon ) ) o o )
Georgia Tech ) ) ) ) o
MIT o * o ® ®
Stanford ) o o o o
UC Berkeley ) ) ® o o
UCLA o * o o o
U. Maryland o ) * * )
USC ) * o o )
UT Austin * ® ® o ®
U. Washington ) o ) o o

phasize one capability, which is integrated with other in-
formation technology but not with other aspects of intelli-
gence. Finally, the increasing availability of software pack-
ages makes it easy for students to produce empirical results
without learning how to recreate their abilities. Taken to-
gether, these trends have damaged the field, leading to grad-
uates who have neither deep understanding of Al principles
or the ability to develop integrated intelligent systems.

3 Principles for AI Instruction

Now that we have identified some drawbacks of modern Al
courses, we can consider ways to teach them differently.
Here we propose a set of principles for selecting and orga-
nizing instructional content, each responding to a problem
identified above. We maintain that Al classes should:

e Champion a systems perspective that shows how mecha-
nisms interact to produce intelligence. This will combat
views that Al is a collection of disconnected algorithms.

o Give students experience with encoding representational
content that mechanisms interpret to produce behavior.
This will clarify the centrality of structured representa-
tions in intelligent agents.

e Present topics in a cumulative manner, with later mate-
rial layered on earlier content, much as calculus builds
on algebra, which draws on arithmetic. This will empha-
size the hierarchical character of intelligence.

e Teach students not only how to use Al methods, but how to
construct them from simpler components. This will give
them the ability to develop their own mechanisms when
existing ones do not suffice.

o Cover important abilities exhibited in human intelligence
even when they are difficult to formalize. Linking Al to
psychology will remind students that the two fields ad-
dress many of the same core phenomena.

We believe that organizing content in accordance with these
five principles will counter the widespread belief that Al is
simply a set of engineering tricks and it will better prepare
students for innovative research and practical applications.



This approach to instruction is very different from that
adopted by most courses on artificial intelligence. Some
textbooks (e.g., Russell and Norvig, 2009) introduce the no-
tion of intelligent agents, but they lose this message as they
proceed. The standard organization focuses first on search
algorithms, then treats representation and reasoning as af-
terthoughts, with sections on uncertainty and learning con-
necting weakly to earlier material. This framework dates
back over two decades to outlines by Korf (1994) and by
Russell and Norvig (1994). Nilsson (1994) and Kowalski
(2011) have proposed narratives closer to our own, but nei-
ther of their approaches has been widely adopted.

There is some evidence that Al can be taught effectively
in the manner we have proposed. In the late 1980s, we de-
signed and offered a graduate course that adopted some
of these ideas. Students implemented, in sequence, a rela-
tional pattern matcher, a production-system interpreter, and
a forward-chaining search engine, with later programming
exercises using results from previous ones as subroutines.
Moreover, after writing and testing each module, students
used them as high-level programming languages to create
knowledge-based systems for related tasks, including cate-
gorization, sentence parsing, and puzzle solving. The course
did not follow all the principles above, but its success pro-
vides support for an alternative way to structure Al educa-
tion. Over the past decade, we have used a similar cumula-
tive approach to lectures in introductory classes, relying on
an existing agent architecture for exercises. Together, these
experiences suggest that the proposed curriculum is viable.

4 An Integrated Introduction to Al

In this section, we outline the contents for an introductory Al
course that follows the principles introduced earlier. Such
a class cannot cover all topics in such a broad field. For
this reason, we will focus on a subset of the core abilities
that Langley, Laird, and Rogers (2009) identified in their
survey of cognitive architectures. For each topic, we spec-
ify the generic task in terms of inputs and outputs, consider
representations for these structures, and note key theoreti-
cal ideas. We also describe a programming assignment that
would require students to implement the basic functionality,
variations on these mechanisms, and demonstrate their soft-
ware on test cases. Students would also develop knowledge
bases themselves and run their module on them to gain ex-
perience with its use as a high-level programming language.

4.1 Recognition and Pattern Matching

One of the most fundamental abilities of an intelligent agent
is recognizing an instance of some category, concept, or pat-
tern. We can state this task as:

e Given: A pattern that describes some class of situations;

e Given: A description of some specific situation;

e Find: All ways in which the pattern matches the situation.
Detecting instances of matched patterns enables many more
sophisticated forms of processing, as we will see later. The

key theoretical ideas here are (1) the central role of patterns
and pattern matching in Al, (2) the relational character of
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many situations and patterns that match against them, and
(3) a pattern’s ability to match a situation in multiple ways.

For the programming assignment, students would imple-
ment a pattern matcher that works with a predicate logic
or frame notation. Each situation would be stated as a con-
junction of relational ground literals with constants as ar-
guments. Patterns would take a similar form but might
replace some constants with variables and could include
negated conditions. The match process would produce zero
or more pattern matches or instantiations, each specifying
the matched situation elements and a set of bindings between
variables and constants. Subroutines would include modules
for unifying a single condition with a single situation ele-
ment and another for finding all matches between a single
condition and a set of elements.

Test cases would include checking conditions on moves
for simple puzzles like the Tower of Hanoi, goal descriptions
for simple games like Tic-Tac-Toe, and spatial relations be-
tween objects in a perceived environment. In addition, stu-
dents would gain experience with using their software by
developing patterns for tasks like recognizing triangles in
line drawings, recognizing prepositional phrases in word se-
quences, and noting temporal relations in the Allen calcu-
lus. At least some of these tasks should require a mixture of
symbolic and numeric descriptions, as well as patterns that
incorporate negated conditions.

4.2 Decision Making and Choice

Another key feature of an intelligent system is its capacity
for choice, that is, to decide among a number of alternatives.
We can state this problem as:

e Given: A set of entities and associated descriptions;
e Given: A set of goals and/or evaluation criteria;
e Find: A subset of the original entities to select.

Like pattern matching, the ability to select among such al-
ternatives forms the basis for more complex aspects of intel-
ligence. This leads naturally to the notion of agency, since it
lets one choose actions to carry out. The important theoret-
ical ideas are that (1) agents must generate candidates from
among available entities, (2) they must evaluate and select
among options, and (3) such decisions are influenced both
by characteristics of alternatives and by agents’ objectives.
For the programming assignment, students would imple-
ment a choice mechanism that accesses or calculates one or
more scores for each choice, then uses them to rank alterna-
tives and make a final selection. We assume that candidates
are encoded as objects or entities with associated relational
and numeric descriptions, and that evaluation criteria are
specified in terms of the latter. Subroutines would include
modules for recognizing patterns to generate options, calcu-
lating one or more scores for each candidate, and deciding
on a subset of these choices. Parameters would control de-
tails of the generation, ranking, and selection processes. The
decision-making mechanism would produce a subset of the
original entities, each with one or more associated scores.
Test cases would include selecting among categories us-
ing a numeric utility function and choosing among patterns



based on recency of matched elements and on pattern speci-
ficity. In addition, students would gain experience with uses
of decision making by developing their own candidate sets
and objectives. Problems would include deciding which le-
gal move to take in a puzzle based on heuristic criteria, as-
signing entities to categories using a relational probabilistic
classifier, and recommending items based on user profiles.

4.3 Conceptual Inference and Reasoning

Matching individual patterns and making single decisions
serve as solid foundations for mental abilities, but we typi-
cally reserve the term ‘intelligence’ for higher-level process-
ing. These require some form of composition that combines
elementary structures to produce new mental or physical
states. Conceptual inference and reasoning is one capability
that depends on this idea. We can state this task as:

e Given: A set of knowledge elements encoding expertise;

e Given: A set of beliefs that describe some situation;

e Given: An optional query to answer or goal to achieve;

e Find: A set of reasoning chains that connect these facts

(and optionally the query) through the knowledge.

The core theoretical postulates are that (1) inference con-
structs proof-like structures that link beliefs and queries, (2)
there is a space of candidate structures, only some of them
viable, and (3) one must search this space to find solutions.

For the main assignment, students would write software
for deductive reasoning that, like Prolog (Clocksin and Mel-
lish, 1981), carries out AND/OR search through a space of
proof trees. Representations would be similar to those in
Prolog, with knowledge encoded as relational rules. Typi-
cal rules would have a single consequent and multiple an-
tecedents, but headless rules could specify constraints on re-
lations that cannot occur together. Queries would be con-
junctions of relations with either variables or constants as
arguments. Subroutines would unify rule heads with queries
and antecedents with beliefs, as well as decide which ele-
ments and rules to focus on during search. Parameters would
specify criteria to use when choosing elements and rules,
limits on search, and desired number of solutions.

Basic test cases would include answering queries about
relationships in a kinship database and proving geome-
try theorems from available postulates. For more advanced
demonstrations, students would create and test knowledge
bases for sentence processing with context-free grammars
and reasoning about complex spatial relations among objects
in simulated environments. A follow-on exercise would re-
quire extending the code to support abductive reasoning and
then applying it to parsing ill-formed sentences and infer-
ring other agents’ plans from their observed actions, possi-
bly augmenting rules and beliefs with probabilities.

4.4 Execution and Sequential Control

Intelligent agents exist over time, and thus encounter a con-
tinuing sequence of choices. In each case, they must gener-
ate alternatives, describe these candidates, and select one or
more for execution. One obvious approach to sequential de-
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cision making is to invoke this process repeatedly. This leads
to the reactive control task, which we can state as:

e Given: A set of knowledge elements that describe condi-

tional effects of candidate actions;
Given: A set of goals and/or evaluation criteria;
Given: A description of the agent’s current situation;

Find: One or more action instances to carry out and the
changes they are expected to produce.

The agent applies this scheme iteratively to produce a se-
quence of actions over time. Most applications involve ex-
tended activity in a physical or simulated environment, but
they might also involve mental simulation. The theoretical
tenets here are that control (1) combines knowledge and
beliefs about the situation to generate candidate actions,
(2) uses knowledge about the agent’s objectives to evalu-
ate these alternatives, and (3) selects a subset of actions and
carries them out before continuing the process.

For the programming assignment, students would imple-
ment a procedure that repeatedly matches, selects, and exe-
cutes an action, continuing for a specified number of cycles
or until no rules apply.! Subroutines would draw from ear-
lier units on pattern matching and decision making, with pa-
rameters controlling details of these component processes.
Situations would be encoded as sets of relations that specify
the agent’s beliefs about the environment, along with goals
or tasks it wants to pursue. Each action would have an as-
sociated rule that describes expected effects when taken un-
der specified conditions (Fikes and Nilsson, 1972; McDer-
mott et al., 1998). Conditions and effects would be symbolic
structures, but might include quantitative information (Fox
and Long, 2003). On each cycle, the system would select
and execute a matched rule based on specified criteria.

Test cases would include simple physical tasks, such as
controlling a first-person game agent and letting a simulated
robot approach objects while avoiding obstacles. A follow-
up assignment would involve extending the software to mod-
ulate reactive control using inference and task-directed pro-
cessing. Here students would use hierarchical task networks
(Nau et al., 2003) to produce more sophisticated behavior for
games and simulated robotic tasks, such as collecting and as-
sembling a set of objects. For a related problem, they would
handcraft hierarchical plans that the agent executes in its en-
vironment. These would clarify that control is not limited to
purely reactive methods and can benefit from knowledge.

4.5 Planning and Problem Solving

Executing complex behaviors over time is an essential part
of agency, but it also occurs in many animals that we are re-
luctant to call intelligent. Humans can also solve novel prob-
lems and generate innovative plans that achieve their goals,
which involves another variety of compositional processing.
We can state this important task as:

e Given: Knowledge about conditional effects of actions;

e Given: A set of goals and/or evaluation criteria;

'Tn essence, this would involve creating a production system
interpreter (Newell, 1973; Brownston et al., 1985).



e Given: A description of the agent’s current situation;

e Find: A set of plans (action sequences) that transform the
current state into one satisfying the agent’s goals.

The planning task has much in common with sequential con-
trol, but there are three key differences. These include the
theoretical ideas that plan generation (1) involves mental
simulation of action sequences (i.e., plans) rather than ex-
ecution in the environment, (2) requires the agent to search
through a space of alternative plans, and (3) uses heuristics
to guide this search and make it tractable.

Programming exercises would require students to imple-
ment a planning system that searches through a space of
candidate plans. This would select a node (partial plan) in
the search tree, select an operator to extend it, check to
see whether it fails or solves the problem, and iterate until
finding enough solutions or exhausting allocated resources.
Subroutines would include modules developed previously
for pattern matching, decision making, inference, and exe-
cution. Parameters would control the heuristics used to se-
lect nodes and operators, the details of backtracking, and
the number of solutions desired. The module would assume
the same formalism as sequential control, with relations de-
scribing situations and goals, and with rules characterizing
actions. The latter may be organized in a hierarchy that states
how to decompose complex tasks into simpler ones.

Test cases would repeat the tasks used for sequential con-
trol, but with weaker heuristic guidance to illustrate the role
of search. Additional problems would come from classic
tasks on which first-principles planning is effective. Students
would also use the hierarchical task networks they wrote for
the control module to constrain the search process. As be-
fore, advanced problems would include controlling an agent
in a first-person game and having a mobile robot collect and
assemble objects. The latter task would involve an interest-
ing mixture of symbolic and numeric processing.

4.6 Integrated Intelligent Agents

Humans combine each of the abilities discussed earlier, and
developing integrated intelligent agents was originally one
of the field’s primary objectives. Research on cognitive ar-
chitectures (Langley et al., 2009) has emphasized this idea,
but so has a parallel body of work on integrated robotics
systems. We cannot specify this task in terms of inputs and
outputs because it relies on feedback between modules, but
the basic aim is an agent that interacts with its environment
over an extended period in a goal-directed manner. The im-
portant theoretical ideas are that (1) such intelligent agents
draw on inference, planning, and execution, (2) they moni-
tor the progress of plans as they are carried out, and (3) they
detect environmental anomalies when they arise and revise
their plans in response. There are many variations on this
underlying theme, but they share core assumptions.

For this module’s programming assignment — actually a
small project — students would create an agent architec-
ture that supports such integrated, goal-directed process-
ing. Subroutines would include earlier software for infer-
ence, plan generation, and sequential execution. Parameters
would include those from previous assignments, along with
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criteria that drive detection of anomalies (pattern match-
ing) and choosing when to replan (decision making). The
project would require no new representational formalisms,
as it would build directly on those introduced earlier for var-
ious components. Instead, participants would focus on inte-
grating previous capabilities to support extended behavior in
pursuit of the agent’s goals, which themselves might change
over time (Aha, Cox, and Muiioz-Avila, 2013).

Students would choose from challenge domains that in-
volve cognitive robotics, diagnosis and repair of machinery,
and task-oriented dialogue. Agents would operate in simu-
lated environments that, unlike those for planning, can vi-
olate their expectations. One example would involve con-
trolling a simulated robot in settings where objects appear
or move unexpectedly, where the robotic platform malfunc-
tions, or where other surprises occur. Similar challenges
would arise in the diagnostic domain, where machine com-
ponents break down, and in task-oriented dialogue, where
another participant introduces new topics. In each case, stu-
dents would provide the architecture with knowledge that
lets the agent pursue and achieve goals over extended peri-
ods in environments that do not always behave as it predicts.

5 Course Schedule and Assignments

We have used this organization to develop a course sched-
ule, shown in Table 2, that lists the topics covered in each
session. These are grouped into five sections — introduc-
tory concepts, inference and reasoning, execution and con-
trol, planning and problem solving, integrated systems, and
advanced subjects. Each topic emphasizes abstract compu-
tational tasks, such as deductive reasoning and heuristic
search, and methods for solving them, but lectures will in-
clude examples of specific applications, such as parsing sen-
tences and playing games. Ideas in later sections build on
ones presented earlier, conveying the cumulative character
of cognition. The section on integrated systems brings this
content together and illustrates them in the context of three
important types of application.

Programming assignments also play a major role in the
course. Table 3 summarizes eight exercises, approximately
one per week, associated with the first four sections. These
require writing generic software (e.g., deductive reasoning)
and demonstrating it on specific domains (e.g., parsing sen-
tences). This is an aggressive schedule, but later exercises
build on the results from earlier ones, letting students reuse
existing code. Also, exercises come in pairs, with the sec-
ond involving straightforward extensions of its predecessor.
During the final weeks, participants use this software base
to create and demonstrate an integrated system for cogni-
tive robotics, diagnosis and repair, or task-oriented dialogue.
This takes place in parallel with sessions on advanced topics
that have no associated exercises.

6 Supporting Discussion

We have argued that our approach to introductory Al educa-
tion is both more integrative and more inclusive than stan-
dard courses, but these claims merit discussion. Of course,
many readers will maintain that standalone treatment of al-



Table 2: Proposed schedule for the introductory Al course.

Table 3: Proposed programming assignments for the course.

Introductory Concepts

1. Intelligence in Humans and Machines
2. Representation, Reasoning, Search, and Knowledge
3. Recognition and Pattern Matching
4. Decision Making and Choice
Conceptual Inference and Reasoning

5. Multi-Step Inference

6. Deductive Reasoning

7. Satisfying Constraints

8. Qualitative and Causal Reasoning
9. Abduction and Explanation

10. Analogical Reasoning

Execution and Sequential Control

11. Reactive Control

12. Cognitive and Hierarchical Control

13. Executing and Monitoring Plans
Planning and Problem Solving

14. Problem Solving as Search

15. Heuristic Guidance

16. Generating Plans

17. Adversarial Problem Solving

Integrated Systems

18. Cognitive Architectures / Integrated Agents

19. Application: Cognitive Robotics

20. Application: Automated Diagnosis and Repair

21. Application: Task-Oriented Dialogue Systems
Advanced Topics

22. Episodic Memory and Self Explanation
23. Creativity and Discovery

24. Emotion and Personality

25. Moral Reasoning

26. Review and Summary

gorithms is natural and follows a long tradition in other ar-
eas of computer science. Some will even argue that the no-
tion of ‘Al systems’ is a distraction that has no place in for-
mal instruction. Yet the field’s most visible success stories —
such as SHRDLU (Winograd, 1972), TRAINS (Allen et al.,
1996), TacAir-Soar (Jones et al., 1999), Facade (Mateas and
Stern, 2005), Watson (Ferrucci et al. 2010), and AlphaGo
(Silver et al., 2016) — all revolve around integrated intelli-
gent systems. We believe it is important to train students in
the design and construction of such computational artifacts.

Some readers may be concerned that the curriculum ig-
nores progress in Al over the past two decades. Indeed, there
have certainly been important breakthroughs in reasoning,
such as answer set programming (e.g., Baral, 2003) and sta-
tistical relational inference (e.g., Richardson and Domingos,
2006), as well as in planning and game playing, such as Fast-
Forward (Hoffmann, 2001) and Monte Carlo tree search
(Coulom, 2006). However, this does not mean they are de-
sirable topics for an introductory course, where novices
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la. Implement a pattern matcher for predicate logic or
frame notation. Test on patterns for puzzles and games,
spatial and temporal relations, and word sequences.
Extend the pattern matcher to generate, evaluate, and
choose candidates for some decision. Test on selecting
moves in games and assigning entities to categories.
Implement a query-driven deductive reasoner for pred-
icate logic. Test on answering queries about kinship,
proving geometry theorems, and parsing sentences.
Extend the deductive reasoning engine to support ab-
ductive inference. Test on parsing ill-formed sentences,
line drawings, and understanding others’ plans.
Implement a reactive controller that matches rules, se-
lects candidates, and executes them in an environment.
Test on simulated game agents and mobile robots.
Extend the reactive system to include inference about
situations and top-down hierarchical control. Test on
controlling simulated game agents and mobile robots.
Implement a system that carries out search to find for
plans that achieve goals. Test on classic planning tasks,
game agents, and simulated mobile robots.

Extend the planning system to use inference about situ-
ations and hierarchical task knowledge. Test on classic
tasks, game agents, and simulated mobile robots.

1b.

2a.

2b.

3a.

3b.

4a.

4b.

will gain more insight from classic methods precisely be-
cause they are conceptually simpler. More sophisticated Al
techniques are better reserved for advanced classes, just as
physics students learn about Einsteinian relativity after they
have mastered Newtonian mechanics.

Other readers will note that we have not included major
modules on language or vision, both of which receive entire
chapters in Russell and Norvig (2009), and this appears to
counter our claims for inclusiveness. However, our course
content does include these topics, just not as top-level cate-
gories. We hold that language understanding is best viewed
as a form of conceptual inference, while its generation is
naturally handled as a variety of sequential execution and
planning. Dialogue is a more complex process that combines
understanding and generation, as well as extending common
ground over time, which we address in the section on inte-
grated intelligent systems.

In the same way, image understanding involves multi-
level inference that aims to explain sensory data, while ac-
tive vision relies on a form of sequential control. The exer-
cises include test problems for basic versions of these abil-
ities, but the course does not treat them as standalone top-
ics that require entirely new mechanisms. Rather, students
use their own software for inference and execution to create
knowledge-based systems that demonstrate these capacities.
We have not included modules for early image processing,
including object detection, as these arguably involve low-
level pattern recognition rather than high-level intelligence.



We have also downplayed two other topics — uncertainty
and learning — to which Russell and Norvig (2009) devote
entire sections of their book, as do other authors. Our argu-
ment for this decision is somewhat different. We maintain
that probabilistic reasoning, and other responses to uncer-
tainty, are best treated as modulations of classical symbolic
approaches. Thus, appropriate exercises might ask students
to extend basic techniques, from pattern matching to plan-
ning, to incorporate probabilities, but we should not present
them as standalone abilities, as that would only buttress
views that Al is a collection of isolated techniques.

The reasoning against distinct modules for machine learn-
ing is similar. As Langley (1996) has argued, one cannot de-
scribe or understand a learning mechanism until one has first
described and understood the representations over which it
operates or the performance processes it aims to improve.
Learning methods can aid each cognitive function that our
modules address, but they are best treated in that context, not
as separate topics in their own right. This follows from our
principle that instruction should be cumulative, as learning
methods build directly on more basic performance elements.
Realistically, this might be accomplished best in a follow-on
course, organized along the same lines, that reviews the main
topics and covers approaches to learning for each of them.

Another important issue concerns the background and ori-
gin of ideas covered in the course. We believe it is important
to present problems and solutions in their historical context,
and to give credit to other fields that have influenced AI’s tra-
jectory. Some textbooks acknowledge this intellectual debt,
especially to mathematical disciplines like logic and prob-
ability theory, but they often ignore the crucial role played
by cognitive psychology in AD’s first three decades (Langley,
2012). Discussing the origin of key ideas, and giving credit
where it is due, need not take much time, but it can enrich
considerably the overall educational experience.

We should also discuss the target audience for the intro-
ductory course we have outlined. Although the basic orga-
nization and content are appropriate for an intensive upper-
division class, there is no reason why an instructor could not
offer the same basic material to lower-division undergrad-
uates. The content’s cumulative character means the only
prerequisites would be an ability to design, write, and de-
bug programs in a language like Lisp, Python, or Java that
supports list processing. We can even imagine a version for
undergraduates not majoring in computer science, or high-
school students, that provides code for each module and uses
them to create knowledge-based systems. In summary, the
course’s structure and content can be easily adapted to a
wide range of audiences, which seems highly desirable.

7 Closing Remarks
In this paper, we identified problems with standard intro-
ductions to artificial intelligence and proposed some princi-
ples that, if adopted, would overcome them. These included
championing a systems perspective that emphasizes inte-
gration, presenting topics in a cumulative manner, focusing
on representational issues, teaching students not only how
to use Al methods but how to construct them, and cover-
ing a broad range of abilities associated with human intel-
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ligence. We also described a novel introductory course that
would follow these principles. Early assignments on pattern
matching and decision making would support later ones on
conceptual inference, sequential control, and plan genera-
tion, which in turn would enable integrated goal-directed
agents that operate over extended periods. Students would
write generic interpreters for each cognitive ability and then
use them to construct knowledge-based systems that demon-
strate their generality on different applications.

The course organization would differ substantially from
mainstream treatments of the field, including those in the
most popular textbooks. Topics like natural language and vi-
sion would be treated as special cases of more general abil-
ities like inference and control, while approaches to dealing
with uncertainty would be handled as modulations of classic
symbolic methods. Material about machine learning would
be reserved for a follow-on course that students could take
after they had mastered more basic issues related to repre-
sentation and performance. The course would discuss prob-
lems and solutions in their historical context, noting cases
in which ideas originated in other fields, and its content
could be easily adapted for presentation to nonmajors and
high-school students by stressing the use of generic software
rather than its generation. We predict that such a system-
level, cumulative approach to Al instruction will better pre-
pare future researchers and practitioners than the algorithm-
centered schemes that are currently in vogue.
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Appendix: Sample AI Courses

The analysis in Section 2 comes from inspection of the Web
sites for these ten recently offered Al courses:

Carnegie Mellon University
http://www.cs.cmu.edu/~./15381/

Georgia Institute of Technology
https://www.cc.gatech.edu/~riedl/classes/2017/cs3600/

Massachusetts Institute of Technology
https://ai6034.mit.edu/wiki/index.php?title=Main_Page

Stanford University
http://web.stanford.edu/class/cs221/

University of Maryland, College Park
http://www.cs.umd.edu/class/spring2018/cmsc421/

University of California, Berkeley
https://inst.eecs.berkeley.edu/~cs188/fal8/

University of California, Los Angeles
web.cs.ucla.edu/~guyvdb/teaching-service/cs161/2018w/

University of Southern California
http://idm-lab.org/wiki/360-Fall18/

University of Texas at Austin
https://www.cs.utexas.edu/users/risto/cs343/

University of Washington
https://courses.cs.washington.edu/courses/cse473/18au/
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